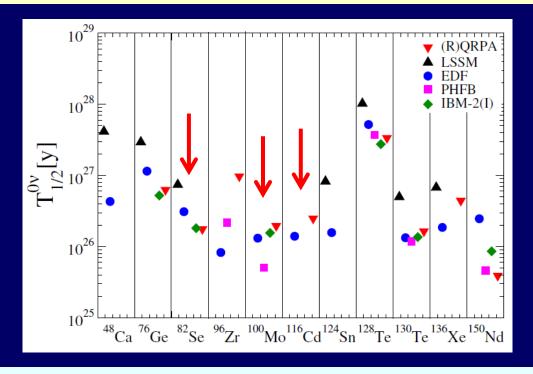
Purification, growth and characterization of the first ZnMoO₄ LUMINEU crystals


Fedor Danevich

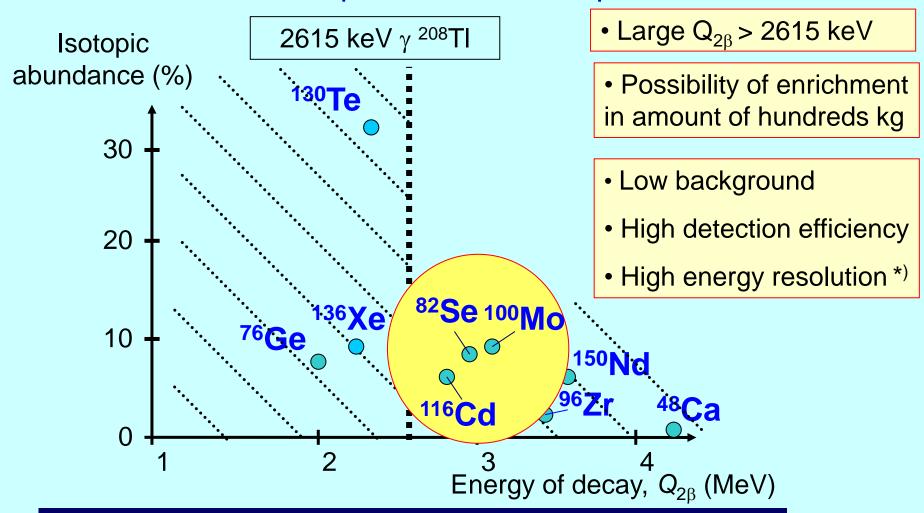
Institute for Nuclear Research, Kyiv, Ukraine on behalf of LUMINEU collaboration

- Introduction
- Deep purification of Mo
- Crystal growth
- Tests of produced crystal samples
- Status of large size and enriched ZnMoO₄
- Conclusions and outlook

Test of the neutrino mass hierarchy

Theoretical calculations of $T_{1/2}$ for $\langle m_{\nu} \rangle = 0.05$ eV [1]

To cover the inverted hierarchy region, one needs a sensitivity: $\langle m_{\rm v} \rangle \sim 0.02~{\rm eV} \rightarrow T_{1/2} \sim 10^{27}-10^{28}~{\rm yr}$


[1] J.D. Vergados, H. Ejiri, F. Simkovic, Rep. Prog. Phys. 75 (2012) 106301

What does it mean $T_{1/2} \sim 10^{27} - 10^{28} \text{ yr } ?$

Nucleus	$T_{1/2}$ to reach $\langle m_{\rm v} \rangle = 0.02 \; {\rm eV} \; [1]$	Detector	Number of 2β nuclei in 1 ton detector	Number of decays over 5 yr
⁴⁸ Ca	$(3-28) \times 10^{27} \text{ yr}$	⁴⁸ CaF ₂ (20%)	1.4×10^{27}	0.2 – 1.9
⁷⁶ Ge	$(3-17) \times 10^{27} \text{ yr}$	HP ⁷⁶ Ge	7.9×10^{27}	1.6 – 9
⁸² Se	$(1-4) \times 10^{27} \text{ yr}$	Zn ⁸² Se	4.1×10^{27}	3 – 13
¹⁰⁰ Mo	$(0.3 - 1.5) \times 10^{27} \text{ yr}$	Zn¹00MoO₄	2.6×10^{27}	6 – 30
		⁴⁰ Ca ¹⁰⁰ MoO ₄	3.0×10^{27}	4 – 34
¹¹⁶ Cd	$(0.8 - 1.3) \times 10^{27} \text{ yr}$	¹¹⁶ CdWO ₄	1.7×10^{27}	4 – 7
¹³⁰ Te	$(0.7-3) \times 10^{27} \text{ yr}$	¹³⁰ TeO ₂	3.8×10^{27}	4 – 18
¹³⁶ Xe	$(1-4) \times 10^{27} \text{ yr}$	¹³⁶ Xe	4.4×10^{27}	4 – 14

