ISOTTA project

(ISOTope Trace Analysis)

Advanced Techniques for the Production, Purification and Radio-Purity Analysis of Isotopically Enriched Sources for Double Beta Decay

Jerzy W.Mietelski
The Henryk Niewodniczański Institute of Nuclear Physics
IFJ PAN, Kraków, Poland

ISOTTA: Task 2 – The low background detector for underground laboratory

- 1. Detector is constructed
- 2. Spectrometric modules (HV, amplifier, MCA) are bought
- 3. 20 k zł was to spent (about 4.5 k euro) the purchase of mini NIM-BIN cage (Ortec or Canberra) is organised.
- 4. About 2 t of lead bricks (50 years old) ws gathered*
- 5. The design of shield is at final stage, it will be constructed in our workshop

*change regarding 24 June talk – the shield will be constructed for initial test instead of use shield of WBS

Detector in low background cryostat

Value	mm
Α	70
В	72
С	39
D	450
Н	144
K	165
M	293
Pl	40
P2	80
P3	170
L	942

Carbon window

Spectrometer elements

HV, amplifier by Canberra Polish MCA

Spectrum of Co-60 (unshielded)

The shield

SIDES

Wysokość- 50 cm Razem w bokach - 120 cegły, wieniec - 120 cegieł w 10 warstwach w górze i dole - 98 CAŁOŚĆ - 218 cegły

TOP & BOTTOM

The shield frame

Tests - planned

- 1. Ground level at IFJ PAN (winter, early spring)
- 2. Move to SUNLAB (late spring?)

TASK 3 - Large-Area Multi-Wire Screening Detector For Surface Alpha Contamination - Prototype

M. Wójcik, S. Mieszek, G. Zuzel

Institute of Physics Jagiellonian University

Basic parameters of the detector

- 1. Surface area of the investigated sample: 20 cm x20 cm
- 2. Counting gas: Radon free N_2 at STP, flow-rate: $\sim 0.1 1$ L/min (N_2 produced from purified $L_2N \rightarrow 0.3$ Rn dpd)
- 3. Sealing with viton O-rings and Indium O-rings (to avoid Rn diffusion)
- 4. Phase I: 10 common signal wires + 2 guard wires (15 μm W-Au wire)
- 5. Phase II: Additional guard wires and a veto detector may be added

Technical drawing - side view

Technical drawing - top view

Construction status

- 1. Technical drawings completed
- 2. All parts (HV feed-througs, wire, gaskets) ordered, some already delivered (electronics, DAQ)
- 3. Construction will start at the beginning of January 2014
- 4. Working prototype should be available in February
- 5. Testing/commissioning till end of March
- 6. In April first physics results should be available

Task 1 - Analysis of the enriched samples with ICP-MS

- 1. Received 27 samples in summer (July-August)
- 2. Transferred to ICP-MS clean lab (Institute of Geological Studies PAS)
- 3. Unexpected problems with personnel crisis of this lab (3 out of 4 person quit job 75% staff removed). Measurements postponed.
- 4. Crisis overtaken (new 2 technicians)
- 5. Measurements planned to start in January (isotopic composition, U and Th contamination)