

Neutrino in Cosmology

Invisibles School 2014, Gif-sur-Yvette, 11.07.2014 J. Lesgourgues (EPFL, Lausanne & CERN, Geneva & LAPTh, Annecy)

11.07.2014

Neutrinos in cosmology – J. Lesgourgues

Plan

- I. Neutrino decoupling
- II. Relativistic neutrinos
 - Impact on background evolution
 - Relativistic neutrino perturbations
 - Effects of N_{eff} on CMB and LSS
 - Measuring N_{eff}
- III. Non-relativistic neutrinos
 - Impact on background evolution
 - Non-relativistic neutrino perturbations
 - Effects of masses on CMB and LSS
 - Measuring masses (current bounds, future sensitivity)
- IV. Other constraints on neutrinos from cosmology

- For T ~ 10 MeV:
 - Thermal bath: γ , p, n, e⁺, e⁻, { ν_e , ν_{μ} , ν_{τ} , $\overline{\nu}_e$, $\overline{\nu}_{\mu}$, $\overline{\nu}_{\tau}$ }
 - DM particle
 - All other particles should have decayed when T~m_i
 - Neutrinos kept in thermal equilibrium through elastic/inelastic weak interactions:

• Exchange of W/Z bosons

- For T ~ 1 MeV:
 - thermally averaged cross-section $\ \langle \sigma v \rangle \sim G_F^2 T^2$
 - Interaction rate $\Gamma = n_{e^-} \langle \sigma v \rangle \sim G_F^2 T^5$
 - Expansion rate $H^2 \sim M_P^{-2} T^4$

• Ratio
$$\frac{\Gamma}{H} \sim M_P G_F^2 T^3 \sim \left(\frac{T}{1 \text{ MeV}}\right)^3$$

• Decoupling near 1 MeV, then phase-space distributions frozen very close to

$$f_i(p) = \frac{1}{\exp[p/T_\nu] + 1} \qquad \text{with } \mathsf{T}_\nu \sim \mathsf{a}^{-1}$$

 Tiny flavor-dependent corrections (e⁺e⁻ annihilation, finite-temperature QED, flavor mixing)

Δ

- For T < 1 MeV:
 - T_v scales like a^{-1} but T_γ doesn't $(e^+ + e^- \longrightarrow \gamma + \gamma)$
 - Entropy conservation throughout electron-positron annihilation:
 - Before : $T_v = T_\gamma \sim a^{-1}$
 - After : $T_v = (4/11)^{1/3} T_\gamma \sim a^{-1}$
 - Given T_{γ} = 2.726 K, we know the current neutrino number density

$$n_{\nu_i} = \frac{3}{4} \frac{\zeta(3)}{\pi^2} T_{\nu}^3 = 56 \text{ cm}^{-3}$$
 (for all 6 neutrinos: 336 cm⁻³)

- Independent of Majorana/Dirac
- Oscillations irrelevant after decoupling due to nearly equal distributions

- Beyond standard model:
 - Distribution can be modified by neutrino-antineutrino asymmetry (chemical potential). If large flavor-dependent asymmetry, then oscillations become important.
 - Non-thermal enhancement due to decay of unstable particle after neutrino decoupling (e.g. Majoron)
 - Overall suppressed, non-thermal distribution for low-temperature reheating
 - Extra population of sterile neutrinos (thermalised or not)

II. Relativistic neutrinos

log a

• Background: only $\rho_{\nu}(a)$ is important

3 standard neutrinos,

Instantaneous decoupling:

$$\rho_{\rm R} = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} 3 \right).$$

11.07.2014

II. Relativistic neutrinos

• Background: only $\rho_{\nu}(a)$ is important

3 standard neutrinos,

Instantaneous decoupling:

$$\rho_{\rm R} = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \underbrace{3}_{\cdot} \rightarrow \mathsf{N}_{\rm eff} \right)$$
(= 3.046 in standard model)

11.07.2014

II. Increasing N_{eff}

Different background evolution affects CMB and LSS power spectrum ۲

11.07.2014

Neutrinos in cosmology – J. Lesgourgues

• Different background evolution affects CMB and LSS power spectrum

11.07.2014

Neutrinos in cosmology – J. Lesgourgues

• Different background evolution affects CMB and LSS power spectrum

- Keeping Ω_i fixed and increasing H₀, N_{eff} preserves characteristic redshifts
- Positive correlation between H₀, N_{eff}

- Keeping Ω_i fixed and increasing H₀, N_{eff} preserves characteristic redshifts
- Positive correlation between H₀, N_{eff}

