

Charm semileptonic decays at Babar

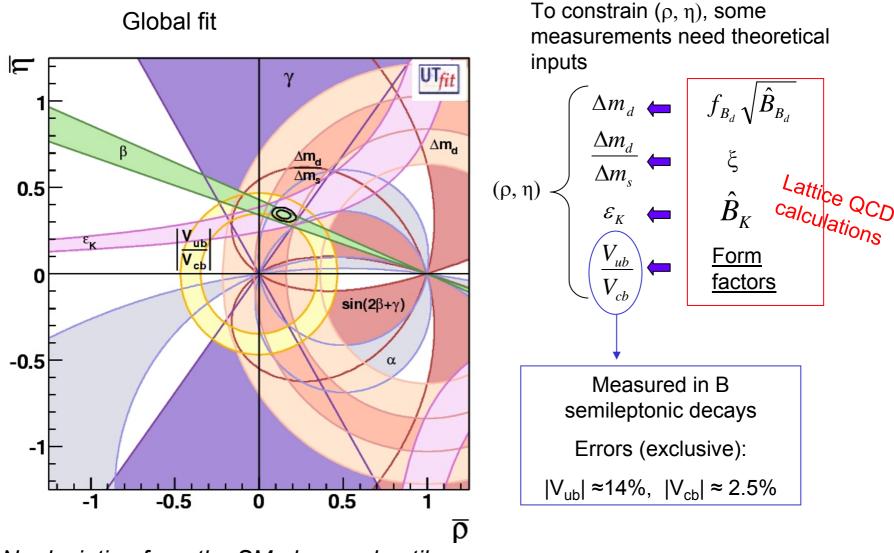
Justine Serrano

LPNHE, 12 juin 2008

Introduction
$D^0 \rightarrow K^- e^+ v$
$D_s^+ \rightarrow K^+ K^- e^+ \nu$
Perspectives and summary

Why?

Charm leptonic and semileptonic decays provide an important way to test lattice QCD predictions. Techniques validated in the charm sector can then be used in the B sector to improve the accuracy on CKM parameters determination.


4

4

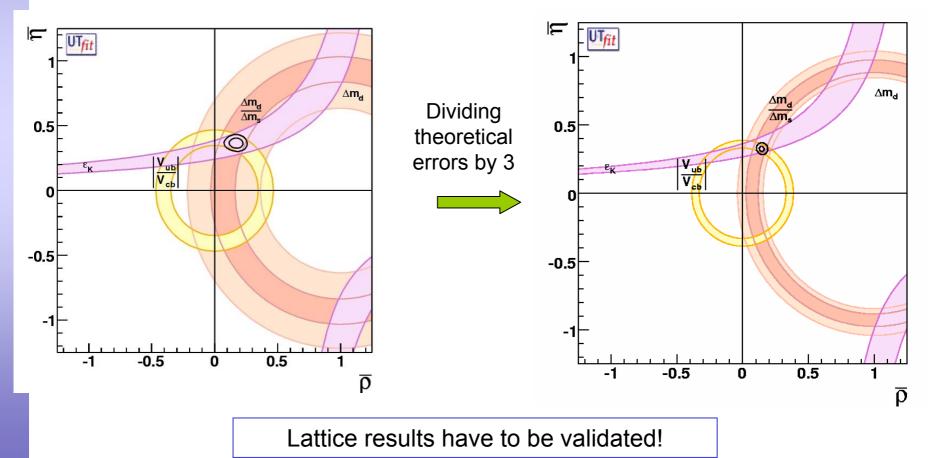
Weak
$$\begin{bmatrix} d'\\ s'\\ b' \end{bmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{bmatrix} d\\ s\\ b \end{bmatrix}$$
 Mass
eigenstates
$$\begin{bmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta)\\ -\lambda & 1-\lambda^2/2 & A\lambda^2\\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{bmatrix} + O(\lambda^4)$$

$$\lambda = |V_{us}| \sim 0.22$$

 η responsible for CP violation
$$\boxed{\rho(\overline{\eta}) = (1-\lambda^2/2)\rho(\eta)}$$
 Test of the SM: measurements allow to overconstrain the apex

е

Status of the unitarity triangle



No deviation from the SM observed until now

Importance of lattice QCD

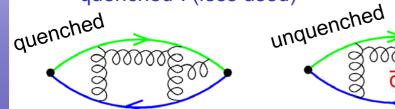
The accuracy of SM test can be improved with:

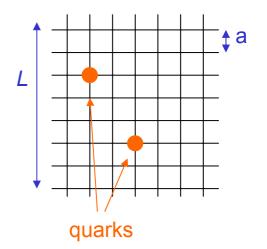
- more precise measurements
- more precise lattice computations

Lattice QCD

purpose: understand hadron structure and interactions from QCD Lagrangian •Understand how QCD « works » •Compute observables

Path integral:


$$\langle O \rangle = \frac{1}{Z} \int DA_{\mu} O e^{-s}$$


Method: discretize space-time •Lattice spacing a ~ 0.1 fm •Lattice size L~ 2 fm

"Real" QCD, but observables computed with statistical errors (due to the finite number of configurations)

Approximations:

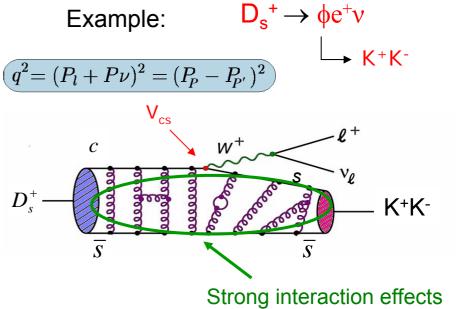
- quark masses: u,d need a large volume, b needs a small spacing
- extrapolation $a \rightarrow 0$, infinite volume
- "quenched": (less used)

Validation:

comparison with the observables measured in experiments

- leptonic decays: decay constant (f_D, f_{Ds})
- semileptonic decays: form factors (q² dependent)

Charm semileptonic decays

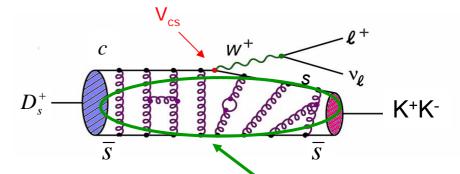

Decay rate:

$$d\Gamma \propto \left|V_{ij}\right|^2 \times FF^2$$

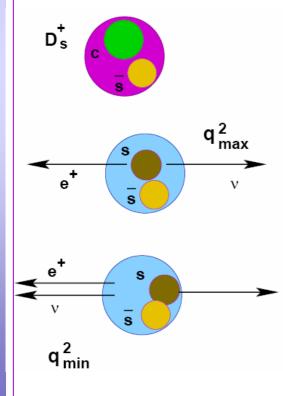
> Charm: V_{cs} well known thanks to CKM unitarity \Rightarrow we can measure precisely FF

validate lattice QCD computation

 \succ Apply this method to the B sector to improve the determination of $V_{\rm ub}$


parameterized by FF

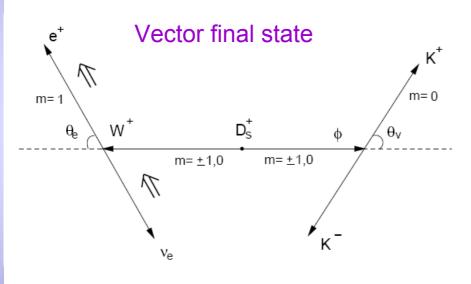
Pseudoscalar l v decay : one form factor, angular distribution known Vector l v decay : 3 helicity states,
 5 kinematic variables


Dynamic of semileptonic decays

$$q^2 = M_W^2 = (p_l + p_v)^2$$

Strong interaction effects parameterized by FF

Initial meson


The daughter quark receives a small momentum kick, formation of daughter meson is favoured

The daughter quark receives a large momentum kick, formation of bound state more difficult

The relative variation of form factors depends on the q² range

Dynamic of semileptonic decays

> angular dependence, helicity considerations:

- Initial meson J=0,
- e is right-handed \Rightarrow **m=1** in the W rest frame

• Φ decays into 2 pseudo-scalars \Rightarrow m=0 in the Φ rest frame

• Combining projections along the W direction in the D_s rest frame, we have to combine the helicity amplitudes:

helicity	W+	ϕ
$H_{+}(q^{2})$	$\frac{1}{2}(1+\cos\theta_e)$	$\frac{1}{\sqrt{2}}\sin\theta_V e^{-i\chi}$
$H_{-}(q^{2})$	$\frac{1}{2}(1-\cos\theta_e)$	$-\frac{1}{\sqrt{2}}\sin\theta_V e^{i\chi}$
$H_0(q^2)$	$\frac{1}{\sqrt{2}}\sin\theta_e$	$\cos heta_V$

For a pseudoscalar final state, just the H₀ component contributes

 \Rightarrow Angular distribution ~ sin²(θ_{e})

Branching fractions

Inclusive branching fractions

	D^0	D^+	
Inclusive s.l. BR $(\%)[77]$	$6.46 \pm 0.17 \pm 0.13$	$16.13 \pm 0.20 \pm 0.33$	CLEO-c
Lifetime $(ps)[4]$	0.4101 ± 0.0015	1.040 ± 0.007	
Inclusive s.l. width $(\times 10^{-2} p s^{-1})$	$15.75 \pm 0.41 \pm 0.32$	$15.51 \pm 0.20 \pm 0.31$	

