LHC Physics

Gilad Perez

CERN \& Weizmann Inst.

Invisibles School 2014

Outline

Lecture I:

- Some motivation.
- Calculating LHC cross sections (Xsection).
- Parton distribution functions, parton luminosities.

Lecture II:

- Example, top-pair Xsection calculation.
- Kinematics \& jets.

Lecture I:

Some motivation (SM problems, naturalness);
How to calculate Xsections @ the LHC; Parton distribution functions (PDFs) parton luminosities.

Why the LHC? What are the problems of the Standard Model* (SM), before the LHC started?

WW/unitarity, masses	fine tuning, naturalness	neutrino masses	flavor puzzle
		dark matter	(strong CP)
		baryogenesis	unification, charge quantisation

* Let's set quantum gravity aside for simplicity ${ }_{4}$.

Why the LHC? What are the problems of the Standard Model* (SM), before the LHC started?

data driven, clear scale	conceptual vague scale	data driven, no clear reachable scale	conceptual
WW/unitarity, masses	fine tuning, naturalness	neutrino masses	flavor puzzle
		dark matter	(strong CP)
		baryogenesis	unification, charge quantisation

* Let's set quantum gravity aside for simplicity ...

Why the LHC? (2 subjective reasons)

- Higgs \& unitarity, suggests physics < TeV.

Given the Higgs, the fine tuning problem requires new physics at a scale, generically, within the reach of the LHC.

The SM Higgsless Unitarity Problem

$$
\begin{aligned}
\mathcal{L}_{\text {mass }}= & M_{W}^{2} W_{\mu}^{+} W^{-\mu}+\frac{1}{2} M_{Z}^{2} Z^{\mu} Z_{\mu} \\
& -\sum_{i, j}\left\{\bar{u}_{L}^{(i)} M_{i j}^{u} u_{R}^{(j)}+\bar{d}_{L}^{(i)} M_{i j}^{d} d_{R}^{(j)}+\bar{e}_{L}^{(i)} M_{i j}^{e} e_{R}^{(j)}+\bar{\nu}_{L}^{(i)} M_{i j}^{\nu} \nu_{R}^{(j)}+h . c .\right\}
\end{aligned}
$$

Mass terms are not invariant under the local $S U(2)_{L} X U(1)_{Y}$ symmetry

The optical theorem
$\frac{E}{p} \frac{1}{s} \operatorname{Im}(A(\theta=0))=\sigma_{t o t}(W W \rightarrow$ anything $)$
requires for each partial wave:
$\operatorname{Im}\left(a_{l}(s)\right)=\left|a_{l}(s)\right|^{2}+\left|a_{l}^{i n}(s)\right|^{2}$
$\operatorname{Re}\left(a_{l}(s)\right) \leq \frac{1}{2}$

The SM Higgsless Unitarity Problem

Mandelstam variables

The amplitude for scattering of longitudinal W's and Z's grows with the energy and eventually violates the unitarity bound:

Unitarity is restored by adding diagrams with intermediate Higgs in them as long as $m_{h}<.800 \mathrm{GeV}$.

The Higgs \& the fine tuning/naturalness problem

't Hooft definition of technical naturalness:
a parameter is natural if when it's set to 0 there's an enhanced symmetry.
Additive renormaliztion (unnatural parameters): $\quad d \lambda / \operatorname{dln} \mu \propto \lambda g(\mu)+f(\mu)$ Multiplicative renormalization (natural parameters): $\quad d \lambda / \operatorname{dln} \mu \propto \lambda g(\mu)$

The Higgs mass parameter is subject to additive renormalisation. Thus, it is sensitive to microscopic new physics dynamics.

Naturalness might give a hint: Higgs mass is additive, sensitive to microscopic scales. Within the SM it translates to UV sensitivity: $\frac{d m_{H}^{2}}{d \ln \mu}=\frac{3 m_{H}^{2}}{8 \pi^{2}}\left(2 \lambda+y_{t}^{2}-\frac{3 g_{2}^{2}}{4}-\frac{3 g_{1}^{2}}{20}\right)$.

Beyond the SM: any scale that couples to the Higgs (or even to tops, gauge ...) will induce a large shift to the Higgs mass, $\delta m_{H}^{2} \approx \frac{\alpha}{4 \pi} M^{2}$. Farina, Pappadopulo \& strumia (13)

Tunning vs. fine tuning/naturalness problem

Flavor puzzle: the parameters' are small and hierarchical.
Is the flavor sector fine tuned? $m_{w} / m_{t} \sim 10^{-5}$.

Massless fermions theory: $\quad \mathcal{L}_{\text {fermions }} \in \bar{\psi}_{L} \partial_{\mu} \gamma_{\mu} \psi_{L}+\bar{\psi}_{R} \partial_{\mu} \gamma_{\mu} \psi_{R}$

Two separate $\mathrm{U}(1)$'s:

$$
\psi_{L, R} \rightarrow e^{\theta_{L, R}} \psi_{L, R}
$$

Mass term breaks it to a single $\mathrm{U}(1): \quad \psi_{L} m \psi_{R}$

Only invariant under transformation with $\theta_{L}=\theta_{R}=\theta$

Flavor (including neutrinos) parameters are natural

Flavor parameters are natural, subject to tuning \& then radiatively stable, no UV sensitivity.

Within the SM the only exception is the Higgs mass. (\& the QCD angle \& the cosmological constant)
(A simple way to understand this is to realise that a massless fermion requires 2 degrees of freedom (dof) while a massive 4.
A massless vector boson requires 2 and a massive 3 .
Thus, there is discontinuity in the massless to massive limit.
This does not happen for a massive scalar.)

