LHC Physics: P2IO Projects

from LHC analyses to new developments in theory and detectors

Frédéric Déliot CEA-Saclay

P2IO Scientific Council 17 December 2014

LHC

- Run 1 (2011-2012):
 - → 7 8 TeV, 5 21 fb⁻¹
- Run 2 (2015-2018):
 - → 13 TeV, ~ 100 fb⁻¹ expected
- LHC physics:
 - → heart of P2IO lab activities
 - → P2IO support: from data analyses to new developments in theory and detection

Data analyses

ATLAS

→ 2012-2014: measurement of the charge asymmetry and polarization of top quarks

• CMS

→ 2013-2015: measurement of parity and couplings of the Higgs boson in the diphoton final state

Measurement of charge asymmetry in top quark pairs

top-antitop charge asymmetry

→ QCD predicts that top quarks are emitted preferentially backward/forward while antitops are rather central at the LHC

- → several measurements of this asymmetry at the Tevatron were larger than the standard model prediction
- tt asymmetry measurement in the dileptonic channel in ATLAS at 7 TeV
 - → tt̄ asymmetry (need the final state reconstruction) or from the leptons coming from the top decays (diluted asymmetry)
 - → « unfolding » of reconstructed distributions to get partonic informations to be comparer with theory predictions

result:

- → first measurement in 2D at LHC
- → limited by statistical error
- → in agreement with standard model prediction

- top quark polarisation
 - → in the standard model, the top quark is produced with a almost vanishing polarisation
 - → models that could explain a large asymmetry at the Tevatron can also induce a top quark polarisation
- measurement of the top quark polarisation in ATLAS at 7 TeV
 - → fit the distribution of polar angle from the top quark decay products
 - → first measurement at the LHC: measured polarisation compatible with 0

PRL 111, 232002 (2013)

- P2IO added value
 - → work in collaboration between experimentalists and theorists (Saclay-LPT)
 - → visibility of experimentalists on hot topics

Measurement of Higgs boson parity and couplings in the diphoton final state

Higgs boson :

- → discovered in 2012, highlight of LHC Run 1
- → important goal of Run 2: measurements of its properties to establish the nature of this new particle
- measurements of the Higgs boson couplings to the W and Z in CMS
 - → use the vector boson fusion mechanism (VBF)
 - → search for Higgs boson decaying into two photons: small branching ratio, clear signature
 - → sensitivity study at 8 TeV: likelihood fit to separate signal from background and the different hypotheses for Higgs boson parity

P2IO added value

- → new analyse in CMS complementary to the H→ZZ final state
- → visibility of experimentalists on hot topics

New theory developments

- LPT-Orsay
 - → 2012-2014: the Higgs boson problem located on a brane

The Higgs boson problem located on a brane

• the hierarchy problem

- → The Higgs boson was discovered but the electroweak symmetry breaking mechanism is still to be understood: electroweak scale << Planck scale, hierarchy between the fermion masses
- → several models could overcome these weaknesses like extradimension models
- extradimension models implication on Higgs physics
 - → influence of the Kaluza-Klein fermions on the pp→H→VV production
 - → implementation of the Yukawa terms in lagrangiens to solve the equations of motion
 - → 2 computations in 4D lead to different results

 non commutativity: Higgs localisation on the brane vs infinite sum of the KK levels

arXiv:1408.1852

P2IO added value

→ join together a group of experts in extradimension to work on this difficult paradox

detector R&D

SAMPIC

→ 2012-2014: development of an electronic system for absolute time measurement based on a new chip

ATLAS

→ 2013-2014: upgrade of the ATLAS electromagnetic calorimeter L1 trigger

Chip to measure absolute timing at the picosecond level

- flight time measurement at the picosecond level in particle physics
 - → study of diffractive protons at small angles (a few mm from the beam)
 - → a few ps resolution to reject background and link the event to the right vertex

- SamPic: Sampler for Picosecond time pick-off
 - → based on CMOS
 - → principle: threshold detection, sampling and time estimate, analog-digital conversion and readout of the region of interest
 - → excellent results of the chip prototype

- P2IO added value
 - → projet hardly doable without P2IO support
 - → collaboration Saclay-LAL

resolution on the time difference between 2 pulses of 0,85 ns length as a fonction of their time separation

Upgrade of the ATLAS electromagnetic calorimeter L1 trigger

• LHC Run 3 (2019-2021):

- → high luminosity phase: 2 10⁻³⁴ cm⁻² s⁻¹, 300 fb⁻¹ expected, trigger EM: 20 kHz
- → with the current L1 trigger: thresholds on electrons/photons: 40-45 GeV (inacceptable efficiency loss)

Upgrade of the ATLAS L1 trigger

- → increase granularity (isolation and shower shape optimisation)
- → compatibility between the old and new system (analog part digital part)
- → prototype successfully integrated in ATLAS last summer ready to take data: analog and digital parts validated (noise, cross-talk, linearity)

P2IO added value

- → projet hardly doable without P2IO support
- → collaboration Saclay-LAL

Conclusion

- P2IO and LHC physics
 - → P2IO supports/supported several LHC projets:

 physics analysis, theory developments, detector R&D
 - → within large international collaborations, P2IO support allows significant progress led by labs from the Labex
- LHC Run 2 will open new perspectives