The BiPo detector

Measure the purity in ²⁰⁸Tl and ²¹⁴Bi of thin foils and materials

> Xavier Sarazin LAL Univ. Paris-Sud, IN2P3/CNRS

ISOTTA Meeting, 18 December 2013

1

Principle of BiPo detection

Detect the BiPo decay cascade: beta + delay alpha

Sandwich of two low radioactive thin polystyrene plastic scintillators **Time topology signature:** 1 hit + 1 delay hit (and no coincidence)

Sources of background

 \succ Discrimination e⁻/ α

Bulk contamination Scintillator

Low energy threshold
to reject coincidence
10 keV ≈ 100 µm

➤ Radiopure scintillator A(²³²Th) ≤ 1 µBq/kg

Surface contamination ²³⁸U and ²³²Th

✓ Ultra high surf. radiopurity (~100 µm deep) A(²³²Th) ≤ 1µBq/m²

No Radon and Thoron $A(Radon) \leq 10 \text{ mBq/m}^3$ (if gap = 200µm)

- Two distinct modules
- Each module = 20 pairs of scintillators
- Scintillator 300×300×2 mm³, aluminized with 200 nm ultra radiopure Al
- Total surface of the BiPo-3 detector = 3.6 m^2
- BiPo-3 installed in Canfranc Underground Laboratory (Spain)

View of a BiPo-3 module in the clean room in LSC₄

The BiPo-3 detector

A BiPo-3 module inside the low radioactive shield

Full BiPo-3 detector inside the shield with separate acquisition for each module

Results of the BiPo-3 Measurements

Module 1

Module 2

	08/12	09/12	10/12	11/12	12/12	01/13	02/13	03/13	04/13	05/13	06/13	07/13	08/13	09/13	10/13	11/13	12/13
Background																	
Aluminium foil																	
Aluminized mylar Polyethylene film polyethylene mesh Micromegas pads												6					

Analysis performed with new reconstruction software (previous release showed 50% lost of efficiency)

Channel ²¹²**Bi** – ²¹²**Po**

Prompt (e⁻) spectrum, 170 µm sample

Delay (α) spectrum, 170 μ m sample

Prompt (e⁻) spectrum, 85 µm sample

😑 🔹 Delay (α) spectrum, 85 μm sample

Channel ²¹²Bi – ²¹²Po

Delay Time dirtibution in agreement with the expected value:

 $T_{1/2}(^{212}Po) = 300 \text{ ns}$

Al foil A(208TI) results [mBq/kg]							
BiPo (85 μm)	75 ± 24						
BiPo (170 μm)	73 ± 23						
HPGe (2007)*	107 ± 23						

- · BiPo measurements for both thicknesses in agreement
- · BiPo measurements compatible with available HPGe data
- *More accurate HPGe measurements (LSC & Modane) available

Wait to finish BiPo analysis to compare all the results (blind analysis)

Channel ²¹⁴Bi – ²¹⁴Po

 $T_{1/2}(^{214}Po) = 164 \ \mu s$

 \Rightarrow Random coincidence background becomes the dominant background

Random coincidences are mostly Compton electron ⇒ They are rejected by electron

alpha discrimination

9

Based on the differences of the pulse tail of α 's and e⁻'s due to the slow scintillation component for α 's (higher stopping power)

Channel ²¹⁴Bi – ²¹⁴Po

Preliminary results for background and samples measurements

"Preliminary" because:

• "old" software reconstruction version has been used

 $\sim 50\%$ less sensitive than new version

(new version has been used for aluminium foil analysis)

⇒ ²⁰⁸Tl activities presented here have been corrected by a factor 1.5

• $e^{-/\alpha}$ discrimination not yet applied

⇒ only results for ²¹²Bi – ²¹²Po (²⁰⁸Tl)

Background measurement

	Duration (days)	Exposure (days×m²)	²¹² BiPo events	ε(%)	Bkg level (90% C.L.) μBq/m² scintillator
Module 1	85	230	2		[0.06 – 0.75]
Module 1 (after samples measurement)	40	129	2	30	[0.14 – 1.44]
Module 2	99	338	2		[0.05 – 0.53]

Compatible results of the three background measurement Background looks stable after sample measurement

Expected sensitivity Two modules (3.6 m²) SuperNEMO ⁸²Se foils (40 mg/cm²)

Measurements of SuperNEMO samples

Backing film = mylar irradiated to beam (JINR) in order to get micro holes

Measurements of SuperNEMO samples

Backing film = mylar irradiated to beam (JINR) in order to get micro holes

⁸² Se thin powder mixed with PVA		Backing film
	/	

	Duration (days)	ε(%)	²¹² BiPo events	Expected Bkg events	²⁰⁸ Tl activity (90%CL) (1.5 correction factor)
With polyethylene protection	48.5	6.8	15	$0.5^{+1.0}_{-0.4}$	A(²⁰⁸ Tl) = [114 - 320] μ Bq/kg = 213 ⁺¹⁰⁷ ₋₉₉ μ Bq/kg
Without polyethylene	36.7	7.6	11	$0.4^{+0.8}_{-0.3}$	A(²⁰⁸ Tl) = [82 – 296] μ Bq/kg = 183 ⁺¹¹³ ₋₁₀₁ μ Bq/kg

- SuperNEMO requirement: $A(^{208}Tl) < 20 \ \mu Bq/kg$
- BiPo-3 detector observed ^{208}Tl contaminations in few days at a level of ${\sim}100~\mu Bq/kg$!
- Old measurements performed by HPGe: old irradiation $A(^{208}Tl) \sim 670 \pm 150 \mu Bq/kg$ new irradiation $A(^{208}Tl) < 170 \mu Bq/kg$

Current measurements:

• Polyethylene film 4 mm

Used to screen samples to BiPo scintillator surface Looks very clean in Tl, so far...

• PVA pads

- PVA used to mix Se powder
- Aluminized mylar
- Micromegas pads

Results in January 2014

Next measurements (samples should be installed end January 2014)

- Membrane film (used for blood filtering) for SuperNEMO foils: $\sim 3 \text{ m}^2$
- Reflective film for scintillating bolometers

Backup

PMT's readout and acquisition

PMT signals sampled with MATACQ VME digitizer boards (LAL & IRFU)

- 4 channels, 2.5ms time window
- 1 GS/s high sampling rate
- 12-bit amplitude resolution
- 1 Volt amplitude dynamic range
- Electronic noise $\sim 250 \; \mu V$ (r.m.s.)

Trigger (LAL)

- \bullet MATACQ sampling of the PMT signal during 1.5 μs
- Dead time during 10 $\mu s \Rightarrow$ avoid false trigger on PMT delay noise
- Start watch dog
- MATACQ sampling of the PMT signal during 1 ms in case of a $2^{\ensuremath{\text{nd}}}$ trigger
- IQR generated after 1 ms

Acquisition developed by LPC Caen

Channel ²¹⁴Bi – ²¹⁴Po