For D_s no recent result, PDG gives BR=8 $^{+6}$ ₋₅ %

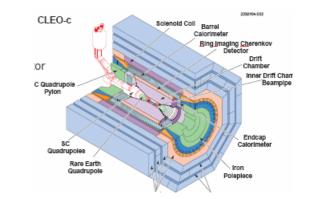
Exclusive branching fractions

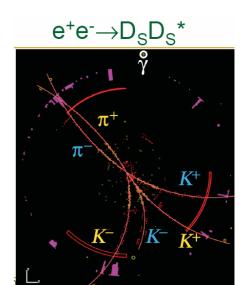
	D^0 decay	BR	$\Gamma^{sl.}_{D^0}$	D^+ decay	BR	$\Gamma_{D^+}^{sl.}$	
	channel	(%)	$(\times 10^{-2} p s^{-1})$	channel	(%)	$(\times 10^{-2} p s^{-1})$	
	$K^- e^+ \nu_e$	3.53 ± 0.05	8.61 ± 0.12	$\overline{K^0}e^+\nu_e$	8.55 ± 0.23	8.22 ± 0.22	dominant
	$K^{*-}e^+\nu_e$	2.17 ± 0.16	5.29 ± 0.39	$\overline{K^{*0}}e^+\nu_e$	5.61 ± 0.31	5.39 ± 0.30	
	$(K\pi)_S^- e^+ \nu_e$			$(K\pi)^{0}_{S}e^{+}\nu_{e}$	0.3 ± 0.1	0.3 ± 0.1	
	$K_1^-(1270)e^+\nu_e$	$0.08\substack{+0.04\\-0.03}$	0.2 ± 0.1	$\overline{K_1^0}(1270)e^+\nu_e$			
	$K_1^{*-}(1400)e^+\nu_e$			$\overline{K_1^{*0}}(1400)e^+\nu_e$			
	$K_2^{*-}(1430)e^+\nu_e$			$\overline{K_2^{*0}}(1430)e^+\nu_e$			
	$\pi^- e^+ \nu_e$	0.293 ± 0.011	0.71 ± 0.03	$\pi^0 e^+ \nu_e$	0.380 ± 0.024	0.37 ± 0.02	
	$\rho^- e^+ \nu_e$	0.19 ± 0.04	0.46 ± 0.10	$\rho^0 e^+ \nu_e$	0.22 ± 0.04	0.21 ± 0.04	
				$\omega^0 e^+ \nu_e$	$0.16\substack{+0.07\\-0.06}$	0.15 ± 0.07	Compatible with
	Total measured	6.26 ± 0.18	15.26 ± 0.44		15.22 ± 0.41	14.63 ± 0.39	inclusive BF
		D_s^+ decay	$\Gamma_D^{sl.}$.	D_s^+ BR expected	BR $(PDG06)$		
Λοοι	uming		$(\times 10^{-2} p s^{-1})$	SU(3)(%)	(%)		
A221		$(\eta + \eta')e^+\nu_e$	8.52 ± 0.11	4.3 ± 0.1	4.2 ± 0.8		
Г (Г		$\phi e^+ \nu_e$	5.35 ± 0.24	2.68 ± 0.13	2.4 ± 0.4		
	$D) = \Gamma_{sl}(D_s)$	$f_0 e^+ \nu_e$	0.3 ± 0.1	0.15 ± 0.05		Not so m	uch known about D
		~	0.71 ± 0.03	0.36 ± 0.02		1101 00 11	
		$K^{*0}e^+\nu_e$	0.46 ± 0.10	0.23 ± 0.05			

Charm SL decays at CLEO-c

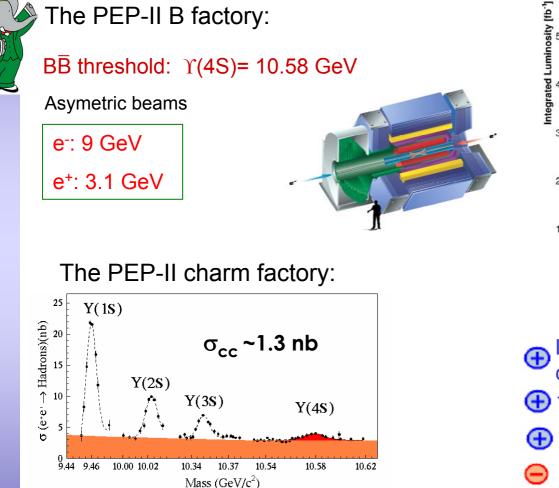
From Moriond EW 2008:

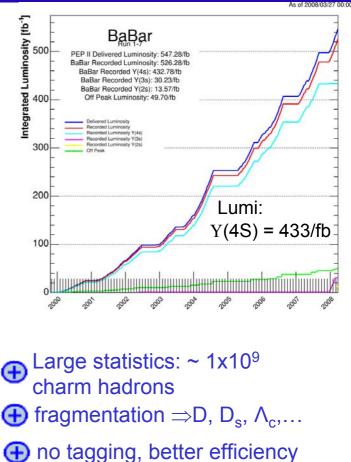
■ $D\bar{D}$ @ 3770 : 800 pb⁻¹ (56 & 281 pb⁻¹ in this talk); 281 pb⁻¹ ~ 1.8 × 10⁶ $D\bar{D}$ ■ $D_s^*\bar{D_s}$ @ 4170 : 314 pb⁻¹ (will double the sample) 314 pb⁻¹ ~ 0.3 × 10⁶ $D_s^*\bar{D_s}$


Favored Methods at CLEO-c

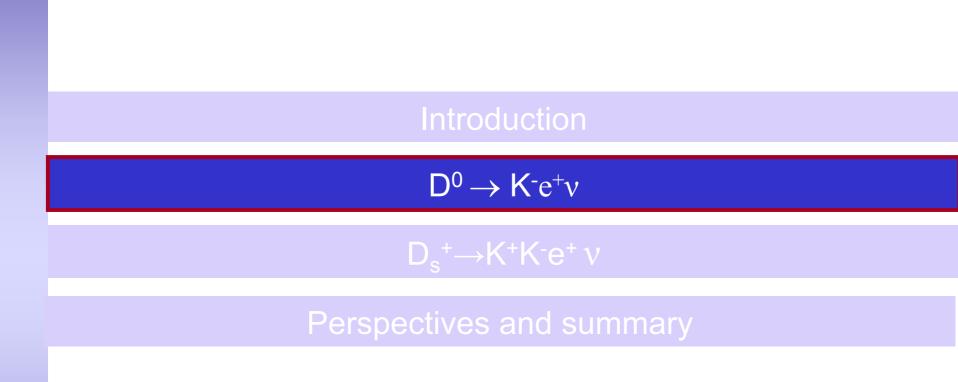

- Two-body production e⁺e⁻→DD
- Double tags at 3770 MeV: fully reconstruct one D° or D⁺, then can either fully reconstruct the other D (absolute branching ratios, quantum correlations) or look for events with one missing particle (leptonic decays, semileptonic decays, K_L)
- Similarly, double tags at 4170 MeV: here look for a D_S or a D_S*
- Some measurements also done using single tags

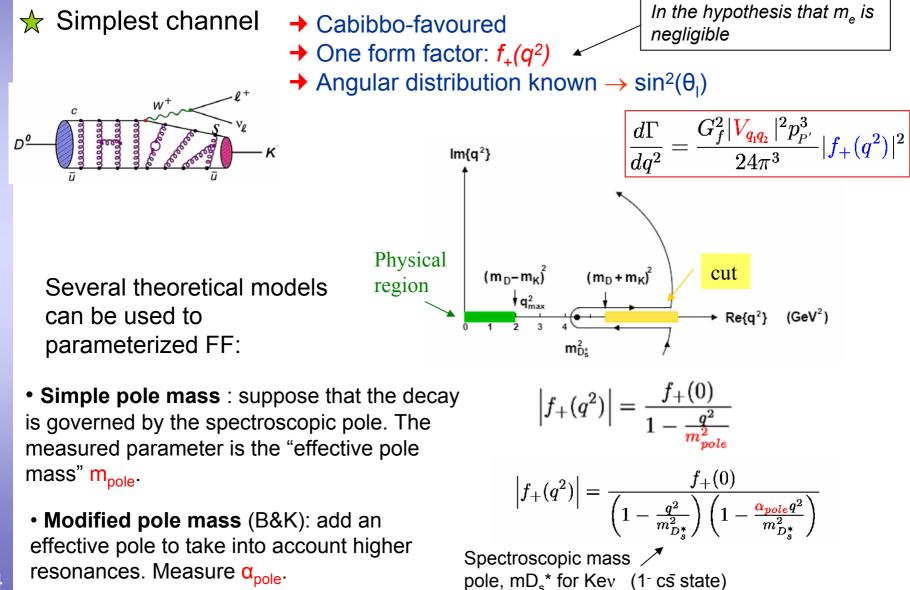
FPCP May, 2008


2


- Clean environment
- statistics
- \bigcirc tagging (D_s), low efficiency

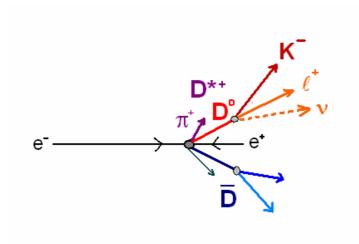
Charm SL decays at Babar




background to control

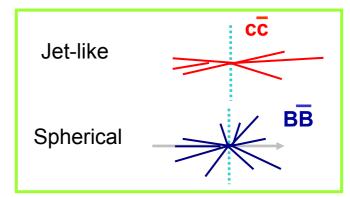
Belle: similar environment, more statistics