- Sound horizon at decoupling ~ H₀
- Angular diameter distance to decoupling ~ H₀

- Keeping Ω_i fixed and increasing H₀, N_{eff} preserves characteristic redshifts
- Positive correlation between H₀, N_{eff}

- Sound horizon at decoupling ~ H₀
- Angular diameter distance to decoupling ~ H₀
- Silk damping scale at decoupling ~ H_0^2

- Keeping Ω_i fixed and increasing H₀, N_{eff} preserves characteristic redshifts
- Positive correlation between H₀, N_{eff}

Shift in damping scale relative to peak scale (larger N_{eff} , more damping)

11.07.2014

- Keeping Ω_i fixed and increasing H₀, N_{eff} preserves characteristic redshifts
- Positive correlation between H₀, N_{eff}

• Motivation: gravitational interactions between neutrinos and photons, baryons, cdm

• PSD perturbation
$$\Psi_{\nu}(\eta, \vec{x}, y, \hat{n}) = \frac{f_{\nu}(\eta, \vec{x}, y, \hat{n})}{f_{\nu 0}(\eta, y)} - 1$$

• Boltzmann in real space
$$\Psi'_{\nu} + \frac{y}{\epsilon}\hat{n}\cdot\vec{\nabla}\Psi_{\nu} + \frac{d\ln f_{\nu 0}}{d\ln y}\left[\phi' - \frac{\epsilon}{y}\hat{n}\cdot\vec{\nabla}\psi\right] = 0$$

• Fourier + Legendre expansion: Boltzmann hierarchy

$$\begin{split} \Psi_{\nu 0}{}' &= -\frac{yk}{\epsilon} \Psi_{\nu 1} - \phi' \,\frac{d\ln f_{\nu 0}}{d\ln y} \\ \Psi_{\nu 1}{}' &= \frac{yk}{3\epsilon} \left(\Psi_{\nu 0} - 2\Psi_{\nu 2}\right) - \frac{\epsilon k}{3y} \psi \frac{d\ln f_{\nu 0}}{d\ln y} \\ \Psi_{\nu l}{}' &= \frac{yk}{(2l+1)\epsilon} \left[l\Psi_{\nu (l-1)} - (l+1)\Psi_{\nu (l+1)} \right], \qquad \forall l \ge 2 \end{split}$$

- Motivation: gravitational interactions between neutrinos and photons, baryons, cdm
 - Contributions to $T_{\mu\nu}$ in Einstein equations :

$$\delta \rho_{\nu} = \overline{\rho}_{\nu} \delta_{\nu} = 4\pi a^{-4} \int y^2 dy \,\epsilon \, f_{\nu 0}(y) \Psi_0$$
$$\delta P_{\nu} = \frac{4\pi}{3} a^{-4} \int y^2 dy \, \frac{y^2}{\epsilon} \, f_{\nu 0}(y) \Psi_0$$
$$(\overline{\rho}_{\nu} + \overline{P}_{\nu}) \theta_{\nu} = 4\pi a^{-4} \int y^2 dy \,\epsilon \, f_{\nu 0}(y) \Psi_1$$
$$(\overline{\rho}_{\nu} + \overline{P}_{\nu}) \sigma_{\nu} = 4\pi a^{-4} \int y^2 dy \, \frac{y^2}{\epsilon} \, f_{\nu 0}(y) \Psi_2.$$

11.07.2014

• Motivation: gravitational interactions between neutrinos and photons, baryons, cdm

• PSD perturbation
$$\Psi_{\nu}(\eta, \vec{x}, y, \hat{n}) = \frac{f_{\nu}(\eta, \vec{x}, y, \hat{n})}{f_{\nu 0}(\eta, y)} - 1$$

• Boltzmann in real space $\Psi'_{\nu} + \frac{y}{\epsilon}\hat{n}\cdot\vec{\nabla}$

$$\Psi'_{\nu} + \frac{y}{\epsilon}\hat{n}\cdot\vec{\nabla}\Psi_{\nu} + \frac{d\ln f_{\nu 0}}{d\ln y}\left[\phi'\left(\frac{\epsilon}{y}\hat{n}\cdot\vec{\nabla}\psi\right)\right] = 0.$$

Relativistic particles: shift independent of momentum

PSD remains thermal

Everything can be integrated over momentum!

