

Goals of this Course

- 1st Goal: give you an understanding of how to make measurements of a particle that is
 - Neutral
 - Almost never interacts
- Physics requires these measurements to be:
 - Over many orders of magnitude of energy
 - Over many orders of magnitude of distance distance
- Many experiments out there to describe
 - Solar, Reactor, Atmospheric, Accelerator-based
 - Absolute and Majorana Mass

Schedule

- Lecture 1 (9 July)
 - What do we know how to measure right now?
 - What neutrino sources are available?
 - How do neutrinos interact in matter?
- Lecture 2 (10 July)
 - How do non-neutrino particles interact in matter?
 - What neutrino detectors are out there?
- Lecture 3 (11 July)
 - Oscillation Measurements
- Lecture 4 (12 July)
 - Absolute Mass and Majorana Mass Measurements

What are the parameters we want to measure?

- 1. Neutrino Masses
 - A. Absolute
 - B. Relative
- 2. Nature of Neutrinos: Majorana or Dirac?
- 3. Neutrino Mixing Matrix
 - 1. 3 rotation angles and 1 CP-violating phase
 - 2. Is the matrix unitary?
 - 3. Is this a 3x3 matrix, or are there other generations out there?

What are the parameters that we want to measure?

1. Neutrino Masses

- A. Absolute
- B. Relative

To be covered Friday

- 2. Nature of Neutrinos: Majorana or Dirac?
- 3. Neutrino Mixing Matrix
 - 1. 3 rotation angles and 1 CP-violating phase
 - 2. Is the matrix unitary?
 - 3. Is this a 3x3 matrix, or are there other generations out there?

What are the parameters that we want to measure?

1. Neutrino Masses

- A. Absolute
- B. Relative

To be covered today and tomorrow

- 2. Nature of Neutrinos: Majorana or Dirac?
- 3. Neutrino Mixing Matrix
 - 1. 3 rotation angles and 1 CP-violating phase
 - 2. Is the matrix unitary?
 - 3. Is this a 3x3 matrix, or are there other generations out there?

Do we really understand flavor?

Simplistic way of describing mixing matrix

Lesson Learned from CKM: 3 mixing angles and a phase Call them $\theta_{12}, \theta_{23}, \theta_{13}, \delta$ if $s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$, then

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Additional Complication: Matter Effects

 The oscillation probability changes differently for electron neutrinos vs antineutrinos when they propagate through matter in a straightforward way

- Can't treat neutrinos propagating through earth simply as mass eigenstates, have to take into account electron flavor
- This would give an apparent CP violation just because the earth is not CP-symmetric

Minakata & Nunokawa JHEP 200[.]

v Oscillation Probabilities

- v_{μ} Disappearance: $1-\sin^2 2\theta_{23}\sin^2(\Delta m_{32}^2L/4E)$
- v_e Disappearance:

$$P_{\overline{\nu}_{e} \to \overline{\nu}_{e}} \approx 1 - \sin^{2} 2\theta_{13} \sin^{2} \left(\Delta m_{31}^{2} L / 4E \right) - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \left(\Delta m_{21}^{2} L / 4E \right)$$

- ν_e appearance in a ν_μ beam: even more complicated...
- $P(v_{\mu} \rightarrow v_{e}) = P_{1} + P_{2} + P_{3} + P_{4}$ $P_{1} = \sin^{2}\theta_{23}\sin^{2}2\theta_{13} \left(\frac{\Delta_{13}}{B_{\pm}}\right)^{2} \sin^{2}\frac{B_{\pm}L}{2}$ $P_{2} = \cos^{2}\theta_{23}\sin^{2}2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^{2} \sin^{2}\frac{AL}{2}$ $P_{3} = J\cos\delta\left(\frac{\Delta_{12}}{A}\right)\left(\frac{\Delta_{13}}{B_{\pm}}\right)\cos\frac{\Delta_{13}L}{2}\sin\frac{AL}{2}\sin\frac{B_{\pm}L}{2}$ $P_{4} = \mp J\sin\delta\left(\frac{\Delta_{12}}{A}\right)\left(\frac{\Delta_{13}}{B_{\pm}}\right)\sin\frac{\Delta_{13}L}{2}\sin\frac{AL}{2}\sin\frac{B_{\pm}L}{2}$

To measure probabilities, need...