One analysis ($D^0 \rightarrow K^-e^+\nu$), done using complete reconstruction of the event



D⁰→K⁻e⁺v

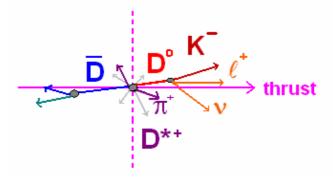
Analysis overview


• Untagged analysis

Reconstruct the decay channel

 $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \ell^+ \nu$

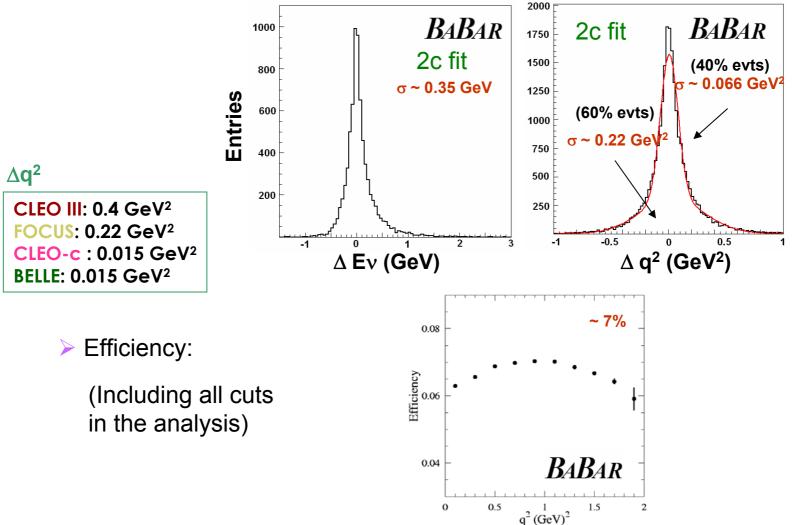
in $e^+e^- \rightarrow c\bar{c}$ continuum events


- Determine $q^2 = (p_D p_K)^2 = (p_\ell + p_\nu)^2 \leftarrow two constrained fits (m_{D0'}, m_{D^*})$

Event reconstruction

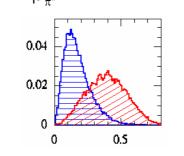
• Define two hemispheres:

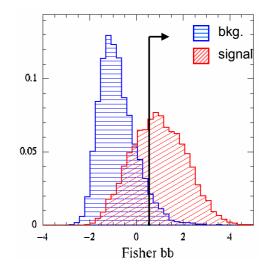

▶ take soft π^+ , K⁻ and I⁺ in the same hemisphere Cuts $\begin{cases} \bullet p_{\ell}^{*}, p_{\ell} > 0.5 \text{ GeV} \\ \bullet \cos\theta_{\text{thrust}} < 0.6 \end{cases}$

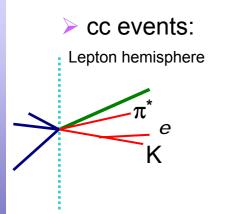

 Υ (4S) rest frame : *jet-like* events


- Compute D direction (- p_{all particles ≠ K,I})
- Compute the missing energy in the lepton hemisphere
- Fit $p_D = p_K + p_I + p_n$
 - From p_{k} , p_{l} , computed E_{miss} and D^{0} direction
 - Constraints using m_{D} and m_{D^*} (1c or 2c fit)
 - Compute q²=(p_D p_K)²

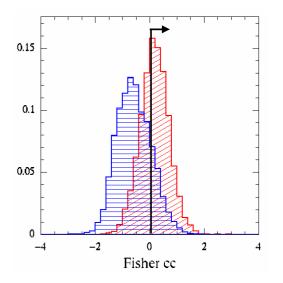
Event reconstruction



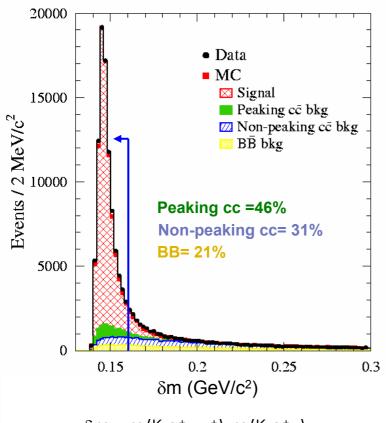

Background rejection


Event shape variables:

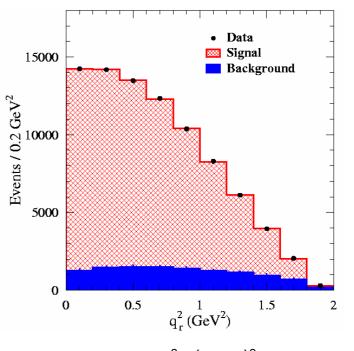
H₂/H₀
Track multiplicity
p_{π*}


Efficiency: signal=65% BKG=6%

Spectator system


(mass, angular distribution, momentum and angular distribution of the leading particle + kinematic variables: p_D , p_e , $\cos \theta_{We}$)

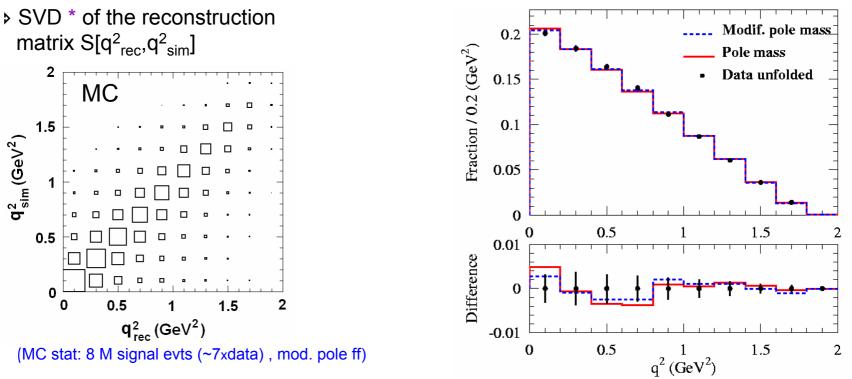
Efficiency: signal=77% BKG=34%


Signal yield

75 fb⁻¹

 $\delta m = m(K e^+ v \pi^+) - m(K e^+ v)$ after the fit with 1 constraint on m_D

δm<0.16 GeV 85000 events (13% bkg)


 $q^2 = (p_D - p_K)^2$ after the fit with 2 constraints: m_{D^*} and m_D

Form factor measurement

> Extraction of the q² dependence of the form factor:

To obtain the true q² distribution, we need to correct from efficiency and resolution effects

 $\frac{d\Gamma}{dq^2} = \frac{G_f^2 |V_{q_1q_2}|^2 p_{P'}^3}{24\pi^3} |f_+(q^2)|^2 \quad \rightarrow \text{Unfolding the measured } q^2 \text{ distribution}$

q² distribution after bkg subtraction and unfolding:

^{*} Singular Value Decomposition; A. Höcker, V. Kartvelishvili [hep-ph/9509307]

Systematic uncertainties

- > Main components:
 - Signal selection: data/MC differences in charm fragmentation, PID...

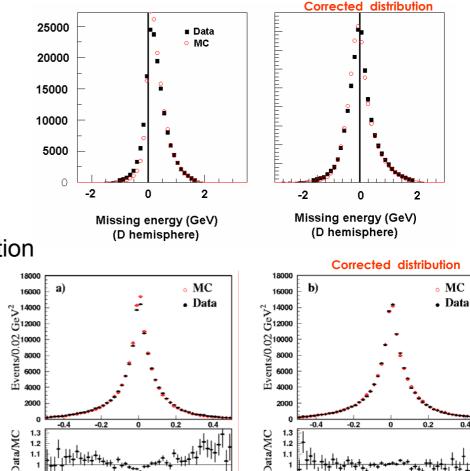
(~ 0.4 σ_{syst})

- q^2 reconstruction: data/MC differences entering in the algorithm, (~ 0.5 σ_{syst}) q² resolution
- <u>Control of the background:</u> data/MC differences in the composition (~ 0.5 σ_{syst}) (shape and normalization)

• <u>Fitting procedure:</u> remaining effects (MC stat., radiative events...)

