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Reconstruction des évènements et validation

Introduction

Ds
+→K+K-e+ ν

Perspectives and summary

Overview

D0 → K-e+ν

Perspectives and summary

Introduction
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Why ?
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Charm leptonic and semileptonic decays provide an important way to test 
lattice QCD predictions. Techniques validated in the charm sector can then be 
used in the B sector to improve the accuracy on CKM parameters determination.

* * * 0ub ud cb cd tb tdV V V V V V+ + =
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Status of the unitarity triangle

cb

ub

V
V

Global fit

No deviation from the SM observed until now

Lattice QCD calculations

s

d

m
m

Δ
Δ

To constrain (ρ, η), some 
measurements need theoretical 
inputs

cb

ub

V
V

dmΔ
dd BB Bf ˆ

ˆ
KB

ξ

Kε

Form 
factors

(ρ, η)

Measured in B 
semileptonic decays

Errors (exclusive): 

|Vub| ≈14%,  |Vcb| ≈ 2.5%
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Importance of lattice QCD
The accuracy of SM test can be improved with:
• more precise measurements

• more precise lattice computations

Lattice results have to be validated!

Dividing 
theoretical 
errors by 3
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Lattice QCD 
purpose: understand hadron structure and
interactions from QCD Lagrangian

•Understand how QCD « works »
•Compute observables

Method: discretize space-time
•Lattice spacing a ~ 0.1 fm
•Lattice size L~ 2 fm

Approximations:
• quark masses: u,d need a large volume, b needs 
a small spacing
• extrapolation a→0,  infinite volume 
• “quenched”: (less used)

1 sO DA Oe
Z μ

−= ∫Path integral:

“Real” QCD, but observables computed  with 
statistical errors (due to the finite number of 
configurations) Validation:

comparison with the observables 
measured in experiments

• leptonic decays: decay constant 
(fD, fDs)

• semileptonic decays: form 
factors  (q2 dependent)

quarks

a

L

quenched
unquenched

q

q-



7

Charm semileptonic decays
Decay rate:

2 2
ijd V FFΓ ∝ ×

c

K+K-

Vcs

Strong interaction effects
parameterized by FF

-

s

s s

+
sD

Charm: Vcs well known thanks to  
CKM unitarity ⇒ we can measure 
precisely FF

validate lattice QCD computation

Apply this method to the B sector to 
improve the determination of Vub

Example: Ds
+ → φe+ν

K+K-

Pseudoscalar A ν decay : one form 
factor, angular distribution known

Vector A ν decay : 3 helicity states, 
5 kinematic variables

D0 → K-e+ν Ds
+→ φe+ν

D0 → π-e+ν D+→K*0e+ ν

…

Babar results

Coming soon

…

_
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Dynamic of semileptonic decays

The daughter quark 
receives a small 
momentum kick, 
formation of daughter 
meson is favoured

Form factors are expected 
to           with q2

The relative variation of 
form factors depends on the 
q2 range  

( )22 2
W lq M p pν= = +

q2 dependence:

The daughter quark 
receives a large 
momentum kick, 
formation of bound 
state more difficult

c

K+K-

Vcs

Strong interaction effects
parameterized by FF

-

s

s s

+
sD

Initial meson
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Dynamic of semileptonic decays

angular dependence, helicity considerations:

• Initial meson J=0, 

• e is right-handed⇒ m=1 in the W rest frame

• Φ decays into 2 pseudo-scalars⇒ m=0 in 
the Φ rest frame

• Combining projections along the W direction 
in the Ds rest frame, we have to combine the 
helicity amplitudes:

Vector final state

For a pseudoscalar final state, just the H0 component contributes

⇒ Angular distribution ~ sin(θe)
2
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Branching fractions
Inclusive branching fractions

CLEO-c

For Ds no recent result, PDG gives BR=8 +6
-5 %

Exclusive branching fractions

Compatible with 
inclusive BF

dominant

Not so much known about Ds

Assuming 

Γsl(D)= Γsl(Ds)
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Charm SL decays at CLEO-c
From Moriond EW 2008:

Clean environment

tagging (Ds), low efficiency

statistics
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Charm SL decays at Babar
The PEP-II B factory:

Asymetric beams

BB threshold:  ϒ(4S)= 10.58 GeV

e-: 9 GeV

e+: 3.1 GeV

The PEP-II charm factory:

Large statistics: ~ 1x109

charm hadrons
fragmentation ⇒D, Ds, Λc,…

background to control

_

Υ(4S) = 433/fb
Lumi:

Belle: similar environment, more statistics

One analysis (D0 → K-e+ν ), done using complete reconstruction of the event

σcc ~1.3 nb

no tagging, better efficiency
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Reconstruction des évènements et validation

Introduction

D0 → K-e+ν

Ds
+→K+K-e+ ν

Perspectives and summary
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D0→K-e+ν

• Simple pole mass : suppose that the decay 
is governed by the spectroscopic pole. The 
measured parameter is the “effective pole 
mass” mpole.

• Modified pole mass (B&K): add an 
effective pole to take into account higher 
resonances. Measure αpole.

Spectroscopic mass 
pole, mDs* for Keν (1- cs state)-

Physical 
region

Simplest channel Cabibbo-favoured
One form factor: f+(q2)
Angular distribution known → sin2(θl)

Several theoretical models 
can be used to 
parameterized FF:

cut

s

In the hypothesis that me is 
negligible
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Analysis overview
•• UntaggedUntagged analysisanalysis

•• Determine Determine qq2 2 = (= (ppDD –– ppKK ))2 2 = (= (ppAA + + ppνν ))2 2 ← two constrained fits (mD0,mD*)

•• ReconstructReconstruct thethe decaydecay channelchannel

•• Reduce Reduce thethe background  background  ←← Fisher discriminants (bb and cc events)

D*+ D0π+,   D0 K-A+ ν

in e+e-→cc continuum events-

--

Jet-like

•• ExtractExtract thethe formform factorfactor ←← Unfolding: SVD method

•• methodmethod validationvalidation ←← Control samples

cc

BB
Spherical

•• FFFF normalizationnormalization ←← measurement of the branching fraction
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Event reconstruction

Define two hemispheres:
take soft π+, K- and l+ in the
same hemisphere

Compute D direction (- pall particles ≠ K,l)

Fit pD = pK+pl+pn

Compute the missing energy in the lepton hemisphere

Compute q2=(pD – pK )2

(1c or 2c fit)Constraints using mD and mD*

From pK,pl, computed Emiss and D0 direction

p*A , p A > 0.5 GeV

cosθthrust < 0.6

ϒ(4S) rest frame : jet-like events

Cuts



17

Event reconstruction

Δ Eν (GeV)

En
tr

ie
s

Δ q2 (GeV2)

σ ~ 0.22 GeV2

(60% evts)

σ ~ 0.066 GeV2
(40% evts)

2c fit
2c fit

σ ~ 0.35 GeV

(Including all cuts
in the analysis)

CLEO III: 0.4 GeV2

FOCUS: 0.22 GeV2

CLEO-c : 0.015 GeV2

BELLE: 0.015 GeV2

Δq2

~ 7%

Resolution:

Efficiency:
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Background rejection

BB

cc

signal

bkg.Event shape variables:
- H2/H0- Track multiplicity
- pπ*

Spectator system

K
e

π*
( mass, angular distribution,
momentum and angular distribution
of the leading particle + kinematic
variables: pD, pe, cosϑWe )

Lepton hemisphere

H2/H0

BB events:

cc events:

Efficiency: signal=65% BKG=6%

Efficiency: signal=77% BKG=34%

signal

bkg.
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Signal yield

85000 events (13% bkg)

75 fb-1

δm (GeV/c2)
q2 =(pD-pK)2

after the fit with 2 constraints: mD* and mD

δm<0.16 GeV

Peaking cc =46%
Non-peaking cc= 31%
BB= 21%

δm =m(K-e+ν π+)-m(K-e+ν) 
after the fit with 1 constraint on mD
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Form factor measurement
Extraction of the q2 dependence of the form factor:

→ Unfolding the measured q2 distribution

* Singular Value Decomposition; A. Höcker, V. Kartvelishvili [hep-ph/9509307]

SVD * of the reconstruction
matrix S[q2

rec,q2
sim]

To obtain the true q2 distribution, we need to correct from efficiency and resolution effects

(MC stat: 8 M signal evts (~7xdata) , mod. pole ff)

q2 distribution after bkg subtraction and unfolding:

MC
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Systematic uncertainties

•• Signal selection: data/MC differences in charm fragmentation, PID…

•• q2 reconstruction: data/MC differences entering in the algorithm,
q2 resolution

•• Control of the background: data/MC differences in the composition 
(shape and normalization)  

•• Fitting procedure: remaining effects (MC stat., radiative events…)

( ~ 0.4 σsyst)

( ~ 0.5 σsyst)

( ~ 0.5 σsyst)

( ~ 0.6 σsyst)

Need to control the simulation!
Control samples from data:

Main components:
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Systematic uncertainties

•• data/MC differences in the reconstruction algorithm (D0 K- π+)

Inputs of mass constrained fit: D 
direction estimate, missing energy 
(from all particles in the event)

bias and errors corrected
(as function of the missing E in the
opposite hemisphere)

•• data/MC differences in the resolution 
(D0 K- π+ π0)

The π+ and π0 play the roles
of the e+ and ν in the kinematic fit.

q2=(pπ++pπ0)2~
q2

r=(pD0-pK-)2~

Corrected  distribution

Corrected  distribution

Example: q2 reconstruction
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Form factor determination for D0→K-e+ν
mpole= 1.893 ± 0.012 ± 0.015 GeV/c2

αpole= 0.359 ± 0.023 ± 0.029

αI= 0.222 ± 0.005 ± 0.006 GeV-2

Lattice computation (HPQCD) : 
αpole= 0.50(4) 

Model prediction: mD*s = 2.112 GeV/c2

Model prediction: αI = 0.104 GeV-2

Simple pole

Modified pole

ISGW2

Simple pole and 
ISGW2 form factors 

with default 
parameters 
excluded

popular model, 
used in the 
Babar MC

Fitted models

χ2 /NDF= 8.2 / 8

χ2 /NDF= 5.9 / 8

χ2 /NDF= 5.7 / 8

Model
predictions

ISGW2

mpole= mD*s

data

χ2 /NDF= 775 / 9

χ2 /NDF= 229 / 9
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normalization measurement
Branching fraction measured 

relatively to D0 K-π+ :

Same reconstruction method and selection criteria as for SL channel, apart from :

D0 K-e+νD0 K-π+

1C and 2C kinematical fitsm(Kπ) cut (1.83,1.89 GeV)
δm cut (δm <0.160 Gev)

D0 K-π+ D0 K-e+ν

0.9269 0.0072 0.0119DR = ± ±
0( ) (3.522 0.027 0.045 0.065)%BR D K e ν− +→ = ± ± ±

(0) 0.727 0.007 0.005 0.007f+ = ± ± ±

Lattice: f+(0)= 0.73 ± 0.03 ± 0.07

Belle: f+(0)= 0.695 ± 0.007 ± 0.022

(using the world average for Br(D0

K-π+) = 3.80 ± 0.07 %)

We obtain:

statistics systematics
External 
inputs
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Babar results for D0→K-e+ν

Phys.Lett.B607:2
33-242,2005.

hep-ex/0604049

Pole mass below mD*s
(=2.112 

GeV), we exclude the simple pole
mass model

α measurement lower than 
lattice QCD value: α =0.50 ±
0.04

experiment stat mpole(GeV/c2) αpole

CLEO-c 281 pb-1 1.97±0.03±0.01 0.21±0.05±0.03

FOCUS 13k evts 1.93±0.05±0.03 0.28±0.08±0.07

Belle 282 fb-1 1.82±0.04±0.03 0.52±0.08±0.06

BaBar 75 fb-1 1.884±0.012±0.015 0.38±0.02±0.03

Disagreement between 
values from BaBar and CLEO-c 
⇒ has to be clarified !

hep-ph/0408306

Phys.Rev.D76:05
2005,2007 

same accuracy as CLEO-c !

arXiv:0712.0998
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D0→K-e+ν

Introduction

Ds
+→K+K-e+ ν

Perspectives and summary
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Ds
+→φe+νe , φ → K+ K-

More complicated channel vector final state
5 kinematic variables
3 form factors

c

K+K-

Vcs

-

s

s s

+
sD

Interesting because: Lattice results should be more precise 
(quarks c and s involved)

Possibility to study the S wave component
in the K+K- system (very clean environment
with respect to hadronic decays)