11.07.2014

• Motivation: gravitational interactions between neutrinos and photons, baryons, cdm

• PSD perturbation
$$F_{\nu}(\vec{x}, \hat{n}, \eta) = \frac{\int y^2 dy \, y[f_{\nu}(\vec{x}, y, \hat{n}, \eta) - f_{\nu 0}(y)]}{\int y^2 dy \, y f_{\nu 0}(y)}$$

• Boltzmann in Fourier space $F'_{\nu} + ik\mu F_{\nu} - 4\phi' - ik\mu 4\psi = 0.$

• Legendre expansion: Boltzmann hierarchy
$$\begin{cases} F_{\nu 0}' = -kF_{\nu 1} + 4\phi' \\ F_{\nu 1}' = \frac{k}{3} \left(F_{\nu 0} - 2F_{\nu 2} + 4\psi\right) \\ F_{\nu l}' = \frac{k}{(2l+1)} \left[lF_{\nu (l-1)} - (l+1)F_{\nu (l+1)}\right], \end{cases}$$

• Contributions to $T_{\mu\nu}$ $\delta_{\nu} = F_{\nu0},$ $\theta_{\nu} = \frac{3}{4}kF_{\nu1},$ $\sigma_{\nu} = \frac{1}{2}F_{\nu2}.$

11.07.2014

- N_{eff} increases: more gravitational force ($\delta \rho_{tot} = \rho_v \delta_v + ...$)
- "neutrino drag": CMB (and BAO) peaks shifted to larger scales and amplitude reduced wavenumber

• Summary: CMB and LSS affected through damping tail + shift in peak scale and amplitude. No exact parameter degeneracy with other effects.

II. Measuring N_{eff}

- Ultimately, constraints driven by CMB damping tail
 - WMAP+SPT see anomalously low tail: N_{eff} > 3 at 2 sigma
 - Planck and Planck+BAO well compatible with standard value at 1 sigma
 - Planck (+BAO) + HST : enforce higher H₀, hence also higher N_{eff}

II. Measuring N_{eff}

- Ultimately, constraints driven by CMB damping tail
 - WMAP+SPT see anomalously low tail: N_{eff} > 3 at 2 sigma
 - Planck and Planck+BAO well compatible with standard value at 1 sigma
 - Planck (+BAO) + HST : enforce higher H_0 , hence also higher N_{eff}
 - Planck + BICEP2 : to decrease r tension, also higher N_{eff}

II. Future N_{eff} sensitivity

Full Planck data (including lensing)	: $\sigma(N_{eff}) \sim 0.2$	2014
Planck + LSST, Euclid (cosmic shear, galaxy correlation)	: $\sigma(N_{eff}) \sim 0.1$	~ 2022
Post-Planck + Euclid	: $\sigma({\sf N}_{\rm eff})$ ~ 0.05	~ 2030

III. Non-relativistic neutrinos

III. Non-relativistic neutrinos

Non-relativistic transition: $m_v = T_v \sim (4/11)^{1/3} T_\gamma$, at $z_v = (m_v/5.3 \text{ eV}) 10^4$ After CMB decoupling for $m_v < 0.57 \text{ eV}$ ($M_v < 1.7 \text{ eV}$)

- for fixed $\omega_{\rm M} = \omega_{\rm B} + \omega_{\rm CDM} + \omega_{\rm v}$, change in time of equality
- for fixed $\omega_{\rm B}$ + $\omega_{\rm CDM}$ and equality, peak scale affected by (M $_{\rm v}$ / 0.06 eV) %
- for fixed equality AND peak scale, effect is on z_{Λ}

- Non-relativistic regime: importance of free-streaming scale
 - Interacting species with pressure:
 - no gravitational collapse below Jeans length
 - $k_J \sim H/c_s$ (sound speed in fluid)
 - Non-interacting species with velocity dispersion:
 - no collapse below free-streaming length
 - $k_{FS} \sim H/c_v$ (average particle velocity: $c_v = \text{first c}$, second /m=3.15 T_v/m_v)

Non-relativistic regime: importance of free-streaming scale ۲

11.07.2014

 cdm, baryons, neutrino perturbations identical

$$\delta_m$$
" + H δ_m ' + 3/2H² δ_m = 0

- neutrino perturbations supressed
- cdm, baryon given by:

$$\delta_{bc}$$
" + H δ_{bc} + 3/2H² (1-f_v) δ_{bc} = 0

 $f_v = \Omega_v / \Omega_m$ (minimum 0.006)

11.07.2014

FÉDÉRALE DE LAUSANNE

III. Neutrino masses and linear growth of structure

- Step-like effect
- Depends on redshift!
 Smaller at high z
- Importance of tomography

11.07.2014

Neutrinos in cosmology – J. Lesgourgues

III. Neutrino masses and linear growth of structure

- Today: $\Delta P/P \sim 1-8f_v$
- At least 4.5% suppression
- Depends mainly on total () mass.
- But k_{NR} depends on individual mass