(~ 0.6 σ_{syst})

Need to control the simulation! Control samples from data:


 $D^{*+} \rightarrow D^{0}\pi^{+},$ $D^{0} \rightarrow K^{-}\pi^{+}$ $D^{*+} \rightarrow D^{0}\pi^{+},$ $D^{0} \rightarrow K^{-}\pi^{+}\pi^{0}$

Systematic uncertainties

- Example: q² reconstruction
- data/MC differences in the reconstruction algorithm ($D^0 \rightarrow K^- \pi^+$)

Inputs of mass constrained fit: D direction estimate, missing energy (from all particles in the event)

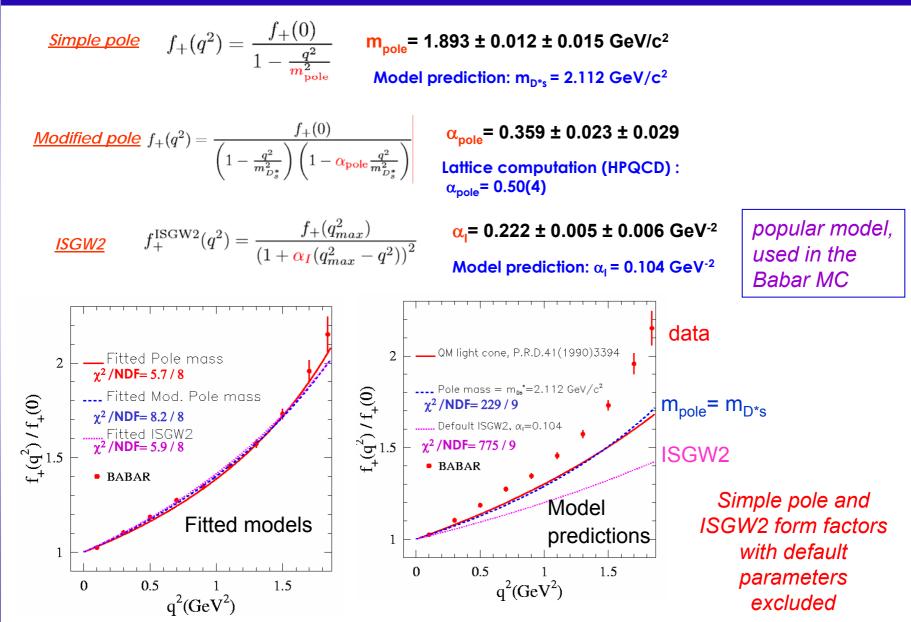
→ bias and errors corrected (as function of the missing E in the opposite hemisphere)

0.4

 $q_r^2 - q^2$ (GeV²

1.2

qr-q (GeV


 data/MC differences in the resolution $(\mathsf{D}^0 \rightarrow \mathsf{K}^- \pi^+ \pi^0)$

The π^+ and π^0 play the roles of the e^+ and v in the kinematic fit.

> $\tilde{q}_{r}^{2} = (p_{D_{0}} - p_{K_{-}})^{2}$ $\tilde{q}^2 = (p_{\pi+} + p_{\pi_0})^2$

Form factor determination for $D^0 \rightarrow K^-e^+\nu$

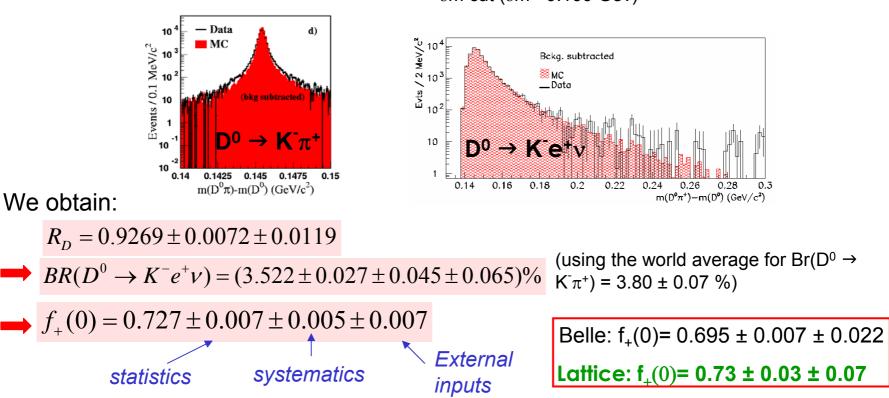
23

normalization measurement

> Branching fraction measured relatively to $D^0 \rightarrow K^-\pi^+$:

24

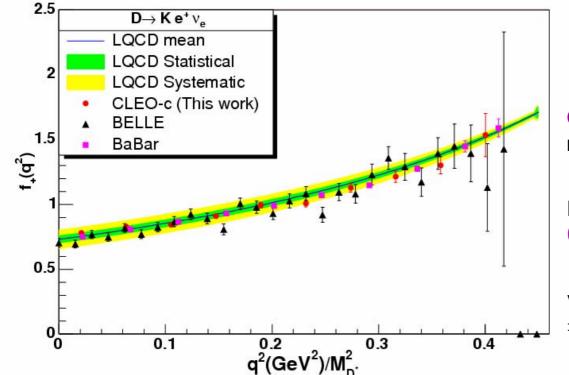
$$R_D = rac{BR(D^0
ightarrow K^- e^+
u_e)_{
m data}}{BR(D^0
ightarrow K^- \pi^+)_{
m data}}$$


Same reconstruction method and selection criteria as for SL channel, apart from :

 $D^0 \rightarrow K^-\pi^+$

m(Kπ) cut (1.83,1.89 GeV)

 $D^0 \rightarrow K^- e^+ v$


1C and 2C kinematical fits δm cut ($\delta m < 0.160$ Gev)

Babar results for $D^0 \rightarrow K^-e^+\nu$

experiment	stat	m _{pole} (GeV/c ²)	α _{pole}	
CLEO-c	281 pb ⁻¹	$1.97 {\pm} 0.03 {\pm} 0.01$	$0.21 {\pm} 0.05 {\pm} 0.03$	a
FOCUS	13k evts	1.93±0.05±0.03	0.28±0.08±0.07	P 3
Belle	282 fb ⁻¹	$1.82 \pm 0.04 \pm 0.03$	$0.52 \pm 0.08 \pm 0.06$	h
BaBar	75 fb ⁻¹	$1.884 \pm 0.012 \pm 0.015$	$0.38 \pm 0.02 \pm 0.03$	P 2

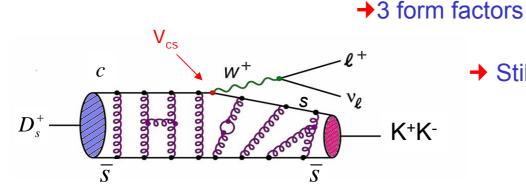
arXiv:0712.0998 Phys.Lett.B607:2 33-242,2005. hep-ex/0604049 Phys.Rev.D76:05 2005,2007

same accuracy as CLEO-c !

Pole mass below m_{D*s} (=2.112
 GeV), we exclude the simple pole mass model

α measurement lower than lattice QCD value: α =0.50 ±
 0.04 hep-ph/0408306

Disagreement between
 values from BaBar and CLEO-c
 has to be clarified !


D⁰→K⁻e⁺v

 $D_s^+ \rightarrow K^+ K^- e^+ v$

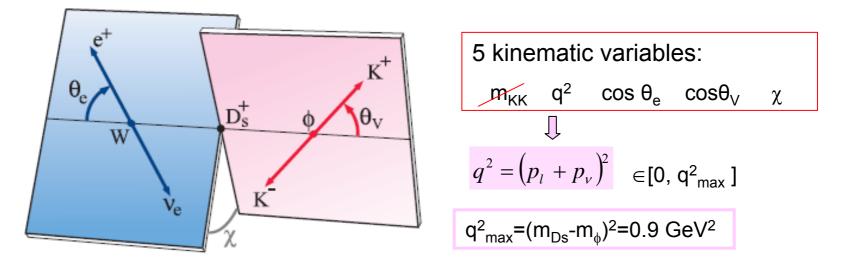
Perspectives and summary

$D_s{}^+\!\!\rightarrow\!\!\varphi e^+\nu_e$, $\varphi \to K^+\,K^-$

★ More complicated channel
 → vector final state
 → 5 kinematic variables

→ Still Cabibbo-favoured

 \bigstar Interesting because:


 Lattice results should be more precise (quarks c and s involved)
 Possibility to study the S wave component in the K⁺K⁻ system (very clean environment with respect to hadronic decays)

In the following I will consider the channel $D_s^+ \rightarrow K^+ K^- e^+ v_e$

$D_s^+ \rightarrow K^+ K^- e^+ v_e$

Main component: P wave $(J^{p}=1^{-}) \Rightarrow \phi$

M=1020 MeV/ c^2 Γ = 4.3 MeV/ c^2

Possibility to observe the S wave (J^p=0⁺) in the K⁺K⁻ system:

- visible through the interference with the ϕ
- only sensitive to the ss component of the S wave
- candidate : f₀(980)

S wave observed in the $D^+ \rightarrow K^- \pi^+ \ell^+ \nu$ channel (FOCUS) but never seen in $D_s^+ \rightarrow K^+ K^- e^+ \nu_e$

Decay rate

$$d^{5}\Gamma = \frac{G_{F}^{2} |V_{cs}|^{2}}{(4\pi)^{6} m_{D}^{3}} p_{KK} m_{D} \frac{2p^{*}}{m} I m^{2}, q^{2}, \theta_{V}, \theta_{e}, \chi) dm^{2} dq^{2} d\cos\theta_{e} d\cos\theta_{V} d\chi$$

 $I = I_1 + I_2 \cos 2\theta_e + I_3 \sin^2 \theta_e \cos 2\chi$ + $I_4 \sin 2\theta_e \cos \chi + I_5 \sin \theta_e \cos \chi$ + $I_6 \cos \theta_e + I_7 \sin \theta_e \sin \chi$ + $I_8 \sin 2\theta_e \sin \chi + I_9 \sin^2 \theta_e \sin 2\chi$

$$I_1 = \frac{1}{4} \left\{ \left| F_1 \right|^2 + \frac{3}{2} \sin^2 \theta_V \left| F_2 \right|^2 + \left| F_3 \right|^2 \right\} , \dots$$

Partial wave decomposition (S and P)