- Neutrino Flavor
- Distance between creation and detection
- Neutrino Energy
 - No source we can use today is monochromatic!
 - Initial state: neutrino plus nucleon or electron
 - Final state: a bunch of stuff you only measure so well,
 sometimes you only measure the charged lepton
- Neutrino or Antineutrino?
 - Accelerator-based beams are always a mixture of both
 - Atmospheric neutrinos are also a mixture
 - Reactors and the sun are only one or the other

Measuring Oscillation Probabilities

For a given number of signal v_x events in a detector, Assuming you are starting with a source of v_v :

$$N = \varphi_{v_{y}} \sigma_{v_{x}} P(v_{y} \rightarrow v_{x}) \varepsilon_{x} M$$

 ϕ =flux, σ = cross section ϵ =efficiency M=detector mass

$$P(\nu_{\mu} \to \nu_{x}) = \frac{N}{\varphi_{\nu_{\mu}} \sigma_{\nu_{x}} \varepsilon_{x} M}$$

Neutrino Sources

- Key Parameters:
 - Flux
 - Energy
 - Baseline(s) available
 - Neutrino Beam Flavor and Helicity Composition
 - Sensitive to Matter Effects?
 - What do the neutrinos travel through between production and detection

How does the Sun Shine?

A Helium nucleus is produced by the fusion of 4 Hydrogen nuclei;

$$4p \rightarrow He + 2e^+ + 2\nu_e$$

This reaction produces about 27 MeV energy. Then, the total neutrino flux on the Earth is;

$$flux = \frac{1}{4\pi R^2} \times \frac{L_{sun}}{27MeV} \times 2v_e$$

$$(L_{sun} = 3.86 \times 10^{33} erg/sec)$$

$$= 6 \times 10^{10} v_e/cm^2/sec$$

Observing neutrinos from the sun is direct proof that the generation of the energy in the Sun is due to nuclear fusion.

Solar Neutrino Energy Spectrum

Other Beam Parameters

- Baselines Available: all close to 10⁸km
 - Distance to sun changes based on the season
 - Day/night asymmetry changes whether or not ν 's went through the earth before detection
- Beam Composition $v_{\rm e}$
- Matter effects
 - See Renata's lecture from yesterday
 - 8B v's feel matter
 effects from sun

Experimental Challenges with Solar Neutrino Measurements

- Neutrinos are very low in energy
 - Very few interactions are accessible
 - Cannot make final state muons or taus, so only neutral current or $\nu_{\rm e}$ charged current interactions are available
 - Different detectors have different energy thresholds, most neutrinos from sun not visible by most techniques
 - Cannot turn off the sun to measure backgrounds in the detector
 - "Standard Solar Model" had many tunable parameters...flux predictions were suspect for a long time.

Neutrinos from a Reactor

Like the sun, but fission instead of fusion

$$^{235}_{92}U+n
ightarrow X_1+X_2+2n
ightarrow \ ...^{94}_{40}Zr+^{140}_{58}Ce$$

235

²³⁹Pu

utrino Expe

1

Energy Spectrum from Reactors

 Several processes occurring during the fuel cycle of a reactor, with different yields and energy spectra

Baselines available

- Reactors send out neutrinos in all directions, so you could put detectors at any baseline you chose
- Different physics can be reached at different baselines

Extreme Example of Long baseline

 Kamland experiment: sees neutrinos from large array of reactors in Japan

Ichimura, $\sqrt{2008}$

Shorter Baselines used

Daya Bay: 3 cores, 3 halls, baselines of 1.6-2.0km Reno: 6 reactor cores, 2 halls, baseline(s) ~1.3km

Double Chooz: 2 cores, 2 halls at 0.4 and 1.0km

Experimental Challenges with Reactor Fluxes

- Flux changes over time because of fuel cycle
 - Double Chooz(v2014) at right

- Have several cores, not all at the same distance from the detector
- Energy deposited in detector is so low you can't possibly figure out original direction of neutrino
- Hard to determine backgrounds since reactors are always on (usually), signal rates very different between near and far detectors

Atmospheric Neutrinos

From Cosmic Rays to Neutrinos

What is known well

 v_{μ}/v_{e} ratio is calculated to an accuracy of about 2% below ~5GeV.

✓ v and anti-v ratios also accurately calculated.