The most "promising" 2\beta nuclei

from the point of view of experiment

^{*)} Pure energy resolution is still acceptable if one give a *limit* on $0v2\beta$ decay, while it is not a case if one claim *detection* of the process

LUMINEU

Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature

A goal is to set the bases for a next-generation neutrinoless doublebeta decay experiment with zinc molybdate (ZnMoO₄) scintillating bolometers

- It is foreseen to develop high quality radiopure ZnMoO₄ crystals (ideally of EDELWEISS size Ø6×4 cm, ~ 0.5 kg)
- ~1–1.5 kg Zn¹⁰⁰MoO₄ from enriched ¹⁰⁰Mo
 - Deep purification of Mo
 - Crystal growth & scintillation elements production
 - Recovery of Mo from ZnMoO₄
 - Test of radioactive contamination, bolometrical, diamagnetic, optical and luminescence properties, a pilot experiment

Sensitivity for 5 yr with 800 kg $Zn^{100}MoO_4$ (energy resolution 5–7 keV, background a few counts in ~ 1 ton per year):

 $T_{1/2} \approx 10^{27} \text{ yr } \Rightarrow \langle m_{\nu} \rangle \sim 0.013 - 0.05 \text{ eV } [1]$

Purification of molybdenum is required

- There is no molybdenum of satisfactory quality on the market
- Furthermore, enriched ¹⁰⁰Mo surely will need purification

Material	Concentration of impurities (ppm)				
	Si	K	Ca	Fe	W
High purity MoO ₃ (Russia)	60	50	60	8	200
5N5 grade MoO ₃ used to produce ZnMoO ₄ crystal studied in [1]	9	67	15	<18	96
Enriched ¹⁰⁰ Mo (data of producer)	50–360	< 30	40-50	10-80	200

 Zinc of a good enough quality and radioactive contamination is available on the market (radiopurity tested with ZnWO₄ [2])

[1] L. Gironi et al., JINST 5 (2010) P11007 [2] P. Belli et al., NIMA 626&627 (2011) 31

Purification of MoO₃ by sublimation

- Sublimation of molybdenum oxide is widely used in the industry of molybdenum
- Nevertheless the concentration of impurities, particularly of W (up to 0.5wt% even in the high purity grade materials) still exceeds the ZnMoO₄ crystal growth requirements
- We have developed a technique of molybdenum purification by sublimation of MoO₃ in vacuum (with addition of zinc molybdate)

$$ZnMoO_4 + WO_3 = ZnWO_4 + MoO_3$$

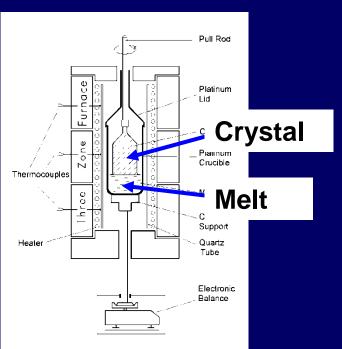
Motorial		Concentration o	f impurities (ppm)	
Material	Si	K	Fe	W
Initial MoO ₃	600	100 – 500	6	200 - 500
After 1st sublimation	100 – 500	10 – 50	2 – 6	100 – 200
After 2nd sublimation	70	1 – 8	< 1	30 – 40

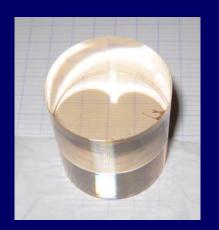
The technique is expected to be efficient to remove Th and U

Purification by recrystallization from aqueous solutions

Additional purification by recrystallization from aqueous solutions of ammonium para-molybdate (using zinc molybdate as a collector)