Interference term $\alpha \cos \theta_{V}$

we consider a narrow range around the φ peak \Rightarrow no mass dependence

We only consider electrons $\Rightarrow~$ neglect terms in $m_{e}^{\ 2}$

$$\begin{aligned} F_{1} &= F_{10} + F_{11} \cos \theta_{V} \\ F_{2} &= \frac{1}{\sqrt{2}} F_{21} \\ F_{3} &= \frac{1}{\sqrt{2}} F_{31} \end{aligned} \qquad \begin{array}{l} \mathsf{F}_{10} \colon \ \mathsf{S} \ \mathsf{wave} \\ \mathsf{F}_{11}, \ \mathsf{F}_{21}, \ \mathsf{F}_{31} \colon \mathsf{F}_{31} \\ \mathsf{wave} \end{aligned}$$

P wave parameterization

P wave: \u03c6

 $F_{11},\,F_{21},\,F_{31}$ related to the helicity form factors $\,(H_0,H_{\scriptscriptstyle +},H_{\scriptscriptstyle -})$

$$F_{11} \propto qH_0A_{\phi}(m)$$

$$F_{21} \propto q(H_+ + H_-)A_{\phi}(m)$$

$$F_{31} \propto q(H_+ - H_-)A_{\phi}(m)$$

$$\Leftrightarrow \text{Breit} -$$

$$\text{Wigner}$$

$$H_{\pm}(q^{2}) = \left(m_{Ds} + m_{\phi}\right)A_{1}(q^{2}) \mp \frac{2m_{Ds}p_{\phi}}{m_{Ds} + m_{\phi}}V(q^{2})$$
$$H_{0}(q^{2}) = \frac{1}{m_{\phi}q} \left[\left(m_{Ds}^{2} - m_{\phi}^{2} - q^{2}\right)\left(m_{Ds} + m_{\phi}\right)A_{1}(q^{2}) - 4\frac{m_{Ds}^{2}p_{\phi}^{2}}{m_{Ds} + m_{\phi}}A_{2}(q^{2}) \right]$$

Form factors axial-vector (A_1, A_2) and vector (V): pole dominance

$$\frac{W_{i}}{c}$$

$$A_{i}(q^{2}) = \frac{A_{i}(0)}{1 - q^{2}/m_{A}^{2}}$$

$$V(q^{2}) = \frac{V(0)}{1 - q^{2}/m_{V}^{2}}$$
Pole: cs bound
state
Spectroscopic mass
$$A_{i}(q^{2}) = \frac{A_{i}(0)}{1 - q^{2}/m_{A}^{2}}$$

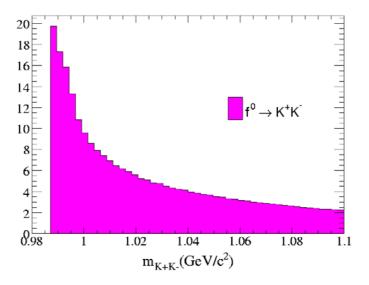
$$V(q^{2}) = \frac{V(0)}{1 - q^{2}/m_{V}^{2}}$$

$$I^{+}(D_{s}(2460), D_{s1}(2536))$$

$$\rightarrow m_{A} = 2.5 \text{ GeV/c}^{2}$$

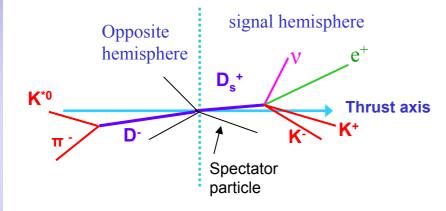
$$I^{-}(D_{s}^{*})$$

$$\rightarrow m_{V} = 2.1 \text{ GeV/c}^{2}$$


we measure : $r_V = V(0)/A_1(0)$ $r_2 = A_2(0)/A_1(0)$ m_A N_{V}^{O}

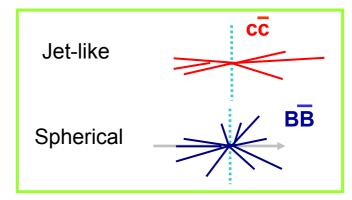
 \succ S wave: f_0

$$F_{10} = r_0 f_{10} (q^2) A_{f0} (m)$$
Normalisation:
Fit parameter
$$F_{10} = \frac{r_0 f_{10} (q^2) A_{f0} (m)}{f_{10} (q^2)} = \frac{p_{KK} m_D}{1 - q^2 / M_A^2}$$


$$A_{f0} (m) = \frac{m_{f0} g_{\pi}}{m_{f0}^2 - m^2 - im_{f0} \Gamma_{f0}}$$

$$f_0 \text{ amplitude: Flatté} (parameters from BES)$$

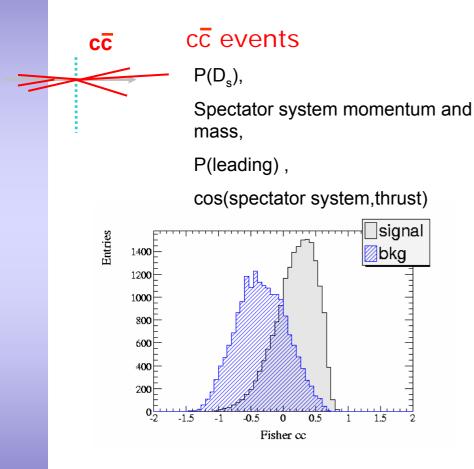
Analysis overview


> Very similar to $D^0 \rightarrow K^-e^+v$:

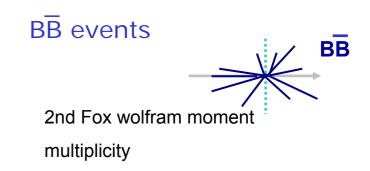
- Untagged analysis
- Reconstruct the decay channel

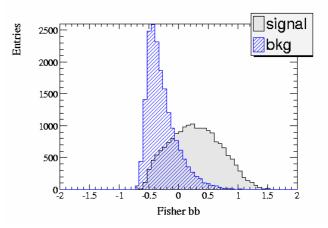
 $D_s^+ \rightarrow K^+ K^- e^+ v$

in $e^+e^- \rightarrow c\bar{c}$ continuum events

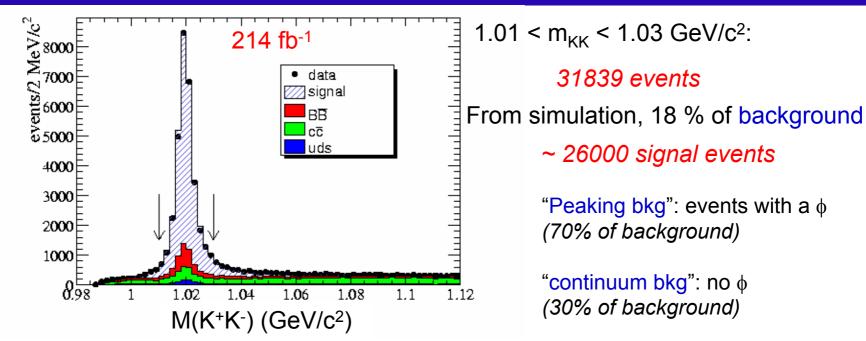

Data/MC

crucial !!


agreement is

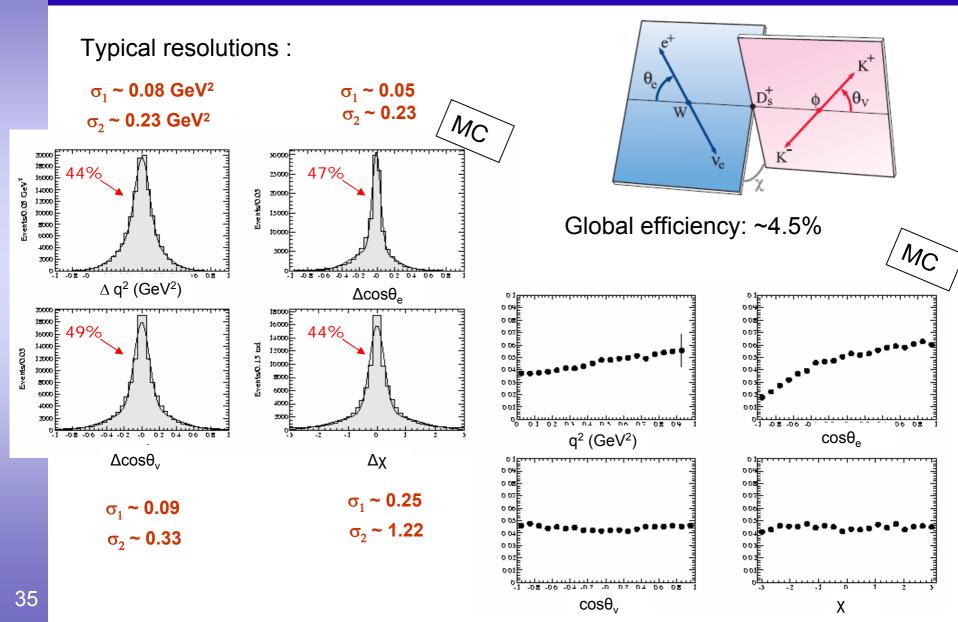

- **Determine** q_{e}^{2} , $cos\theta_{e}$, $cos\theta_{V}$, $\chi \leftarrow one$ constrained fit (m_{Ds})
- Reduce the background ← Fisher discriminants (bb and cc events)
- Extract the form factor \leftarrow 4-dim likelihood fit, using MC
- methods validation \leftarrow Control sample ($D_s \rightarrow \phi \pi$)