M. Honda et al., PRD 83, 123001 (2011)

What else is known well: up/down

Zenith angle

Up/down ratio very close to 1.0 and accurately calculated (1% or better) above a few GeV.

Experimental Challenges with Atmospheric Fluxes

- Absolute rates are hard to predict
- Overall rates are low and steeply falling in energy
- Near equal mix of neutrino and antineutrino means CP violation measurement is near impossible
- Homework question: how might you be able to see matter effects using atmospheric neutrinos? Do you NEED a magnetic field in your detector?

Neutrinos from Accelerators

- Atmospheric Neutrino Beam:
 - High energy protons strike atmosphere
 - Pions and kaons are produced
 - Pions decay before they interact
 - Muons also decay

Conventional Neutrino Beam: very similar!

Example: NuMI beamline at Fermilab

Major Components:

- Proton Beam
- Pion Production Target
- Focusing System
- Decay Region
- Absorber
- Shielding...

Most v_{μ} 's from 2-body decays:

$$\pi^+\!\!\to\!\!\mu^+\!\nu_\mu$$

$$K^+ \rightarrow \mu^+ \nu_{\mu}$$

Most v_e 's from 3-body decays:

$$\mu^+ {\longrightarrow} \text{e}^+ \nu_e \nu_\mu$$

Proton beam Basics

Rules of Thumb

- number of pions produced is roughly a function of "proton power" (or total number of protons on target x proton energy)
- The higher energy v beam you want, the higher energy p you need

Proton Source	Experiment	Proton Energy (GeV)	p/yr	Power (MW)	Neutrino Energy (GeV)
KEK	K2K	12	$1 \times 10^{20}/4$	0.0052	1.4
FNAL Booster	MiniBooNE	8	5×10^{20}	0.05	1
FNAL Main Injector	MINOS and NOvA	120	3-6×10 ²⁰	0.3 to 0.7	3-17
CNGS	OPERA	400	0.45×10^{20}	0.48	25
J-PARC	T2K	40-50	11×10 ²⁰	0.25 to 0.75	0.77

Neutrino Production Targets

- Have to balance many competing needs:
 - The longer the target, the higher the probability the protons will interact
 - The longer the target, the more the produced particles will scatter
 - The more the protons interact, the hotter the target will get targeting above ~1MW not easy!
 - Rule of thumb: want target to be 3 times wider than +- 1 sigma of proton beam size

Ref: J.M.Paley, M.D.Messier, R.Raja et al, arXiv: 1404.5882

Hadron Production

- This is tricky stuff, hard to predict with theory alone
- Copious thin target measurements available, but neutrino targets are usually long
- NA61 data from CERN: thin and thick target data used for T2K analysis
- New this year: MIPP hadron production results (Fermilab), using same target as used for MINOS, and 120GeV protons (at right)

Focusing Systems

- Want to focus as many particles as possible for highest neutrino flux
- Typical transverse momentum of secondaries: approximately $\Lambda_{\rm QCD}$, or about 200MeV
- Minimize material in the way of the pions you've just produced
- What kinds of magnets are there?
 - Dipoles—no, they won't focus
 - Quadrupoles
 - done with High Energy neutrino beams
 - focus in vertical or horizontal, need pairs of them
 - they will focus negative and positive pions simultaneously

What focusing works best?

- Imagine particles flying out from a target:
 - When particle gets to front face of horn, it has transverse momentum proportional to radius at which it gets to horn

B Field from line source of current is

in the Φ direction

but has a size proportional to 1/r

How do you get around this? (hint: $\partial pt \propto B \times \partial l$)

What should the B field be?

- Make the particles at high radius go through a field for longer than the particles at low radius. (B \propto 1/r, but make dl \propto r²)
- Horn: a 2-layered sheet conductor
- No current inside inner conductor, no current outside outer conductor
- Between conductors, toroidal field proportional to 1/r

$$\delta p_t \approx \frac{e\mu_0 I}{2\pi cr} \times \frac{r^2 l}{r_{outer}^2} \approx p_{tune}\theta$$

Horn Photo Album

	Length (m)	Diameter (m)	# in beam
K2K	2.4,2.7	0.6,1.5	2
MBooNE	~1.7	~0.5	1
NuMI	3,3	0.3,0.7	2
CNGS	6.5m	0.7	2
T2K	1.4,2,2.5	.47,.9,1.4	3

Decay Regions

 How long a decay region you need (and how wide) depends on what the energy of the pions you're trying to focus.