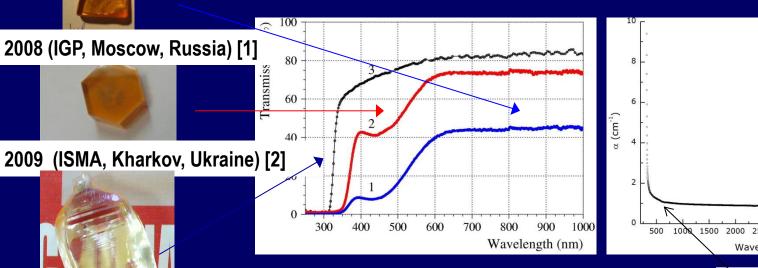
$$MoO_3 + 2NH_4OH = (NH_4)_2MoO_4 + H_2O$$


Material	Concentration of impurities (ppm)				
	Si	K	Ca	Fe	W
High purity MoO ₃ (Russia)	60	50	60	8	200
Recrystallization from aqueous solutions	30	20	40	6	220
Double sublimation and recrystallization from aqueous solutions	<10	< 10	< 10	< 5	< 50


Low-Thermal-Gradient Czochralski technique

Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia

Low-Thermal-Gradient Czochralski technique

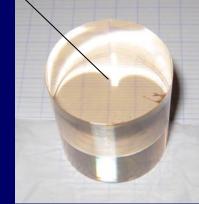

ZnMoO₄ \emptyset 35×40 (160 g) × 2 \emptyset 20×40 (55 g) × 2

<u>standard</u>	
25-30%	
2-3%	
	25-30%

LTG-C up to 90% typically higher expected better <0.3%

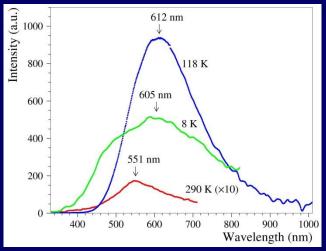
[1] A.A. Pavlyuk et al., Proc. APSAM-92, April 26–29, Shanghai, China (1992)

Optical transmittance

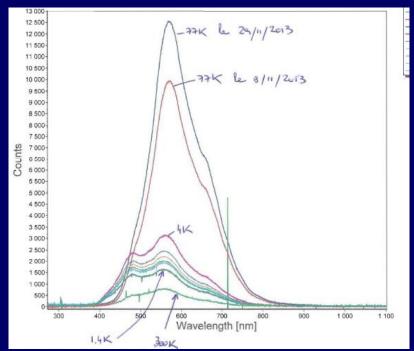


Wavelengths (nm)

2010 Low-Thermal-Gradient Czochralski (NIIC, Novosibirsk, Russia) [3-5]



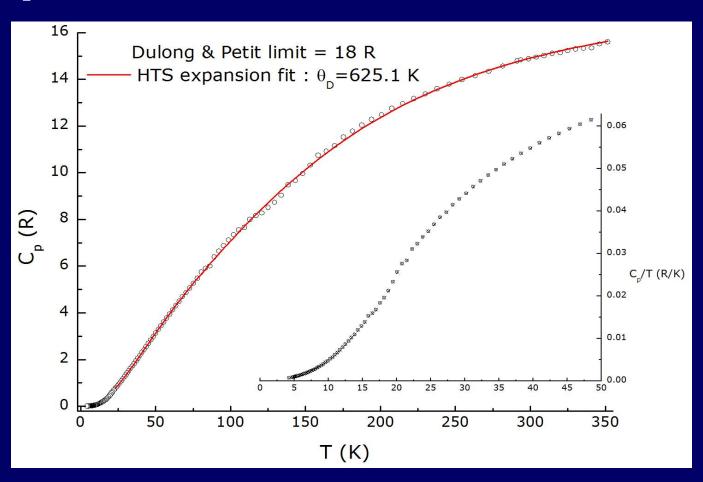
- [2] L.L. Nagornaya, et al., IEEE TNS 56 (2009) 2513
- [3] J.W. Beeman et al., J Low Temp Phys 167 (2012) 1021
- [4] J.W. Beeman et al., PLB 710 (2012) 318
- [5] D.M. Chernyak et al., NIMA 729 (2013) 856
- [6] V.N. Shlegel et al., arXiv:1312.3515 [physics.ins-det]