Fisher discriminants


Efficiency on signal : 71 % Background rejection : 72 %

Efficiency on signal : 71 % Background rejection : 86 %

K⁺K⁻ mass distribution


Peaking	bkg	composition
---------	-----	-------------

ϕ and lepton	fake	conversion	lepton from	lepton from
origin	lepton	or π^0	charm	В
ϕ from	6.5	6.4	16	0
fragmentation				
ϕ	4.1	8.3	0.4	0
from D_s^+				
ϕ	1.7	4.9	0.5	0
from D				
ϕ	0.1	0.1	0	50.8
from B				

Continuum (for K⁺ K⁻ e⁺ candidate):

- K⁻ fragmentation, K⁺ from D_s : ~20%
- K⁺ fragmentation, K⁻ from D⁰ : ~44%
- K⁺ fragmentation, K⁻ from D⁺ : ~13%
- K⁺ fragmentation, K⁻ from D_s : ~1%
- two K from fragmentation: ~13%
- one fake K, K from charm: $\sim 7\%$

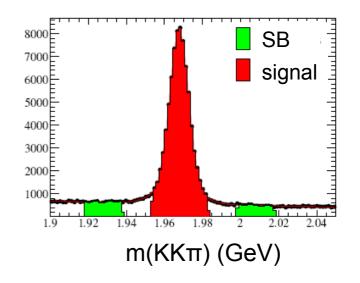
Kinematic variables

Control samples

Control samples are used to:

• control agreement between data and MC for the variables used in the selection (Fisher discriminants)

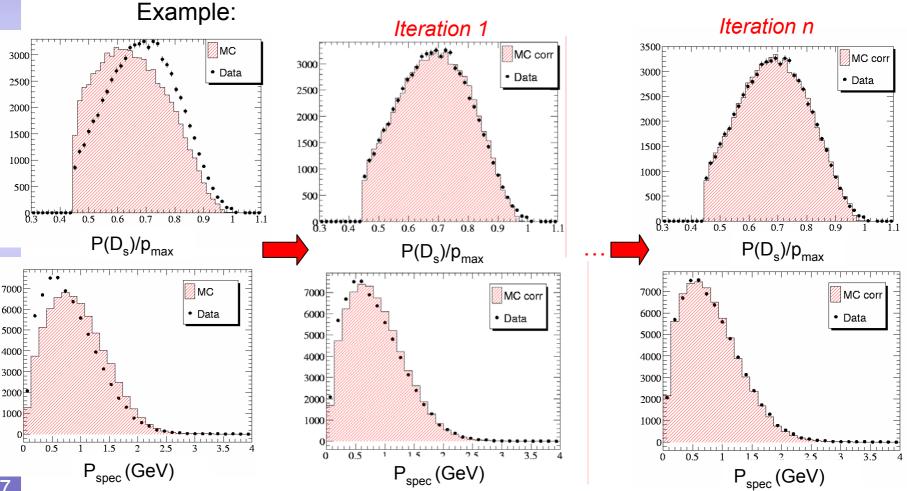
- signal $\longrightarrow D_s^+ \rightarrow \phi \pi^+$
- background $\longrightarrow D_s^+ \rightarrow \phi \pi^+, D^0 \rightarrow K^-\pi^+, off-peak (B\overline{B}), \phi sidebands (continuum bkg)$


 control of the D_s direction and missing energy determination (used as input of the kinematic fit)

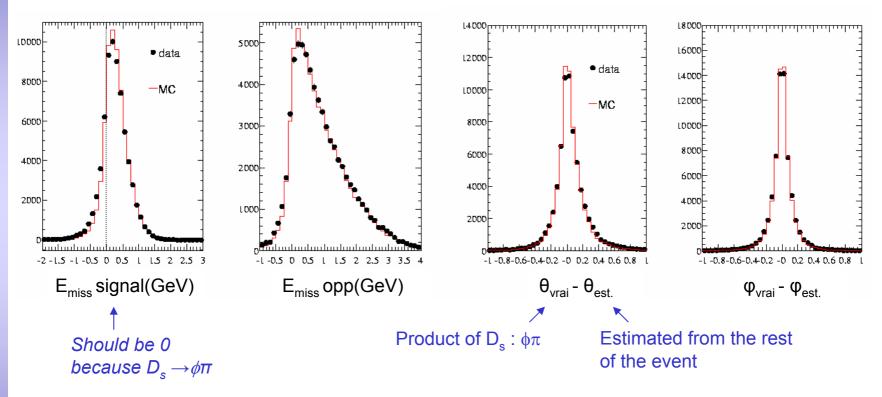
```
\longrightarrow D_s^+ \rightarrow \phi \pi^+
```

$D_s^+ \rightarrow \phi \pi^+$ reconstruction:

- Similar to $D_s^+ \rightarrow \phi e^+ v_e$
- to reject D_s from B decays, cut on the D_s momentum : $p(D_s)/p_{max}$ >0.44
- background subtraction using the sidebands


~ 70000 events

Control sample $D_s^+ \rightarrow \phi \pi^+$


Test data/MC agreement for Fisher variables:

Define a correction (weight) as function of the different variables in an iterative way

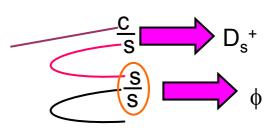
Control sample $D_s^+ \rightarrow \phi \pi^+$

Control of missing energy in both hemispheres and D_s direction:

> Control of data/MC agreement for these variables

Biasis and uncertainty parameterization of as function of the missing energy in the opposite hemisphere (characteristic of the energy reconstruction in the event)

Background control

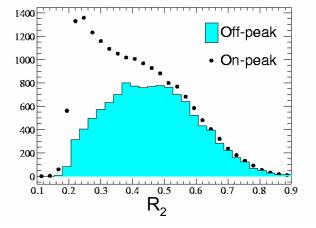

 \succ cc̄ peaking bkg: study the ϕ production rate in events with a D^{*+} and D_s

 $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$

 $D_s^+ \rightarrow \phi \pi^+$

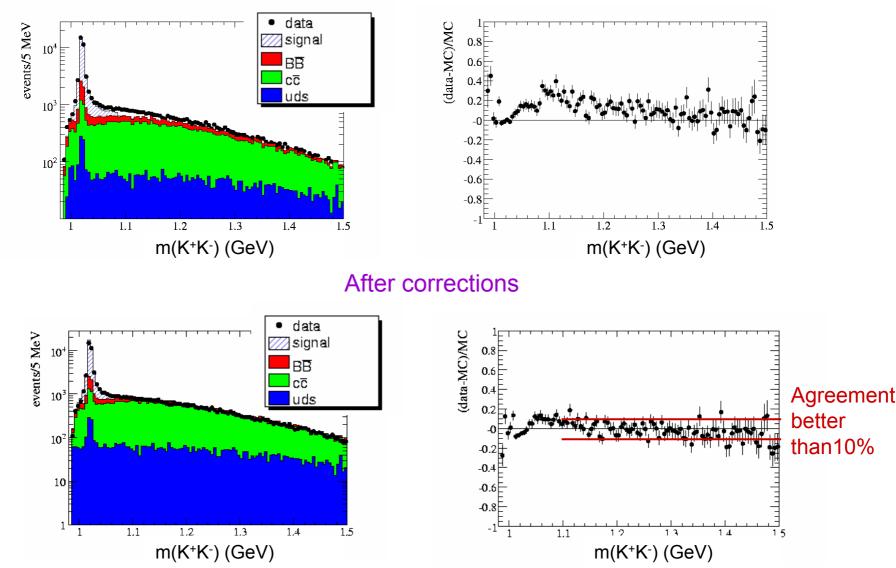
Example of data/MC agreement and ϕ origin in D_s events:

	Opposite hemisphere	D _s hemisphere
Data/MC	0.91±0.05	0.94±0.07
ϕ from D _s	37 %	1.5 %
ϕ from D	29 %	0.1 %
ϕ from fragmentation	34 %	98.4 %

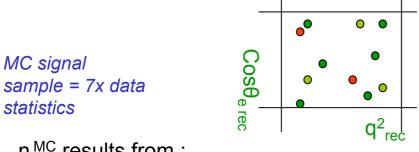


cc continuum bkg: study the K production rate in events with a D*+ and D_s

➢ BB background: use "off peak" (data recorded 40 MeV below l'Y(4S))

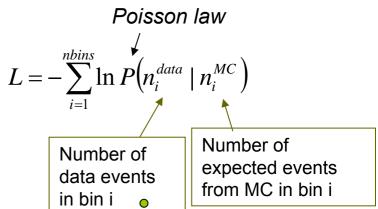

Subtraction ("on peak" – "off peak") \Rightarrow BB contribution, to be compared with simulation

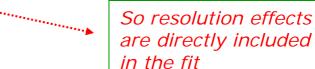
MC corrections defined for each type of bkg


Continuum background

Before corrections

Fit procedure


Use 5 bins for each *reconstructed* variables and perform a 4 D log-likelihood calculation :



n^{MC} results from :

-the number of signal events expected, that is deduced by applying a weight w to MC signal events • generated according to SL pole model, using the *simulated values* of the variables.

- the number of bkg events • estimated from generic MC (normalized to data lumi).