• The longer the decay region, the more muon decays you'll get (per pion decay) and the larger ν_e contamination you'll have

• What is better: air, vacuum window, or Hefilled decay pipe? Does it depend on

energy?

	Length	Diameter
BNB	50m	1.8m
NuMI	675m	2m
CNGS	1000m	2.45m
T2K	130m	Up to 5.4m

Deborah Harris, Fermilab: Neutrino Experiments

Beamline Decay Pipe Comparison

Can show that neglecting things hitting the side of the decay pipe...

$$\frac{\Phi(\nu_e)}{\Phi(\nu_{\mu})} = \frac{Lm_{\mu}c}{E_{\pi}\tau_{\mu}} \left(\frac{1}{e^{y_{\pi}} - 1} + 1 - \frac{1}{y_{\pi}} \right)$$

 y_{π} =the number of pion lifetimes in one decay pipe...

$$y_{\pi} = \frac{Lm_{\pi}c^{2}}{E_{\pi}c\tau_{\pi}}$$

	Length	E_{π} (GeV)	y_{π}	y_{μ}	$\Phi(u_{ m e})/\Phi(u_{ m \mu})$ (theoretical)
BNB	50m	2.5	0.36	0.3%	0.15%
MINOS	675m	9	1.3	1.2%	0.8%
CNGS	1000m	50	0.36	0.3%	0.15%
T2K	130m	9	0.47	0.2%	0.10%

Off-Axis Technique

- 1-1 relationship between neutrino energy and pion energy+angle between neutrino and pion (derive)
- Off axis neutrino beams: aim pions and kaons AWAY from detector

9-11 July 2014

Experimental Challenges with Accelerator-based Neutrinos

Operations

- Target and horns must be robust
- Still working on a target that can survive 1MW beam power
- Composition
 - Can never make pure beam, always some contamination of anti-neutrinos or ν_e 's in what you designed as ν_μ beam
- Flux Predictions
 - Hadron production uncertainties still at the 5% level even with new data
 - Using different hadron shower models to predict flux gives even higher differences
 - Beamline optics can also introduce uncertainties
- Question: what are the advantages of a neutrino beam made of muon decays?

Neutrino Source Summary

Source	Flux	∨ Energy	Composition	Baseline	Matter Effects?
Sun	$6x10^{10} \text{ v/}$ cm ² /sec	0.1-10MeV	$v_e(v_2)$	10 ⁸ km	yes
Reactor	10 ²⁰ ν/ sec/GW	1-10MeV	Anti- $v_{\rm e}$	1-180km	Not yet
Atmosphere	1 v/cm²/ sec	0.1-10 ⁴ GeV	$ u_{\rm e}$ + $ u_{\mu}$ and anti-	80-10 ⁴ km	yes
Accelerator	6x10 ⁵ v/ cm ² /sec @1km*	0.1-100GeV	$ u_{\mu}$ +% $ u_{e}$ or anti- $ u_{\mu}$ +% $ u_{e}$	1-1000km	yes

^{*} NuMI beamline "low energy tune", on axis, currently x3 higher!

NEUTRINO INTERACTIONS

Thresholds and Processes

- We detect neutrino interactions only in the final state, and often with poor knowledge of the incoming neutrinos
- Creation of that final state may require energy to be transferred from the neutrino

- In charged-current reactions, where the final state lepton is charged, this lepton has mass
- The recoil may be a higher mass object than the initial state, or it may be in an excited state

Thresholds and Processes

Process	Considerations	Threshold (typical)
vN→vN (elastic)	Target nucleus is often free (recoil is very small)	none
v _e n→e⁻p	In some nuclei (mostly metastable ones), this reaction is exothermic if proton not ejected	None for free neutron some others.
ve→ve (elastic)	Most targets have atomic electrons	~ 10eV – 100 keV
anti-v _e p→e⁻n	$m_n > m_p \& m_e$. Typically more to make recoil from stable nucleus.	1.8 MeV (free p). More for nuclei.
v _e n→ℓ⁻p (quasielastic)	Final state nucleon is ejected from nucleus. Massive lepton	~ 10s MeV for v_e +~100 MeV for v_μ
$v_{\ell}N \rightarrow \ell^{-}X$ (inelastic)	Must create additional hadrons. Massive lepton.	~ 200 MeV for v_e +~100 MeV for v_μ

• Energy of neutrinos determines available reactions, and therefore experimental technique K. McFarland, INSS 2013

Why is the interaction so weak?