In the following I will consider the channel Ds
+→K+K-e+νe

Still Cabibbo-favoured
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Ds
+→K+K-e+νe

5 kinematic variables:
mKK q2 cos θe      cosθV        χ

( )22
νppq l +=

q2
max=(mDs-mφ)2=0.9 GeV2

Possibility to observe the S wave (Jp=0+) in the K+K- system:

Main component: P wave (Jp=1-) ⇒ φ M=1020 MeV/c2 Γ= 4.3 MeV/c2

∈[0, q2
max ]

S wave observed in the  D+ →K- π+A+ ν channel 
(FOCUS) but never seen in Ds

+→K+K-e+ νe

• visible through the interference with the  φ

• only sensitive to the ss component of the S wave 

• candidate :  f0(980)

-
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Decay rate

χθθχθθ
π

ddddqdmqmI
m
pmp

m
VG

d VeeVDKK
D

csF coscos),,,,(2
)4(

2222
*

36

22
5 =Γ

χθχθ cossincos2sin 54 ee II ++
χθθ 2cossin2cos 2

321 ee IIII ++=

χθθ sinsincos 76 ee II ++

χθχθ 2sinsinsin2sin 2
98 ee II ++

313

212

11101

2
1
2

1
cos

FF

FF

FFF V

=

=

+= θ

Partial wave 
decomposition (S and P) 

F11, F21, F31: P 
wave

F10:  S wave

( )
⎭
⎬
⎫

⎩
⎨
⎧ ++= 2

3
2

2
22

11 sin
2
3

4
1 FFFI Vθ ,….

Interference term α cosθV

we consider a narrow range around the φ 
peak ⇒ no mass dependence

We only consider electrons ⇒ neglect 
terms in me

2
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P wave parameterization

( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−+−−= )(4)(1)( 2

2

22
2

1
2222

0 qA
mm

pm
qAmmqmm

qm
qH

Ds

Ds
DsDs

φ

φ
φφ

φ

( ) )(
2

)()( 22
1

2 qV
mm
pm

qAmmqH
Ds

Ds
Ds

φ

φ
φ +

+=± ∓

)()(
)()(

)(
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21

011

mAHHqF
mAHHqF

mAqHF

φ

φ

φ

−+

−+

−∝

+∝

P wave: φ

F11, F21, F31 related to the helicity form factors  (H0,H+,H-)

∝

φ Breit -
Wigner

22
2

1
)0(A)(A

A

i
i mq

q
−

= 22
2

1
)0(V)(V

Vmq
q

−
=

1+ (DsJ(2460), Ds1(2536))

→ mA = 2.5 GeV/c2

1- (Ds*)

→ mV = 2.1 GeV/c2

Form factors axial-vector  (A1, A2) and vector (V): pole dominance 

c

W

s
Pole: cs bound 
state

-

)0(A)0(V 1=Vr )0(A)0(A 122 =rwe measure : mA

Spectroscopic mass

mV

No 
sensitivity
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S wave parameterization

)()( 0
2

10010 mAqfrF f=

22
KK2

10 1
p)(f

A

D

Mq
mq

−
= f0 amplitude: Flatté

(parameters from BES)

Normalisation:

Fit parameter 

Form factor 
00

22
0

0 )(
fff

fo
f immm

gm
mA

Γ−−
= π

S wave: f0
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Analysis overview
•• UntaggedUntagged analysisanalysis

•• Determine Determine q2
, cosθe, cosθV, χ ← one constrained fit (mDs)

←← 4-dim likelihood fit, using MC

•• ReconstructReconstruct thethe decaydecay channelchannel

•• Reduce Reduce thethe background  background  ←← Fisher discriminants (bb and cc events)

Ds
+ K+K- e+ ν

•• methodsmethods validationvalidation ←← Control sample (Ds φπ)

in e+e-→cc continuum events-

--

Jet-like

•• ExtractExtract thethe formform factorfactor

cc

BB
Spherical

•• FFFF normalizationnormalization ←← measurement of the branching fraction

Thrust axis
Ds

+

K+K-

ν

D-

e+

signal hemisphereOpposite 
hemisphere

K*0

π -

Spectator 
particle

Very similar to D0→K-e+ν:

