LHC Physics: P2IO Projects

from LHC analyses to new developments in theory and detectors

Frédéric Déliot
 CEA-Saclay

P2IO Scientific Council
17 December 2014

LHC

- Run 1 (2011-2012):
$\rightarrow 7-8 \mathrm{TeV}, 5-21 \mathrm{fb}^{-1}$
- Run 2 (2015-2018):
$\rightarrow 13 \mathrm{TeV}, \sim 100 \mathrm{fb}^{-1}$ expected
- LHC physics:
\rightarrow heart of P2IO lab activities
\rightarrow P2IO support: from data analyses to new developments in theory and detection

Data analyses

- ATLAS
\rightarrow 2012-2014: measurement of the charge asymmetry and polarization of top quarks
- CMS
\rightarrow 2013-2015: measurement of parity and couplings of the Higgs boson in the diphoton final state
- top-antitop charge asymmetry
\rightarrow QCD predicts that top quarks are emitted preferentially backward/forward while antitops are rather central at the LHC

\rightarrow several measurements of this asymmetry at the Tevatron were larger than the standard model prediction
- \bar{t} asymmetry measurement in the dileptonic channel in ATLAS at 7 TeV
$\rightarrow t \bar{t}$ asymmetry (need the final state reconstruction) or from the leptons coming from the top decays (diluted asymmetry)
\rightarrow < unfolding » of reconstructed distributions to get partonic informations to be comparer with theory predictions
- result:
\rightarrow first measurement in 2D at LHC
\rightarrow limited by statistical error
\rightarrow in agreement with standard model prediction

x

 Measurement of top quark polarisation

 Measurement of top quark polarisation}

- top quark polarisation
\rightarrow in the standard model, the top quark is produced with a almost vanishing polarisation
\rightarrow models that could explain a large asymmetry at the Tevatron can also induce a top quark polarisation
- measurement of the top quark polarisation in ATLAS at 7 TeV
\rightarrow fit the distribution of polar angle from the top quark decay products
\rightarrow first measurement at the LHC : measured polarisation compatible with 0
- P2IO added value

PRL 111, 232002 (2013)
\rightarrow work in collaboration between experimentalists and theorists (Saclay-LPT)
\rightarrow visibility of experimentalists on hot topics

Measurement of Higgs boson parity and couplings in the diphoton final state

- Higgs boson :
\rightarrow discovered in 2012, highlight of LHC Run 1
\rightarrow important goal of Run 2: measurements of its properties to establish the nature of this new particle
- measurements of the Higgs boson couplings to the W and Z in CMS
\rightarrow use the vector boson fusion mechanism (VBF)
\rightarrow search for Higgs boson decaying into two photons:
small branching ratio, clear signature
\rightarrow sensitivity study at 8 TeV :

likelihood fit to separate signal from background and the different hypotheses for Higgs boson parity
- P2IO added value
\rightarrow new analyse in CMS complementary to the $\mathrm{H} \rightarrow \mathrm{ZZ}$
final state
\rightarrow visibility of experimentalists on hot topics

New theory developments

- LPT-Orsay
\rightarrow 2012-2014: the Higgs boson problem located on a brane

The Higgs boson problem located on a brane

- the hierarchy problem
\rightarrow The Higgs boson was discovered but the electroweak symmetry breaking mechanism is still to be understood: electroweak scale << Planck scale, hierarchy between the fermion masses
\rightarrow several models could overcome these weaknesses like extradimension models
- extradimension models implication on Higgs physics
\rightarrow influence of the Kaluza-Klein fermions on the $\mathrm{pp} \rightarrow \mathrm{H} \rightarrow \mathrm{VV}$ production
\rightarrow implementation of the Yukawa terms in lagrangiens to solve the equations of motion
$\rightarrow 2$ computations in 4D lead to different results
non commutativity: Higgs localisation on the brane vs infinite sum of the KK levels
- P2IO added value
\rightarrow join together a group of experts in extradimension to work on this difficult paradox

detector R\&D

- SAMPIC
\rightarrow 2012-2014: development of an electronic system for absolute time measurement based on a new chip
- ATLAS
\rightarrow 2013-2014: upgrade of the ATLAS electromagnetic calorimeter L1 trigger

Chip to measure absolute timing at the picosecond level

- flight time measurement at the picosecond level in particle physics
\rightarrow study of diffractive protons at small angles (a few mm from the beam)
\rightarrow a few ps resolution to reject background and link the event to the right vertex
- SamPic: Sampler for Picosecond time pick-off
\rightarrow based on CMOS
\rightarrow principle: threshold detection, sampling and time estimate, analog-digital conversion and readout of the region of interest
\rightarrow excellent results of the chip prototype
resolution on the time difference between 2 pulses of 0,85 ns length as a fonction of their time separation

- P2IO added value
\rightarrow projet hardly doable without P2IO support
\rightarrow collaboration Saclay-LAL

- LHC Run 3 (2019-2021):
\rightarrow high luminosity phase: $210^{-34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, 300 \mathrm{fb}^{-1}$ expected, trigger EM: 20 kHz
\rightarrow with the current L1 trigger: thresholds on electrons/photons: $40-45 \mathrm{GeV}$ (inacceptable efficiency loss)
- Upgrade of the ATLAS L1 trigger
\rightarrow increase granularity (isolation and shower shape optimisation)
\rightarrow compatibility between the old and new system (analog part - digital part)
\rightarrow prototype successfully integrated in ATLAS last summer ready to take data: analog and digital parts validated (noise, cross-talk, linearity)

- P2IO added value
\rightarrow projet hardly doable without P2IO support
\rightarrow collaboration Saclay-LAL

Conclusion

- P2IO and LHC physics
\rightarrow P2IO supports/supported several LHC projets:
physics analysis, theory developments, detector R\&D
\rightarrow within large international collaborations, P2IO support allows significant progress led by labs from the Labex
- LHC Run 2 will open new perspectives