 Weak interactions are weak because of the massive W and Z bosons exchange

$$\frac{d\sigma}{dq^2} \propto \frac{1}{(q^2 - M^2)^2}$$

 $\frac{d\sigma}{dq^2} \propto \frac{1}{(q^2-M^2)^2}$ q is 4-momentum carried by exchange particle M is mass of exchange particle

At HERA see W and Z propagator effects - Also weak ~ EM strength

Explains dimensions of Fermi "constant"

$$G_F = \frac{\sqrt{2}}{8} \left(\frac{g_W}{M_W} \right)^2$$
$$= 1.166 \times 10^{-5} / GeV^2 \quad (g_W \approx 0.7)$$

Neutrino-Electron Scattering

Inverse μ-decay:

$$\nu_{\mu} + e^- \rightarrow \mu^- + \nu_e$$

Total spin J=0(Assuming massless muon, helicity=chirality)

$$Q^2 \equiv -\left(\underline{e} - \underline{v}_e\right)^2$$

$$\sigma_{TOT} \propto \int_{0}^{Q_{\text{max}}^{2}} \frac{1}{(Q^{2} + M_{W}^{2})^{2}}$$

$$\approx \frac{Q_{\text{max}}^{2}}{M_{W}^{4}}$$

Neutrino-Electron Scattering

$$\sigma_{TOT} \propto Q_{\text{max}}^2 = S$$

$$\sigma_{TOT} = \frac{G_F^2 S}{\pi}$$

$$= 17.2 \times 10^{-42} \, cm^2 \, / \, GeV \cdot E_v(GeV)$$

Why is it proportional to

beam energy?

$$S = (\underline{p}_{\nu_{\mu}} + \underline{p}_{e})^{2} = m_{e}^{2} + 2m_{e}E_{\nu} \text{ (e rest frame)}$$

- Proportionality to energy is a generic feature of point-like scattering!
 - because $d\sigma/dQ^2$ is constant (at these energies)

Neutrino Electron Elastic Scattering

Elastic scattering:

$$\nu_{\mu} + e^{-} \rightarrow \nu_{\mu} + e^{-}$$

- Recall, EW theory has coupling to left or righthanded electron
- Total spin, J=0,1
- Electron-Z⁰ coupling
 - Left-handed: $-1/2 + \sin^2\theta_W$

Z Couplings	g_L	g_R
ν_{e} , ν_{μ} , ν_{τ}	1/2	0
e , μ , $ au$	$-1/2 + \sin^2\theta_{\rm w}$	$\sin^2\!\! heta_{_{f W}}$
u, c , t	$1/2 - 2/3 \sin^2 \theta_{\rm W}$	$-2/3 \sin^2 \theta_{\rm w}$
d, s , b	$-1/2 + 1/3 \sin^2 \theta_{\rm W}$	$1/3 \sin^2 \theta_{\rm w}$

$$\sigma \propto \frac{G_F^2 S}{\pi} \left(\frac{1}{4} - \sin^2 \theta_W + \sin^4 \theta_W \right)$$

$$\sigma \propto \frac{G_F^2 S}{\pi} \left(\sin^4 \theta_W \right)$$

Neutrino Electron Scattering, cont'd

 What are relative contributions of scattering from left and right-handed electrons?

$$\frac{d\sigma}{d\cos\theta} = \text{const}$$

$$\frac{d\sigma}{d\cos\theta} = \text{const} \times \left(\frac{1 + \cos\theta}{2}\right)^2$$

What about v_e scattering off e's?

The reaction

$$v_{\mu} + e^{-} \rightarrow v_{\mu} + e^{-}$$

has a much smaller cross-section than

$$v_e + e^- \rightarrow v_e + e^-$$

$$v_e + e^- \rightarrow v_e + e^-$$

has a second contributing reaction, charged current

Muon Neutrino thresholds:

- Inverse muon decay:
 - Need enough energy to create a final state muon
 - Question: how much energy do you need for this process?

What about other targets?