Parameters $\lambda_k = r_2, r_V, m_A, r_0$ $n_i^{MC} = N_S \frac{\sum_{j=1}^{n_i^{box}} w_j(\lambda_k)}{W_{tot}(\lambda_k)} + n_i^{bkg}$ to be fitted $W_{tot}(\lambda_k) = \sum_{i=nbins}^{i=nbins} \sum_{j=n_i^{signal}}^{j=n_i^{signal}} w_j(\lambda_k)$ Floatted

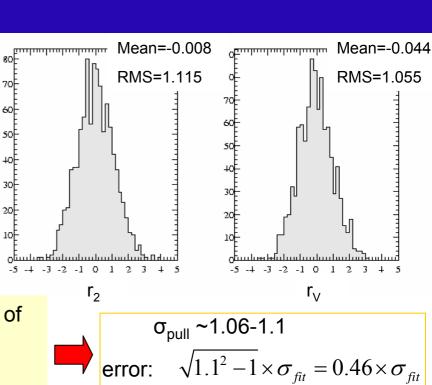
Validation

Toy Monte Carlo

1000 independent experiments generated with statistics and ratio S/B similar to data

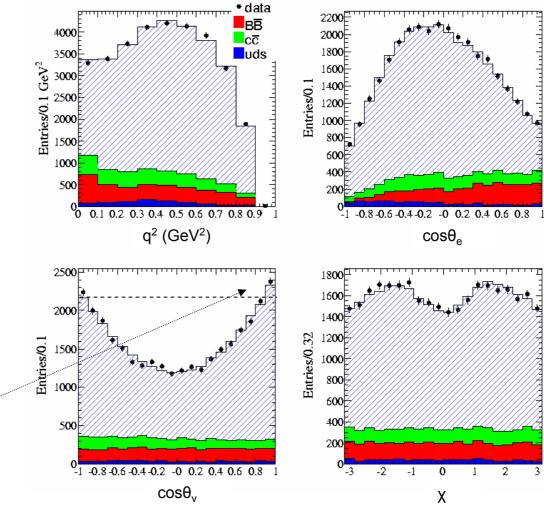
resolution effects not included

Pull distributions allow the evaluation of 2 sources of statistical fluctuations not included in the fit :


- the # of MC signal used in the fit
- the estimate of average number of bkg in each bin

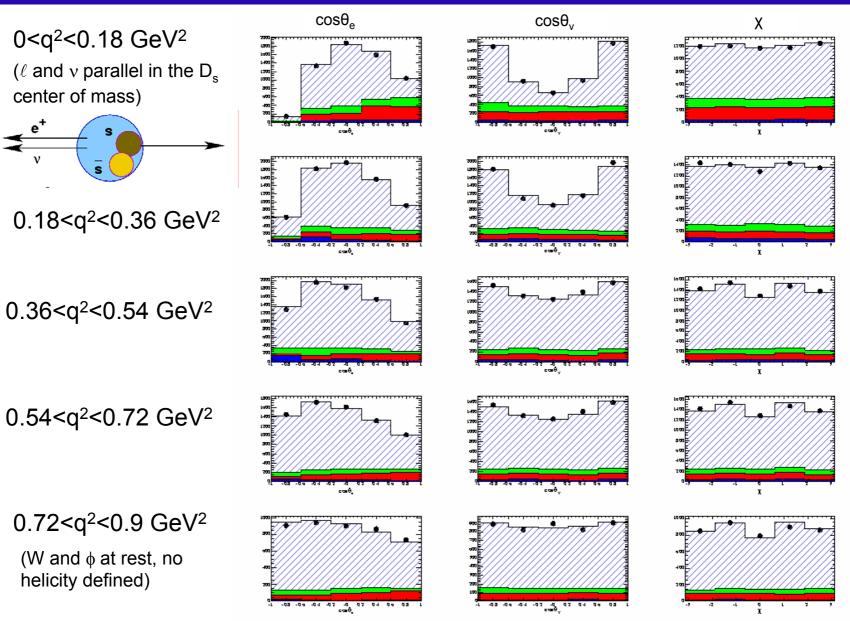
Analysis on fully simulated events :

	parameter	Exact value	Fitted value	parameter	Exact value	Fitted value
				N_S	68674	68640 ± 262
Γ	N_S	68674	68640 ± 262	r_V	1.5	1.516 ± 0.027
	r_V	1.5	1.519 ± 0.023	r_2	0.7	0.675 ± 0.039
L	r_2	0.7	0.667 ± 0.021	_	$2.5 \text{ GeV}/c^2$	


Entries

Fitted values compatible with input

Results


$$\begin{aligned} r_{V} &= 1.849 \pm 0.060 \\ r_{2} &= 0.763 \pm 0.071 \\ m_{A} &= 2.28^{+0.23}_{-0.18} \ GeV \ / \ c^{2} \\ r_{0} &= 15.1 \pm 2.6 \ GeV^{-1} \end{aligned}$$

• model prediction: m_A = 2.5 GeV/c²

• S wave contribution observed!

Results in q² bins

Systematic uncertainties

	Source	error on N_s	error on r_0	error on r_V	error on r_2	error on λ_A
	Fisher variables for signal MC	1	0.1	0.013	0.009	0
	smearing D_s^+ angles	10	0	0.001	0.005	0
	smearing missing energy	5	0.1	0.009	0.013	0.02
	total signal MC corrections	11	0.1	0.016	0.017	0.02
orrections	Fragmentation corr. on $c\overline{c}$ events	38	0.1	0.007	0.004	0.01
the \checkmark	Fisher variables for $B\overline{B}$ events	472	0.1	0.094	0.042	0.05
nulation	continuum bkg.	202	0.6	0.032	0.023	0.03
	ϕ from fragmentation	120	0.1	0.019	0.013	0.03
	ϕ from c-hadrons	80	0.1	0.002	0.013	0.02
	ϕ from uds	100	0.1	0.007	0.024	0.03
	total bckg MC corrections	550	0.6	0.102	0.057	0.08
	Monte-Carlo statistics	81	-	0.029	0.034	0.04
	PID efficiencies	1	0.6	0.006	0.011	0.01
	neutral correction	5	0.2	0.018	0.012	0.02
	radiative events	5	0.3	0.028	0.011	0.03
	S-wave parameterization	-	0.3	-	-	-
	Total	550	1	0.112	0.071	0.10

 $m_{A} = \lambda_{A}^{2} + 1$

Generally, uncertainties coming from corrections applied to the MC are evaluated doing variation of the corrections and measuring the corresponding variation on fitted values

Dominant systematic: BB background

Co to t

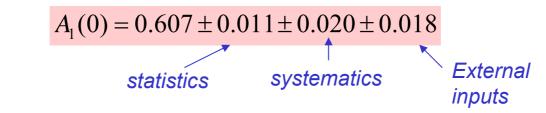
Normalization measurement

Branching fraction measured relatively to $D_s^+ \rightarrow \phi \pi^+$:

$$R_{Ds} = \frac{BR(D_s^+ \to K^+ K^- e^+ \nu)_{data}^{\Delta m1}}{BR(D_s^+ \to K^+ K^- \pi^+)_{data}^{\Delta m2}}$$

with $\begin{cases} \Delta m 1 = [1.01, 1.03] \text{ GeV/c}^2 \\ \Delta m 2 = [1.0095, 1.0295] \text{ GeV/c}^2 \end{cases}$

to use CLEO-c measurement


 $BR(D_s^+ \to K^+ K^- \pi^+)_{data}^{\Delta m^2} = (1.99 \pm 0.10 \pm 0.05)\%$

We obtain: $R_{Ds} = 0.5577 \pm 0.0065 \pm 0.0168$

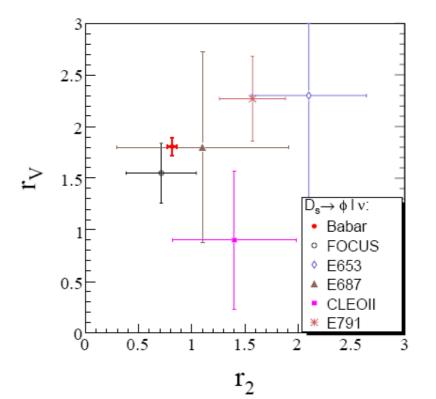
 $BR(D_s^+ \to K^+ K^- e^+ \nu)^{\Delta m 1} = (1.110 \pm 0.013 \pm 0.033 \pm 0.062)\%$

→ Correcting for the mass range and S wave contribution : $BR(D_s^+ \rightarrow \phi e^+ v) = (2.606 \pm 0.031 \pm 0.086 \pm 0.150)\%$

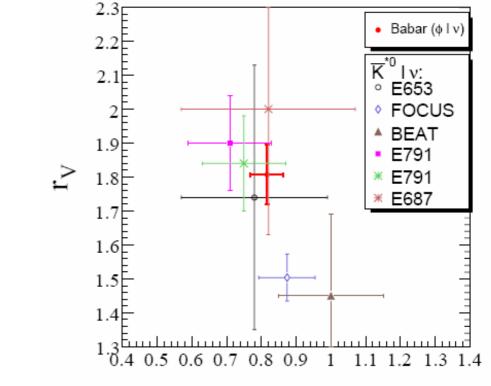
$$\Gamma = \frac{\hbar BR(D_s^+ \to \phi e^+ v_e)}{\tau_{D_s}} = \frac{2G_F^2 |V_{cs}|^2}{3(4\pi)^3 m_{D_s}^2} |A_1(0)|^2 I$$