III. Neutrino masses and linear growth of structure

- Mass splitting: effects of order 0.1%
- Undetectable

III. Neutrino masses and non-linear growth of structure

Bird et. al 2011, see also

Effect enhanced by non-linear evolution

- Tree-PM, $N_{v} >> N_{cdm}$, v in tree only
- (or SPH with imperfect fluid)

11.07.2014

III. So what do we actually measure?

Assuming three standard active neutrinos, and no other light relic:

- Equivalently: ρ_v , ω_v , $\Sigma m_i = M_v = 93.14 \omega_v \text{ eV}$
- Mass splitting inaccessible
- No sensitivity to Dirac/Majorana, mixing angles, CP phases, etc.

Assuming three standard active neutrinos, and no other light relic:

- Equivalently: ρ_{HDM} , ω_{HDM} , M_{veff} = 93.14 ω_{HDM} eV
- plus N_{eff} defined during radiation domination
- Mass splitting could be accessible : depends on model

24.06.2014

III. Measuring $M_{\!_{\rm V}}$

CMB:

- Not observed by Planck (within error bars)!
- Planck + WP alone: $M_v < 0.66 \text{ eV}$ (95% CL)
- adding BAO: $M_v < 0.23 \text{ eV}$

Planck XVI paper, 2013

CMB + LSS:

• Contradictions: compatible with $M_v < 0.23 \text{ eV}$ or pointing at ~0.3-0.4 eV

III. Measuring $M_{\rm v}$

CMB + LSS:

• Vulnerable to systematics and parameter degeneracies due to limited number of: scales, redshifts, independent tracers of dark matter

III. Measuring $M_{\!_{\rm V}}$

CMB + LSS:

 Vulnerable to systematics and parameter degeneracies due to limited number of: scales, redshifts, independent tracers of dark matter

Any experiment seeing low amplitude favors high neutrino mass but conflicts CMB TT

- CMB lensing,
- (SZ) clusters,
- CFHTLens weak lensing,
- BOSS red.-space dist.

Claims for $M_{\gamma} \sim 0.3 \text{ eV} - 0.8 \text{ eV}$

III. Measuring $M_{\!_{\rm V}}$

CMB + LSS:

• Vulnerable to systematics and parameter degeneracies due to limited number of: scales, redshifts, independent tracers of dark matter

Any experiment seeing low amplitude favors high neutrino mass but conflicts CMB TT

- CMB lensing,
- (SZ) clusters,
- CFHTLens weak lensing,
- BOSS red.-space dist.

Claims for $M_{v} \sim 0.3 \text{ eV} - 0.8 \text{ eV}$

Any experiment seeing high amplitude disfavors high neutrino mass:

• SDSS Ly- α of 2006 M $_{\rm v}$ < 0.17 eV (95%)

4

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

4

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

4

III. Model-dependence of bounds?

- Bounds obtained by fitting given model (minimal 6-parameter ΛCDM, extensions with curvature, dark energy, more freedom in primordial spectrum, etc.)
- Effect of $N_{\text{eff}},\,M_{\nu}$ could be confused with that of other parameters
- true with past experiments (e.g. degeneracies N _-M , N _-H , w-M , etc.)
- Less and less true: thousands of independent data points, at many different scales AND redshift; only ~10-20 model parameters
- Unique effect of M : scale-dependent growth factor, signature of freestreaming particles (different from changing primordial spectrum)
 - Unique effects of N _ : e.g. baryon drag shifting peaks because c > c , signature of ultra-relativistic particles

24.06.201

4

Neutrinos mass and density from comsology– J. Lesgourgues

III. Model-dependence of bounds?

- Bounds obtained by fitting given model (minimal 6-parameter ΛCDM, extensions with curvature, dark energy, more freedom in primordial spectrum, etc.)
- Effect of $N_{\text{eff}},\,M_{\nu}$ could be confused with that of other parameters
- true with past experiments (e.g. degeneracies $N_{eff}-M_{v}$, $N_{eff}-H_{0}$, w-M_v, etc.)
- Less and less true: thousands of independent data points, at many different scales AND redshift; only ~10-20 model parameters

Unique effect of M : scale-dependent growth factor, signature of freestreaming particles (different from changing primordial spectrum)

Unique effects of N : e.g. baryon drag shifting peaks because c > c signature of ultra-relativistic particles