- Imagine now a proton target
 - Neutrino-proton elastic scattering:

$$v_e + p \rightarrow v_e + p$$

- "Inverse beta-decay" (IBD): anti- $v_e + p \rightarrow e^+ + n$

– and "stimulated" beta decay:

$$v_e + n \rightarrow e^- + p$$

- IBD was the Reines and Cowan discovery signal
- Cross section much higher
 - Think of what s is here

Final State Mass Effects

- In IBD, $v_e + p \rightarrow e^+ + n$, have to pay a mass penalty twice
 - $-M_n$ - M_p ≈1.3 MeV, M_e ≈0.5 MeV
- What is the threshold?
 - kinematics are simple, at least to zeroth order in M_e/M_n → heavy nucleon kinetic energy is zero

$$S_{\text{initial}} = (\underline{p}_v + \underline{p}_p)^2 = M_p^2 + 2M_p E_v \text{ (proton rest frame)}$$

$$S_{\text{final}} = (\underline{p}_e + \underline{p}_n)^2 \approx M_n^2 + m_e^2 + 2M_n \left(E_v - \left(M_n - M_p \right) \right)$$

- Solving... $E_{v}^{\text{min}} \approx \frac{\left(M_n + m_e\right)^2 M_p^2}{2M_n} \approx 1.806 \text{ MeV}$
- What is threshold for neutrino analog?

K. McFarland, INSS 2013

W

Neutrino-Nucleon Scattering

- Charged Current: W[±] exchange
 - Quasi-elastic Scattering: (Target changes but no break up) $v_{\mu} + n \rightarrow \mu^{-} + p$
 - Nuclear Resonance Production: (Target goes to excited state) $\nu_{\mu} + n \rightarrow \mu^{-} + p + \pi^{0} \quad (N^{*} \text{ or } \Delta)$ $n + \pi^{+}$
 - Deep-Inelastic Scattering: (Nucleon broken up) v_{μ} + quark $\rightarrow \mu^{-}$ + quark'

- Neutral Current: Z⁰ exchange
 - Elastic Scattering: (Target unchanged) $v_u + N \rightarrow v_u + N$
 - Nuclear Resonance Production: (Target goes to excited state) $\nu_{\mu} + N \rightarrow \nu_{\mu} + N + \pi \quad (N^* \text{ or } \Delta)$
 - Deep-Inelastic Scattering (Nucleon broken up) $v_u + quark \rightarrow v_u + quark$

Scattering off Nuclei

 The fundamental theory allows a complete calculation of neutrino scattering from quarks

But those quarks are in nucleons
 (PDFs), and those nucleons are in
 a strongly interacting tangle

 Imagine calculating the excitations of a pile of coupled springs. Very hard in general.

To be discussed in 3rd lecture...

Summary for Neutrino Interactions

- Total cross section proportional to neutrino energy
- Angular dependence because of v helicity and conservation of spin
 - Consequence: Neutrinos have higher cross section than anti-neutrinos
- v-e scattering is the ONLY perfectly known cross section
 - Everything else is more complicated: NEED BETTER THEORY PREDICTIONS!
- The higher the v energy, the more final state particles produced
 - Those particles can produce backgrounds to your oscillation analysis!

Source	ν Energy	Composition	Reactions
Sun	0.1-10MeV	$v_e(v_2)$	$\nu\text{-e}$ or CCQE
Reactor	0.1-10MeV	Anti- $v_{\rm e}$	CCQE
Atmosphere	0.1-1000GeV	ν_e + ν_μ	CCQE+RES +DIS
Accelerator	0.1-100GeV	$ u_{\mu}$ +% $ u_{e}$ or anti- $ u_{\mu}$ +% $ u_{e}$	CCQE+RES +DIS

Questions from Lecture

- Given the luminosity of the sun, how long would the sun last if it was simply burning chemical energy instead of nuclear energy? (assume sun is 2x10³⁰kg)
- How might you be able to see matter effects using atmospheric neutrinos? Do you NEED a magnetic field in your detector? (students on INO or PINGU should answer a different question...)
- What is better: air, vacuum window, or He-filled decay pipe? Does it depend on pion energy? (recall multiple scattering formula)
- Derive the relationship between the neutrino energy and the pion energy and angle between neutrino and pion
- What is threshold for $v_e + n -> e^- + p$?
 - Hint: where do you find neutrons?
 - What about for v_{μ} ?
 - What about for v_{τ} ?