

RESULTS WITH A LI₆EU(BO₃)₃ BOLOMETER AT LNGS

F.ORIO - INFN ROMA

ON BEHALF OF

N. Casali^{1,2}, S.S. Nagorny¹,* F. Orio³, L. Pattavina¹, J.W. Beeman⁵, F. Bellini^{3,4}, L. Cardani^{3,4},
I. Dafinei³, S. Di Domizio⁶, M.L. Di Vacri¹, L. Gironi^{7,8}, M.B. Kosmyna⁹, B.P. Nazarenko⁹, S. Nisi¹,
G. Pessina⁸, G. Piperno^{3,4}, S. Pirro⁸, C. Rusconi⁸, A.N. Shekhovtsov⁹, C. Tomei³, and M. Vignati³ ¹INFN - Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ) - Italy
²Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, I-67100 Coppito (AQ) - Italy ³INFN - Sezione di Roma, I-00185 Roma - Italy
⁴Dipartimento di Fisica - Università di Roma La Sapienza, I-00185 Roma - Italy ⁵Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
⁶Dipartimento di Fisica, Università di Genova and INFN - Sezione di Genova, I-16146 Genova - Italy ⁷Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126 - Italy ⁸INFN - Sezione di Milano Bicocca, Milano I-20126 - Italy and ⁹Institute for Single Crystals, National Academy of Sciences of Ukraine, 61001 Kharkov, Ukraine

THIRD ISOTTA GENERAL MEETING - CSNSM ORSAY - DECEMBER 18TH, 2013

REASONS FOR INTEREST

- Eu α decay
- neutron detection
- solar axions searches

REASONS FOR INTEREST

- neutron detection
- solar axions searches

THE DETECTOR

- 6.15 g Li₆Eu(BO₃)₃ crystal
 - Growth: Czochralski method in air atmosphere
 - Materials: high purity (99.99%)
 Li₂CO₃, Eu₂O₃ and B₂O₃
 - Shape: irregular
- The crystal was surrounded by a reflecting foil (3M VM2002)
- The crystal was faced to a Ge disk ($\diamond 50~mm \times 300~\mu m$) used as light detector
- Both were equipped with NTD thermistors, glued via resin epoxy glue

THE DATA TAKING @LNGS

- Operated in Oxford 200 ³He/⁴He dilution refrigerator
- Data collected for a total live time of 462.2 h
- Detector calibrated using internal α lines (crystal contaminations)
- Light detector was calibrated using ⁵⁵Fe source

ALPHA CALIBRATION

E= $ax^{2} + bx$ a: (2.5±1.8) x 10⁻⁷ b: 0.4612±0.0009

LIGHT YIELD VS HEAT

A CLOSER LOOK TO ¹⁴⁷SM PEAK

- There is a clear peak in proximity of the ¹⁵¹Eu
 Q-value
- Gaussian shape does not fit the spectrum

NON-GAUSSIANITY

- There is no clear physics motivation but the detector response function is not a gaussian.
 - Possible explanations?
 Position effects, crystal inhomogeneity, surface events...???

 We use as detector response function a sum of two crystal balls, evaluating their parameters on the Sm peak

 $RF(Q, E) = N \cdot [CB_{left}(Q, E) + \delta \cdot CB_{right}(Q, E)]$

THE FIT PROCEDURE

Using RooFit toolkit we performed a fit:

- maximum likelihood
- unbinned
- extended
- simultaneous (cut accepted and cut rejected, to evaluate cut efficiency ε)

$$FF(E) = N_{Sm} \cdot RF(Q_{Sm}, E) + N_{Eu} \cdot RF(Q_{Eu}, E)$$

9

Gaussian constrain with known value

Free parameters

THE RESULTING FIT

N_{Eu}: 37.6 ± 7.5 counts Q_{Eu}: 1948.9±6.9 keV FWHM: 65±7 keV ε_{cuts}: (96.8±0.2)%

> N_{Eu} is already corrected for ε_{cuts}

DISCOVERY SIGNIFICANCE

$$q_0 = -2 \cdot \ln rac{L(\text{data} \mid \text{bkg}(\hat{ heta}_0))}{L(\text{data} \mid \hat{\mu} \cdot \text{signal}(\hat{ heta}) + \text{bkg}(\hat{ heta}))}$$

http://arxiv.org/pdf/ 1202.1488.pdf (Sec. 3.2)

- *θ̂*₀ and *θ̂* are the fit parameter values that maximize the likelihood, in the background-only hypothesis and in the background plus signal hypothesis, respectively.
- The excess of events that we observed gives $q_0 = 54$, corresponding to a 7.4 σ statistical significance.
- The probability that the measured excess of events is produced by a background fluctuation is of the order of 10⁻¹⁴.

¹⁵¹EU HALF-LIFE

Systematics - Choice of fit interval - Choice of fit function

- Number of ¹⁵¹Eu atoms: (4.76±0.07)×10²¹ [from HP-ICP-MS measurement]
- ¹⁵¹Eu α decay containment efficiency: 99.98%
 [from MC simulations]
- Observed number of decays: 37.6±7.5 counts
- Live time of the measurement: 462.2 h

$$T_{1/2} = (4.62 \pm 0.95(\textit{stat.}) \pm 0.68(\textit{syst.})) \times 10^{18} y$$

Compatible with theoretical estimations and previous experimental results

CONCLUSIONS

- We operated a 6.15 g Li₆Eu(BO₃)₃ crystal as a bolometer, facing it to a bolometric Ge light detector inside a cryogenic facility at LNGS for a total live time of 462.2 hours.
- We report the discovery of ¹⁵¹Eu α decay to ground state of ¹⁴⁷Pm with T_{1/2} = (4.62 ± 0.95(stat.) ± 0.68(syst.)) × 10¹⁸ y with a 7.4 σ statistical significance.
- We evaluated its Q-value as 1948.9±6.9 keV.

For further details, please see <u>http://arxiv.org/pdf/1311.2834v2.pdf</u>

BACKUP

CRYSTAL BALL FUNCTION

$$f(x;\alpha,n,\bar{x},\sigma) = N \cdot \begin{cases} \exp(-\frac{(x-\bar{x})^2}{2\sigma^2}), & \text{for } \frac{x-\bar{x}}{\sigma} > -\alpha \\ A \cdot (B - \frac{x-\bar{x}}{\sigma})^{-n}, & \text{for } \frac{x-\bar{x}}{\sigma} \leqslant -\alpha \end{cases}$$

$$A = \left(\frac{n}{|\alpha|}\right)^n \cdot \exp\left(-\frac{|\alpha|^2}{2}\right),$$

$$B = \frac{n}{|\alpha|} - |\alpha|,$$

$$N = \frac{1}{\sigma(C+D)}$$

$$C = \frac{n}{|\alpha|} \cdot \frac{1}{n-1} \cdot \exp\left(-\frac{|\alpha|^2}{2}\right)$$

$$D = \sqrt{\frac{\pi}{2}} \left(1 + \operatorname{erf}\left(\frac{|\alpha|}{\sqrt{2}}\right)\right)$$