2013 Low-Thermal-Gradient Czochralski (NIIC, Novosibirsk, Russia) [6]

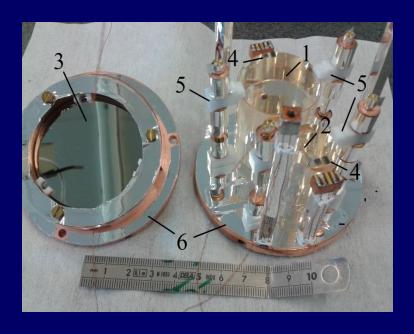
Luminescence under X-ray excitation

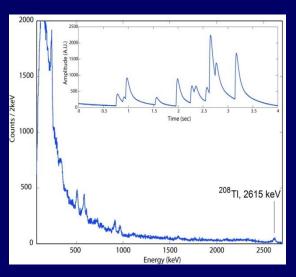
Measurements in the Kyiv Taras Shevchenko National University, Ukraine (corrected for the spectral sensitivity of PMT)

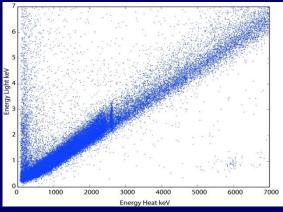

Data from the Institut d'Astrophysique Spatiale, Orsay, France (no correction for the spectral sensitivity of photodetector)

- How scintillation efficiency depends on W traces?
- Study of luminescence could allow to improve energy resolution

Magnetic susceptibility


- Magnetic susceptibility was measured using a Quantum Design SQUID MPMS XL magnetometer operating in the 4.2 - 350 K temperature range and in the 0 - 5 T magnetic field range.
- ZnMoO₄ proved to be weakly diamagnetic with a $\chi = -(8.0 \pm 0.2) \times 10^{-6}$ over the whole temperature range investigated, from 20 to 320 K.
- Paramagnetic impurities such as Fe²⁺ or Fe³⁺ could not be evidenced even under higher applied magnetic fields up to 0.2 T


Specific heat measurements



Debye temperature 625.1 K

Low temperature tests in Orsay

See the next report of Michele MANCUSO

Large ZnMoO₄ Ø50 × 40 mm

Possibility of re-crystallization from crystals is tested

Production of Zn¹⁰⁰MoO₄

• Production of "small" ($\approx \varnothing$ 2 cm) enriched Zn¹⁰⁰MoO₄ crystal(s) from \approx 180 g of contaminated ¹⁰⁰MoO₃ *) is in progress

[1] P.Belli et al., Nucl. Phys. A 846(2010)143

^{*)} rest after wet chemistry purification of ¹⁰⁰MoO₃ for the ARMONIA experiment [1]: a few mBq/kg of ²²⁸Th and ²²⁶Ra, 0.3 Bq/kg ⁴⁰K, 20 mBq/kg of ¹³⁷Cs)

conclusions

- Method to purify molybdenum using sublimation (with addition of zinc molybdate) and recrystallization from aqueous solutions of ammonium para-molybdate (using zinc molybdate as a collector) for high quality ZnMoO₄ crystals growth were developed
- First LUMIENU crystals 55 g and 160 g were grown by low-thermal gradient Czochralski technique
- Tests of optical, luminescent and bolometric properties of the crystals confirem high quality of the samples
- Diamagnetic and thermal properties (Debye temperature) of ZnMoO₄ crystal were measured for the first time
- Large Ø5×4 cm high quality ZnMoO₄ crystals were produced by recrystallization; R&D of final Ø5×4 cm is in progress
- Production of ~0.1 kg Zn¹00MoO₄ from ~ of enriched ¹00Mo is in progress. Production of 1-1.5 kg Zn¹00MoO₄ is foreseen in 2014

radiopurity of "small" Zn¹⁰⁰MoO₄

 Radioactive contamination of ~1 kg of ¹⁰⁰MoO₃ was measured by lowbackground HPGe detector at LNGS [1]

 Requirements of 0v2β experiment to Zn¹00MoO₄ crystals:

```
    100 MoO<sub>3</sub> (mBq/kg)
    40 K 36
    226 Ra 2
    228 Th 1
```

```
Zn^{100}MoO_3 (mBq/kg)

^{40}K <10 *)

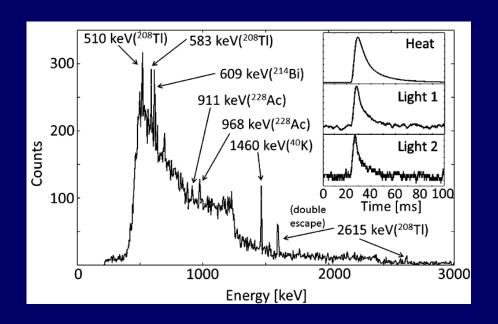
^{226}Ra <0.1 - 1

^{228}Th <0.01 - 0.1

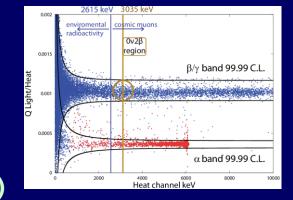
Total \alpha activity < 1 mBq/kg
```

