Third ISOTTA General meeting

ZnMoO₄ LUMINEU bolometers at CSNSM

Michele Mancuso

CSNSM – Bâtiments 104 et 108 Orsay Campus 18 December 2013

Outline

- LUMINEU crystals
 - Introduction of LUMINEU
 - First LUMINEU detectors
- The facility at CSNSM
 - RUN #1 at ULISSE cryostat
 - RUN #2 at Moulet Modane cryostat
- Results
- Conclusion and perspectives

Introduction of LUMINEU

LUMINEU: A pilot experiment to study the $0\nu\beta\beta$ with the favorable isotope 100 Mo embended in ZnMoO₄ scintillating bolometers.

- isotope ¹⁰⁰Mo (Q=3035 keV, i.a.=9.7%) embedded in ZnMoO₄ crystals
- running in underground laboratory

<u>``Zero`` γ backgrounds</u>

• scintillating bolometer technique

Simultaneous detection of heat and light allows to separate γ and β particles form α particles

<u>``Zero`` α backgrounds</u>

Crystal production line for LUMINEU

The production of LUMINEU crystals in NIIC (Novosibirsk, Russia) is performed in two dedicated furnaces, one with crucible $\emptyset = 40 \text{ mm}$ (for R&D), the other $\emptyset = 80 \text{ mm}$ (for final products).

The total LUMINEU production is splitted in **four deliveries:**

First LUMINEU detector

Light detector LT7

Hyper-pure Ge slab Ø50mm

X ZnMoO₄

Ø 35x40mm ∼165 g

Ø 20x40mm ∼55 g

- OFHC copper holder
- Detectors equiped with NTD Ge thermistors $R_0=1.09 T_0=3.83$
- PTFE clamps provide the thermal coupling

All the assemble is then surrounded by reflective foil (3M VM2000/2002)

RUN#1 @ ULISSE

LUMINEU crystals

- Pulse tube cooler as a first cryogenic stage
- Free from cryogenic fluids
- Reached base temperature below 12 mK
- Two additional mixture precooling stages at pulse tube level
- Rapid mixture condensation
- Low injection pressure→ ³He compressor OFF
- The experimental space of 5 l allows measurement several large mass bolometers

❖ The temperature of the holder can be stabilized very well: at T=12 mK FWHM =6 μ K over 3 hours

Conclusion and prospective

The Orsay facility

Measurement aboveground of large mass bolometer:

the slow decay time of the pulse (≈100 ms) pileup +high interaction rate+environmental radioactivity

→high purity lead shield (minimum thickness 10 cm) containing less than 30 Bq/kg of 210 Pb

❖ Effect of the Pb shield on the BKG of a 24 g ZMO detector

onorgy rongo	without load	21 1 1	5 1
energy range	without lead	with lead	Reduction
keV	counts/sec	counts/sec	factor
100-500	1.840	0.084	0.046
500-1000	0.309	0.0156	0.050
1000-1500	0.114	0.0064	0.056
1500-2000	0.027	0.0034	0.126
2000-2500	0.014	0.0021	0.15
2500-3000	0.005	0.0016	0.32

Analysis

☐ Triggered and analysed with optimum filter

The optimum filter: Is the transer function wich maximize the amplitude to noise ratio.

$$H(j\omega) = K' \frac{S_1^*(\omega)}{N(\omega)} e^{-j\omega\tau_M}$$

LUMINEU crystals

RUN#1

	Signal μV/MeV	Rise Time ms	Decay Time ms
• Light detector	850	3.8	32
• 55g ZnMoO ₄	104	17.2	130
• 160g ZnMoO ₄	134	15.2	104

RUN#1

LUMINEU crystals

The high noise wich affected the light detector doesn't permit a good discrimination

RUN#2 @ Mulet MODANE

- Dilution cryostat with LHe
- Reached base temperature below 15 mK
- Cold preamplifier
- AC bias polarization

Provides better performances in terms of vibration and electric noise Lower lead shielding quality

Temperature oscillation issue at MC level due to residual He

Light detector RUN#2

FWHM = 0.39 keVAC polazization \rightarrow R \approx 1 M Ω Sensitivity = 269 nV/keV

LUMINEU crystals

➤ No cuts

LUMINEU crystals

➤ Selection of good heat events

- Selection of good heat events
- Selection of good light events

LYalpha = 0.00015Lybeta = 0.00098QF = 0.153

Huge pile-up

x 10⁻⁸

0.9

0.8

0.7

0.6

Ampere I 5.0

0.4

0.3

0.2

0.1

No baseline available for analysis Analitic FWHM =5.97 keV

160g

Volt V

Sensitivity = 212 nV/keV

Conclusion

The LUMINEU program aims at performing a pilot experiment on neutrinoless double beta decay of ¹⁰⁰Mo using radiopure ZnMoO₄ crystals operated as scintillating bolometers.

A first LUMINEU crystals grown by LTG CZ technique. Thermal and bolometric properties were tested at CSNSM.

The energy resolution is good

The alpha/beta separation is excellent in the scatter plot: no alpha background is expected underground in the DBD region

An algorim for good pile-up treatment will be developed

The ULISSE facility is under upgrade and will be soon ready to successfully test the ISOTTA crystals