

ID de Contribution: 35

Type: Non spécifié

Predicting the neutrino CP phase with charged lepton corrections

mercredi 9 juillet 2014 18:00 (1 heure)

After the successful determination of the reactor neutrino mixing angle $|\text{mbox}\{\theta_{13} \cong 0.16 \neq 0\}$, a new feature suggested by the current neutrino oscillation data is a sizeable deviation of the atmospheric neutrino mixing angle θ_{23} from $\pi/4$. Using the fact that the neutrino mixing matrix $U = U_e^{\dagger}U_{\nu}$, where U_e and U_{ν} result from the diagonalisation of the charged lepton and neutrino mass matrices, and assuming that U_{ν} has a i) bimaximal (BM), ii) tri- bimaximal (TBM) form, or else iii) corresponds to the conservation of the lepton charge $L' = L_e - L_{\mu} - L_{\tau}$ (LC), we investigate quantitatively what are the minimal forms of U_e , in terms of angles and phases it contains, that can provide the requisite corrections to U_{ν} so that θ_{13} , θ_{23} and the solar neutrino mixing angle θ_{12} have values compatible with the current data. Two possible orderings of the 12 and the 23 rotations in U_e , standard" and inverse", are considered. The results we obtain depend strongly on the type of ordering. In the case of "standard" ordering, in particular, the Dirac CP violation phase δ , present in U, is predicted to have a value in a narrow interval around i) $\delta \cong \pi$ in the BM (or LC) case, ii) $\delta \cong 3\pi/2$ or $\pi/2$ in the TBM case, the CP conserving values $\delta = 0, \pi, 2\pi$ being excluded in the TBM case at more than 4σ .

Based on work done with David Marzocca, S. T. Petcov, Andrea Romanino, M. C. Sevilla JHEP 05(2013) 073 [arXiv:1302.0423]

Orateurs: MARZOCCA, David; CERDA SEVILLA, Maria

Classification de Session: Poster session