24.06.201

4

Neutrinos mass and density from comsology– J. Lesgourgues

III. Model-dependence of bounds?

- Bounds obtained by fitting given model (minimal 6-parameter ΛCDM, extensions with curvature, dark energy, more freedom in primordial spectrum, etc.)
- Effect of $N_{\text{eff}},\,M_{\nu}$ could be confused with that of other parameters
- true with past experiments (e.g. degeneracies $N_{eff}-M_{v}$, $N_{eff}-H_{0}$, w-M_v, etc.)
- Less and less true: thousands of independent data points, at many different scales AND redshift; only ~10-20 model parameters
- Unique effect of M_v: scale-dependent growth factor, signature of freestreaming particles (different from changing primordial spectrum)
- Unique effects of N_{eff}: e.g. baryon drag shifting + damping tail

III. Complementarity with laboratory ?

- assuming N_{eff} = 3, $M_{veff} = m_1 + m_2 + m_3$, independently of mixing angles, CP phases, Dirac/Majorana mass : different from β and double β -decay
 - What if there is a tension between cosmology and laboratory bounds? E.g. KATRIN find m ~ 0.3 eV and cosmology M < 0.1 eV?
- After checking for systematics and degeneracies, would bring evidence for non-standard interactions (decay into lighter species, effective mass from coupling with other fields, etc...) or strong deviation from standard cosmological model (low-scale reheating / entropy production after BBN and conspiracy with other light relics ...) : NEW PHYSICS

24.06.201 4

III. Complementarity with laboratory ?

- assuming N_{eff} = 3, $M_{veff} = m_1 + m_2 + m_3$, independently of mixing angles, CP phases, Dirac/Majorana mass : different from β and double β -decay
- What if there is a tension between cosmology and laboratory bounds? E.g. KATRIN find $m_{\beta} \sim 0.3$ eV and cosmology $M_{v} < 0.1$ eV?

After checking for systematics and degeneracies, would bring evidence for non-standard interactions (decay into lighter species, effective mass from coupling with other fields, etc...) or strong deviation from standard cosmological model (low-scale reheating / entropy production after BBN and conspiracy with other light relics ...) : NEW PHYSICS

24.06.201

4

III. Complementarity with laboratory ?

- assuming N_{eff} = 3, $M_{veff} = m_1 + m_2 + m_3$, independently of mixing angles, CP phases, Dirac/Majorana mass : different from β and double β -decay
- What if there is a tension between cosmology and laboratory bounds? E.g. KATRIN find $m_{\beta} \sim 0.3$ eV and cosmology $M_{v} < 0.1$ eV?
- After checking for systematics and degeneracies, would bring evidence for non-standard v interactions (decay into lighter species, effective mass from coupling with other fields, etc...) or strong deviation from standard cosmological model (low-scale reheating / entropy production after BBN and conspiracy with other light relics ...) : NEW PHYSICS

IV. Beyond minimal model

- Extra production of neutrinos; low temperature reheating;
 - N_{eff} constraints from CMB, LSS, BBN
- Neutrino-antineutrino asymmetry
 - Similar, but non-trivial effects from oscillations and BBN leading to much stronger bound!
 - Very constrained by θ_{13}
 - At T~10 MeV , η_v < 0.06
 - $\Delta N_{eff} < 0.4$

- Non-standard neutrino interactions: very model-dependent
 - Interactions with themselves, dark matter, scalar field, quintessence, dark radiation
 - (see e.g. e.g. Archidiacono & Hannestad 13, Wilkinson et al. 13, Serra 10, ...)
- Light sterile neutrinos: see next

CMB only (Planck + WP + highL) analysis for 3+1 case:

24.06.2014

Motivations: anomalies in short-baseline neutrino oscillation experiments

 10° 90%, 99%, 99.73% CL, 2 dof 3+1 analysis in Kopp et al. 2013 disappearance Δm^2 10° 10⁻¹_10⁻⁴ 10^{-3} 10^{-2} 10^{-1} $\sin^2 2\theta_{\mu e}$ Appearance: LSND, MiniBoone, NOMAD, KARMEN, ICARUS, E776

Disappearance: reactor, Gallium, MiniBoone, CDHS, Minos, KARMEN

24.06.2014

Motivations: anomalies in short-baseline neutrino oscillation experiments

Appearance: LSND, MiniBoone, NOMAD, KARMEN, ICARUS, E776 Disappearance: reactor, Gallium, MiniBoone, CDHS, Minos, KARMEN

24.06.2014

Motivations: anomalies in short-baseline neutrino oscillation experiments

Appearance: LSND, MiniBoone, NOMAD, KARMEN, ICARUS, E776 Disappearance: reactor, Gallium, MiniBoone, CDHS, Minos, KARMEN

24.06.2014