LHC physics

Why LHC?

Need more E!

Sync' radiation,

problem for circular e-collider: $\left.\frac{d W}{d t}\right|_{e} \approx\left(\frac{e}{r}\right)^{2}\left(\frac{E}{m_{e}}\right)^{4} \sim 10^{4} \mathrm{GeV} \mathrm{s}^{-1} \Rightarrow \times 10^{12} e \sim$ MWs radiation!
10^{13} improvement when e <=> proton

Nothing's free - QCD dust

- Expect $m_{t}=130-200 \mathrm{GeV}$, who needs 2 TeV ?
- Proton anti-proton are composite:
- Typical E's much smaller: $E_{\text {event }}^{2}=x_{1} x_{2} E_{p \bar{p}}^{2}$

- We don't know what is E_{CM}.
- We don't know which particles interacted.
- And ...

Calculating Xsections at the LHC: Parton Distribution Functions (PDFs)

(assuming no p-rapidity or pt cuts)

$$
\frac{d \sigma(p p \rightarrow f)}{d \hat{s}}=\sum_{i j} \hat{\sigma}_{i j}(\hat{s}) \int_{0}^{1} \int_{0}^{1} d x_{i} d x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) \delta\left(\hat{s}-x_{i} x_{j} s\right)
$$

$\hat{\sigma}(\hat{s})$ Corresponds to the hard/local/short distance Xsection that we would like to calculate/measure.

For instance $g g \rightarrow t \bar{t}$
$\hat{s}=\left(p_{t}+p_{\bar{t}}\right)^{2}=\left(p_{g}+p_{g^{\prime}}\right)^{2}$

PDFs (What are they?)

Probability of finding a constituent f with a longitudinal momentum fraction of $x \Rightarrow f_{f}(x) d x$

PDFs at the LHC

Gluons dominate at low x.
To set the scale, $x=0.14$ at LHC is $0.14 * 7 \mathrm{TeV}=1 \mathrm{TeV}$
=> The LHC is argluon collider !!!

Physically only pairs of PDF are important

(assuming no p-rapidity or pt cuts)

$$
\begin{aligned}
& \frac{d \sigma(p p \rightarrow f)}{d \hat{s}}=\sum_{i j} \hat{\sigma}_{i j}(\hat{s}) \int_{0}^{1} \int_{0}^{1} d x_{i} d x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) \delta\left(\hat{s}-x_{i} x_{j} s\right) \\
& =\sum_{i j} \frac{\hat{\sigma}_{i j}(\hat{s})}{\hat{s}} \int_{0}^{1} \int_{0}^{1} d x_{i} d x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) \delta\left(1-x_{i} x_{j} \frac{s}{\hat{s}}\right) \\
& \tau=\frac{\hat{s}}{s} \\
& \frac{d \sigma(p p \rightarrow f)}{d \tau}=\sum_{i j} \frac{\hat{\sigma}_{i j}(\hat{s})}{\tau} \int_{0}^{1} \int_{0}^{1} d x_{i} d x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) \delta\left(1-\frac{x_{i} x_{j}}{\tau}\right) \\
& \frac{d \sigma(p p \rightarrow f)}{d \tau}=\sum_{i j} \frac{\hat{\sigma}_{i j}(\hat{s}}{\tau} \int_{\tau}^{1} d x_{i} \frac{\tau}{x_{i}} f_{i}\left(x_{i}\right) f_{j}\left(\frac{\tau}{x_{i}}\right)
\end{aligned}
$$

Parton-parton luminosities

$$
\frac{d L_{i j}}{d \tau}=\frac{1}{1+\delta_{i j}} \int_{\tau}^{1} \frac{d x}{x}\left[f_{i}(x) f_{j}\left(\frac{\tau}{x}\right)+f_{i}\left(\frac{\tau}{x}\right) f_{j}(x)\right]
$$

- Function of dimensionless quantity:
- Scaling => independent of CM energy of proton proton collisions.
- However, $\hat{\sigma}_{i j}(\hat{s}) \equiv \hat{\sigma}_{i j}\left(E^{2}\right)$ depends on E . The collider characteristics only help us understand the energy scale E^{2} accessible given an S for proton-proton collisions.

Luminosity functions, adding Xsection scale

Zooming-in on the $<1 \mathrm{TeV}$ region

Cross sections at 1.96 TeV versus 14 TeV Tevatron vs LHC

	Cross section		Ratio
$Z \rightarrow \mu \mu$	260 pb	1750pb	6.7
WW	10 pb	100 pb	10
$\mathrm{H}_{160 \mathrm{GeV}}$	0.2 pb	25 pb	125
mSugra $_{\text {LM1 } 1}$	0.0006 pb	50 pb	80,000

At $10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{LHC}$ might accumulate $10 \mathrm{pb}^{-1}$ in one day!

Boosted jets mass distribution, $E_{J}>400 \mathrm{GeV}$

$$
\left.\frac{d \sigma}{d m_{J}^{2}} \propto \frac{C_{F}}{m_{J}^{2}} \log \left(\frac{E^{2} R^{2}}{m_{J}^{2}}\right) \quad \text { (expect mostly quarks } C_{F}=4 / 3\right)
$$

Boosted jets mass distribution, $E_{J}>400 \mathrm{GeV}$

Boosted jets mass distribution, $E_{J}>400 \mathrm{GeV}$