Comparison with previous experiments

No previous determination of the q² dependence and absolute normalization


Expérience	Stat. (S/B)	r _v	r ₂
E653	19/5	$2.3^{+1.1}$ -0.9 ± 0.4	$2.1^{+0.6}_{-0.5} \pm 0.2$
E687	90/33	1.8±0.9±0.2	1.1±0.8±0.1
CLEOII	308/166	0.9±0.6±0.3	$1.4 \pm 0.5 \pm 0.3$
E791	~300/60	2.27±0.35±0.22	1.57±0.25±0.19
FOCUS	~560/250	$1.549 \pm 0.250 \pm 0.145$	0.713±0.202±0.266

Fixing the pole masses, we obtain:

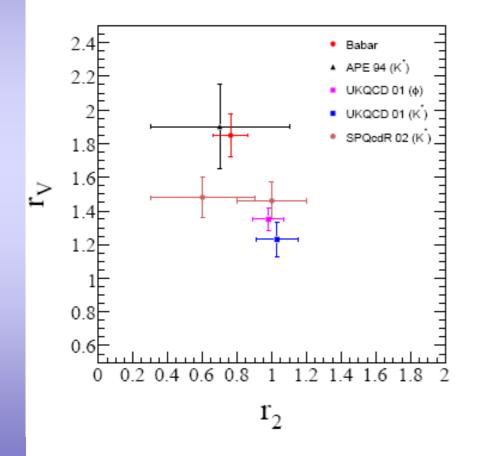

 $r_V = 1.807 \pm 0.046 \pm 0.075$ $r_2 = 0.816 \pm 0.036 \pm 0.030$

results are compatible with FOCUS

No result from Belle and CLEO-c until now

Comparison with $D^+ \rightarrow \overline{K}^{*0} \ell^+ \nu$ channel

the 2 channels are expected to have similar form factors


> Babar measurement has same order of precision as world average for $D^+ \rightarrow K^{*0} \ell^+ \nu$ channel

 \mathbf{r}_2

	$D_s^+ \rightarrow \phi e^+ v$	average D⁺→K*⁰ℓ⁺v
r _v	1.807±0.046±0.075	1.62±0.08
r ₂	0.816±0.036±0.030	0.83±0.05

Comparison with lattice QCD

Lattice computation for $D^+ \rightarrow \overline{K}^{*0} \ell^+ \nu$ and $D_s^+ \rightarrow \phi \ell^+ \nu$:

> r₂ compatible with lattice results

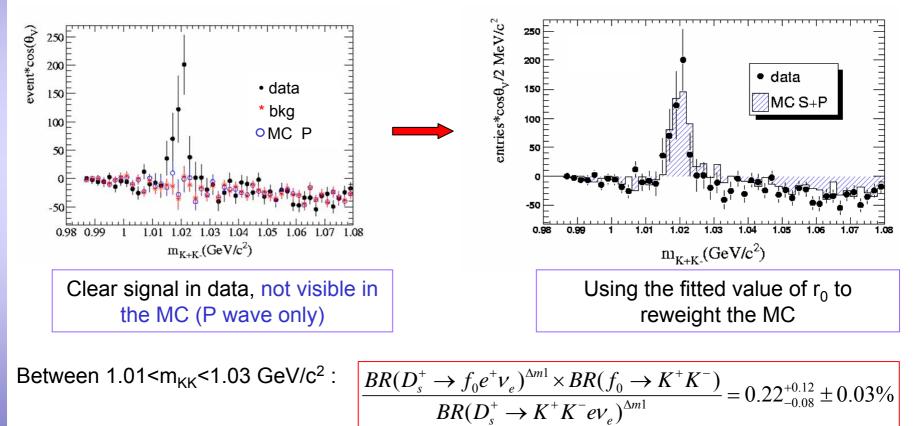
> our value of r_V is higher than the more recent determinations

> One can note that the lattice computation for D_s are more precise than for D decays

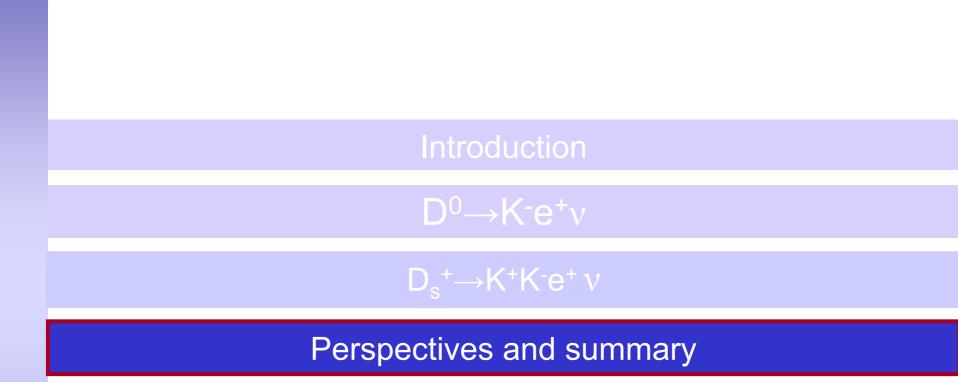
> UKQCD (2001) give $A_1(0)=0.63\pm0.02$, compatible with our result

 $A_1(0) = 0.607 \pm 0.011 \pm 0.020 \pm 0.018$

All these measurements use the "quenched" approximation


It would be very interesting to have unquenched results!!

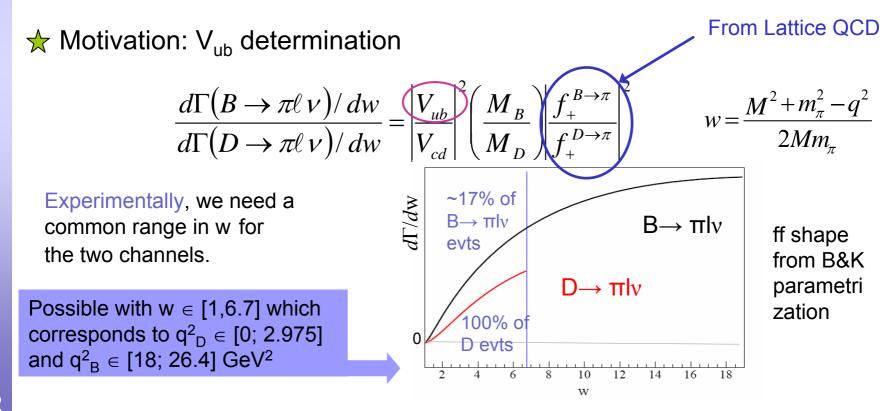
S wave


 $r_0 = 15.1 \pm 2.6 \pm 1 \ GeV^{-1}$

First evidence!

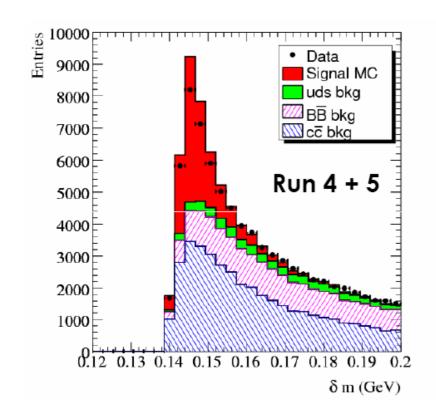
Asymmetry can be seen on the mass distribution weighted by $\cos\theta_V$

Only sensitive to the $s\bar{s}$ component of the f_0



$D^0 \rightarrow \pi^- e^+ v$

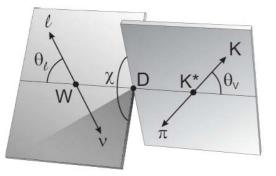
★ As for D⁰→K⁻e⁺ v channel → One form factor: $f_+(q^2)$


- → Angular distribution known → $sin^2(q_l)$

Challenge: background control

$D^0 \rightarrow \pi^- e^+ v$

D^{*+} → D⁰π⁺, D⁰ → π⁻e⁺ν 233 fb⁻¹ → ~ 11000 signal events (signal/bkg~0.6)


CLEO-c preliminary (280 pb⁻¹):

~1200 signal events

Ongoing analysis...

$D \rightarrow K \pi e v$

As for
$$D_s^+ \rightarrow K^+ K^- e^+ v_e$$
 channel

- → vector final state
- →5 kinematic variables
- →3 form factors
- → Cabibbo-favoured

★ Motivation: in addition to the FF measurement, study the S wave component of the hadronic system in a clean environment

Main component: P wave $(J^{p}=1^{-}) \Rightarrow K^{*}(892)$ $\Gamma \sim 50 \text{ MeV/c}^{2}$ 5 kinematic variables: $m_{K\pi} q^{2} \cos \theta_{e} \cos \theta_{V} \chi$ Activity in two channels: $D^{0} \rightarrow K_{S} \pi^{-} ev$ $- D^{+} \rightarrow K^{-} \pi^{+} ev \Rightarrow m(K\pi)$

Summary

Charm semileptonic decays are of great interest to validate lattice QCD calculations through form factors measurements. This requires accurate experimental measurements implying large statistics and a good control of systematics.

> Thanks to an original method for the reconstruction of SL decays, Babar is competitive with charm factory

- > $D^0 \rightarrow K^-e^+\nu$ form factor :
 - First study of Babar potential in charm SL decays
 - > very successful, measurement much more precise than lattice

 $> D_s^+ \rightarrow K^+ K^- e^+ v$:

> Very precise determination of (r_2, r_V) , first determination of the q² dependence (m_A) and absolute normalization $(A_1(0))$

First evidence of an S wave component in this SL decay

> disagreement with "quenched" lattice results (r_V), it would be nice to have new computations

Charm semileptonic decays also a provide a clean environment to study S wave components

> Other charm SL decays are under study, results will come soon!