Data/MC 
agreement is 
crucial !!
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Fisher discriminants

cc events BB events
P(Ds), 

Spectator system momentum and 
mass, 

P(leading) , 

cos(spectator system,thrust) 

2nd Fox wolfram moment

multiplicity

Efficiency on signal : 71 %

Background rejection : 72 %

BB
cc

_

Efficiency on signal : 71 %

Background rejection : 86 %
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K+K- mass distribution

31839 events

1.01 < mKK < 1.03 GeV/c2:

From simulation, 18 % of background
~ 26000 signal events

“Peaking bkg”: events with a φ 
(70% of background)

“continuum bkg”: no φ 
(30% of background)M(K+K-) (GeV/c2)

214 fb-1

Peaking bkg composition:
Continuum (for K+ K- e+ candidate):
• K- fragmentation, K+ from Ds : ~20%

• K+ fragmentation, K- from D0 : ~44%

• K+ fragmentation, K- from D+ : ~13%

• K+ fragmentation, K- from Ds : ~1%

• two K from fragmentation: ~13%

• one fake K, K from charm: ~7%



35

Kinematic variables
Typical resolutions :

Global efficiency: ~4.5%

Δ q2 (GeV2)

Δcosθv

Δcosθe

Δχ

σ2 ~ 0.23 GeV2

σ1 ~ 0.05
σ2 ~ 0.23

44%

σ1 ~ 0.08 GeV2

σ1 ~ 0.09
σ2 ~ 0.33

σ1 ~ 0.25
σ2 ~ 1.22

47%

49% 44%

q2 (GeV2)

cosθv

cosθe

χ

MC

MC
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Control samples

• control agreement between data and MC for the variables used in the 
selection (Fisher discriminants)

• signal

• background

• control of the Ds direction and missing energy determination        
(used as input of the kinematic fit)

Ds
+→φπ+

Ds
+→φπ+, D0 → K-π+, off-peak (BB),   φ sidebands (continuum bkg)

Ds
+→φπ+ reconstruction:

• Similar to Ds
+→φe+νe

• to reject Ds from  B decays, cut on the Ds
momentum : p(Ds)/pmax>0.44 

• background subtraction using the sidebands

~ 70000 events 

SB
signal

m(KKπ) (GeV)

_

Ds
+→φπ+

Control samples are used to:
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Control sample

Define a correction (weight)  as function of the different variables in an iterative way

Example:

Test  data/MC agreement for Fisher variables:

Ds
+→φπ+

Iteration 1 Iteration n

…P(Ds)/pmax

Pspec (GeV) Pspec (GeV) Pspec (GeV)

P(Ds)/pmax P(Ds)/pmax
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Control sample
Control of missing energy in both hemispheres and  Ds direction:

Emiss signal(GeV) Emiss opp(GeV) θvrai - θest. φvrai - φest.

Product of Ds : φπ Estimated from the rest 
of the event 

Control of data/MC agreement for these variables

Biasis and uncertainty parameterization of as function of the missing energy 
in the opposite hemisphere (characteristic of the energy reconstruction in the 
event)

Should be 0 
because Ds →φπ

Ds
+→φπ+
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Background control
Ds

+→φπ+D*+→D0π+ , D0→K-π+

Opposite 
hemisphere

Ds hemisphere

Data/MC 0.91±0.05 0.94±0.07

φ from Ds

φ from D
φ from 

fragmentation

37 %
29 %
34 %

1.5 %
0.1 %
98.4 %

Example of data/MC agreement and  φ origin in  Ds events:

cc peaking bkg: study the φ production rate in events with a D*+ and Ds

s
s
s φ

Ds
+c

BB background: use “off peak” (data 
recorded 40 MeV below l’Υ(4S))

Subtraction (“on peak” – “off peak”)      
⇒ BB contribution, to be compared 
with simulation

R2

cc continuum bkg: study the K production rate in events with a D*+ and Ds

MC corrections defined for each type of bkg

-

-

_
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Continuum background

Agreement 
better 
than10%

m(K+K-) (GeV)

m(K+K-) (GeV)

m(K+K-) (GeV)

m(K+K-) (GeV)

Before corrections

After corrections
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Fit procedure