^{*)} $2v2\beta$ activity of ¹⁰⁰Mo in $Zn^{100}MoO_4$ is 8 mBq/kg

What does it mean $T_{1/2} \sim 10^{27} - 10^{28} \text{ yr } ?$


Nucleus	$T_{1/2}$ to reach $\langle m_{\rm v} \rangle = 0.02 \; {\rm eV} \; [1]$	Detector	Number of 2β nuclei in 1 ton detector	Number of decays over 5 yr
⁴⁸ Ca	$(3-28) \times 10^{27} \text{ yr}$	⁴⁸ CaF ₂ (20%)	1.4×10^{27}	0.2 – 1.9
⁷⁶ Ge	$(3-17) \times 10^{27} \text{ yr}$	HP ⁷⁶ Ge	7.9×10^{27}	1.6 – 9
⁸² Se	$(1-4) \times 10^{27} \text{ yr}$	Zn ⁸² Se	4.1×10^{27}	3 – 13
¹⁰⁰ Mo	$(0.3 - 1.5) \times 10^{27} \text{ yr}$	Zn¹00MoO₄	2.6×10^{27}	6 – 30
		⁴⁰ Ca ¹⁰⁰ MoO ₄	3.0×10^{27}	4 – 34
¹¹⁶ Cd	$(0.8 - 1.3) \times 10^{27} \text{ yr}$	¹¹⁶ CdWO ₄	1.7×10^{27}	4 – 7
¹³⁰ Te	$(0.7-3) \times 10^{27} \text{ yr}$	¹³⁰ TeO ₂	3.8×10^{27}	4 – 18
¹³⁶ Xe	$(1-4) \times 10^{27} \text{ yr}$	¹³⁶ Xe	4.4×10^{27}	4 – 14

Properties of ZnMoO₄ crystals


Property	Value	Measurements	Reference
Density (g/cm ³)	4.3		[1]
Melting point (° C)	1003 ± 5		[1]
Structural type	Triclinic, P1		[1, 2]
Cleavage plane	Weak (001)		[1]
Hardness Mohs scale	3.5		[3]
Index of refraction	1.89 - 1.96		[3]
Wavelength of emission maximum (nm)	605 585 625	SR 6.5 eV, 10 K X ray excitation, 8 K X ray excitation, 8 K	[1] [4] [3]
Scintillation decay time (μ s)	1.3, 16, 150 3.9	SR 6.5 eV, 80 K SR 5.5 eV, 300 K	[5] [6]

- [1] L.I.Ivleva et al., Crystallog. Rep. 53 (2008) 1087
- [2] W.Reichelt et al., Z. Anorg. Allg. Chem. 626 (2000) 2020
- [3] D.M.Chernyak et al., in review in NIMA
- [4] L.L.Nagornaya et al., IEEE Trans. Nucl. Sci. 56 (2009) 2513
- [5] V.B. Mikhailik et al., Nucl. Instr. Meth. A 562 (2006) 513
- [6] D. Spassky et al., Phys. Status Solidi A 206 (2009) 1579

ZnMoO₄ scintillating bolometers

Chain	Activity (mBq/kg)		
	[1]	[2]	
²²⁶ Ra	< 0.8	= 0.027(6)	
²²⁸ Th	< 0.8	< 0.006	

- High energy resolution 3.8 keV at 2615 keV (0.15%)
- Estimated background is a few counts / yr at $Q_{2\beta}$ in 1 ton detector (the main background is expected to be from random coincidence of $2v2\beta$ events [3])

Sensitivity for 5 yr 800 kg Zn¹⁰⁰MoO₄: $T_{1/2} \approx 10^{27}$ yr $\rightarrow \langle m_{\nu} \rangle \sim 0.013 - 0.05$ eV [4]

[1] D.M. Chernyak *et al.*, submitted to NIMA; [2] J.W.Beeman *et al.*, Eur. Phys. J. C 72 (2012) 2142 [3] D.M. Chernyak *et al.*, Eur. Phys. J. C 72 (2012) 1989; [4] J.W. Beeman *et al.*, PLB 710 (2012) 318