( )
( )

bkg
i

ktot

n

j kj
S

MC
i n

W

w
Nn

signal
i

+=
∑ =

λ

λ
1

C
osθ

e rec q2
rec

( )∑
=

−=
nbins

i

MC
i

data
i nnPL

1
|ln

Number of 
expected events 
from MC in bin i

Number of 
data events 
in bin i

Poisson law

02 ,,, rmrr AVk =λ

( ) ( )∑ ∑
=

=

=

=

=
nbinsi

i

nj

j
kjktot

signal
i

wW
1 1

λλ

Parameters 
to be fitted

Floatted

MC signal 
sample = 7x data 
statistics

Use 5 bins for each reconstructed variables and perform 
a 4 D log-likelihood calculation :

ni
MC results from :

-the number of signal events expected, that is 
deduced by applying a weight w to MC signal 
events     generated according to SL pole model, 
using the simulated values of the variables.

- the number of bkg events    estimated from 
generic MC (normalized to data lumi). 

So resolution effects 
are directly included 
in the fit
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Validation 

σpull ~1.06-1.1

Toy Monte Carlo

Analysis on fully simulated events :

error:

Mean=-0.008

RMS=1.115

Mean=-0.044

RMS=1.055

r2 rV

21.1 1 0.46fit fitσ σ− × = ×

1000 independent experiments generated 
with statistics and ratio S/B similar to data

resolution effects not included

Pull distributions allow the evaluation of 2 sources of 
statistical fluctuations not included in the fit :

• the # of MC signal used in the fit  

• the estimate of average number of bkg in each bin 

Fitted values 
compatible with 
input
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Results

q2 (GeV2)

cosθv

cosθe

χ

2
0.23 2
0.18

1
0

1.849 0.060
0.763 0.071

2.28 /

15.1 2.6

V

A

r
r

m GeV c

r GeV

+
−

−

= ±
= ±

=

= ±

• model prediction:       
mA= 2.5 GeV/c2 

• S wave contribution 
observed!
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Results in q2 bins
0<q2<0.18 GeV2

0.18<q2<0.36 GeV2

0.36<q2<0.54 GeV2

0.54<q2<0.72 GeV2

0.72<q2<0.9 GeV2

(W and φ at rest, no 
helicity defined)

cosθv χcosθe

(A and ν parallel in the Ds

center of mass)
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Systematic uncertainties

Corrections 
to the 
simulation

Dominant systematic: BB background

mA=λA
2+1

_

Generally, uncertainties coming from corrections applied to the MC are evaluated doing 
variation of the corrections and measuring the corresponding variation on fitted values
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Normalization measurement

1

2

( )
( )

m
s data

Ds m
s data

BR D K K eR
BR D K K

ν
π

+ + − + Δ

+ + − + Δ

→
=

→

[ ] 21 1.01, 1.03 GeV/cmΔ =

[ ] 22 1.0095, 1.0295 GeV/cmΔ =

to use CLEO-c measurement
2( ) (1.99 0.10 0.05)%m

s dataBR D K K π+ + − + Δ→ = ± ±

with

Branching fraction measured relatively to Ds
+→φπ+ :

0.5577 0.0065 0.0168DsR = ± ±

1( ) (1.110 0.013 0.033 0.062)%m
sBR D K K e ν+ + − + Δ→ = ± ± ±

( ) (2.606 0.031 0.086 0.150)%sBR D eφ ν+ +→ = ± ± ±

1(0) 0.607 0.011 0.020 0.018A = ± ± ±

( ) IA
m

VGeDBR

ss D

csF

D

es 2
123

22

)0(
)4(3

2
πτ

νφ
=

→
=Γ

++=

statistics systematics External 
inputs

We obtain:

Correcting for the mass range 
and S wave contribution :
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Comparison with previous experiments

2

1.807 0.046 0.075
0.816 0.036 0.030

Vr
r

= ± ±
= ± ±

Fixing the pole masses, we obtain:

No previous 
determination of the q2

dependence and 
absolute normalization 

Expérience Stat. (S/B) rv r2

E653 19/5 2.3+1.1
-0.9±0.4 2.1+0.6

-0.5±0.2

E687 90/33 1.8±0.9±0.2 1.1±0.8±0.1

CLEOII 308/166 0.9±0.6±0.3 1.4±0.5±0.3

E791 ~300/60 2.27±0.35±0.22 1.57±0.25±0.19

FOCUS ~560/250 1.549±0.250 ±0.145 0.713±0.202±0.266

results are compatible with 
FOCUS

No result from Belle and CLEO-c 
until now
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Comparison with D+→K*0A+ν channel
_

the 2 channels are expected to 
have similar form factors 

Babar measurement has same 
order of precision as world average 
for D+→K*0A+ν channel

_

Ds
+→φe+ν average 

D+→K*0A+ν

rV 1.807±0.046±0.075 1.62±0.08

r2 0.816±0.036±0.030 0.83±0.05

_
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Comparison with lattice QCD
Lattice computation for D+→K*0A+ν and Ds

+ →φA+ν: 

r2 compatible with lattice results

our value of  rV is higher than the more 
recent determinations

One can note that the lattice computation 
for  Ds are more precise than for D decays

UKQCD (2001) give A1(0)=0.63±0.02, 
compatible with our result

All these measurements use the 
“quenched” approximation

_

1(0) 0.607 0.011 0.020 0.018A = ± ± ±

It would be very interesting to have 
unquenched results!!
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S wave

Asymmetry can be seen on the mass distribution weighted by cosθV

Clear signal in data, not visible in 
the MC (P wave only)

1
0 15.1 2.6 1r GeV −= ± ±

Using the fitted value of r0 to 
reweight the MC

1
0.120 0
0.081

( ) ( ) 0.22 0.03%
( )

m
s e

m
s e

BR D f e BR f K K
BR D K K e

ν
ν

+ + Δ + −
+
−+ + − Δ

→ × →
= ±

→

Between 1.01<mKK<1.03 GeV/c2 :

Only sensitive to the ss component of the  f0
-

MC  P

• data
* bkg

First evidence!
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D0→K-e+ν

Introduction

Ds
+→K+K-e+ ν

Perspectives and summaryPerspectives and summary
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D0→π-e+ν

π

π

Mm
qmMw

2

222 −+
=( )

( )
Experimentally, we need a 
common range in w for 
the two channels.

22

/
/

π

π

νπ
νπ

→
+

→
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

→Γ
→Γ

D

B

D

B

cd

ub

f
f

M
M

V
V

dwDd
dwBd

A
A

Possible with w ∈ [1,6.7] which 
corresponds to q2

D ∈ [0; 2.975]
and q2

B ∈ [18; 26.4] GeV2

ff shape 
from B&K 
parametri
zation

B→ πlν

D→ πlν

~17% of 
B→ πlν
evtsdΓ

/d
w

0
100% of 
D evts

As for D0→K-e+ ν channel One form factor: f+(q2)
Angular distribution known → sin2(ql)

Cabibbo-suppressedBUT

Challenge: background control

From Lattice QCDMotivation: Vub determination
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D0→π-e+ν

233 fb-1 → ~ 11000 signal events (signal/bkg~0.6)
D*+ D0 π +,   D0 π -e+ ν

CLEO-c preliminary 
(280 pb-1): 

~1200 signal events

Ongoing analysis…
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D→Kπeν
vector final state
5 kinematic variables
3 form factors

As for  Ds
+→K+K-e+νe channel

Cabibbo-favoured

Activity in two channels:- D0→Ksπ-eν

- D+→K-π+eν

Motivation: in addition to the FF measurement, study the S wave
component of the hadronic system in a clean environment

5 kinematic variables:
mKπ q2 cos θe      cosθV        χ

Main component: P wave (Jp=1-) ⇒ K*(892) Γ ~ 50 MeV/c2

m(Kπ)

Signal ~60 K 
with 100 fb-1
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Summary
Charm semileptonic decays are of great interest to validate lattice QCD calculations 

through form factors measurements. This requires accurate experimental 
measurements implying large statistics and a good control of systematics.

Thanks to an original method for the reconstruction of SL decays, Babar is 
competitive with charm factory

D0 → K-e+ν form factor :
first study of Babar potential in charm SL decays

very successful, measurement much more precise than lattice

Ds
+→K+K-e+ ν :

Very precise  determination of (r2, rV), first determination of the q2 dependence 
(mA) and absolute normalization (A1(0))  

first evidence of an S wave component in this SL decay

disagreement with “quenched” lattice results (rV), it would be nice to have new 
computations

Charm semileptonic decays also a provide a clean environment to study S wave  
components

Other charm SL decays are under study, results will come soon! 
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