Neutrino Data Analysis

Invisibles 14 School

Thomas Schwetz-Mangold

centre

8-13 July 2014, Chateau de Button, France

Global data on neutrino oscillations Debbie Harris' lecture

various neutrino sources and vastly different energy and distance scales:

Homestake,SAGE,GALLEX SuperK, SNO, Borexino

KamLAND, CHOOZ
atmosphere accelerators

SuperKamiokande

K2K, MINOS, T2K

- global data fits nicely with the 3 neutrinos from the SM
- for this lecture I will ignore "anomalies" (at 2-3 σ) which do not fit the 3-flavour picture: LSND, MiniBooNE, reactor anomaly, no LMA MSW up-turn of solar neutrino spectrum

3-flavour oscillation parameters

$$
\begin{aligned}
&\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right) \\
& U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & e^{-i \delta} s_{13} \\
0 & 1 & 0 \\
-e^{i \delta} s_{13} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

3-flavour oscillation parameters

$$
\begin{aligned}
& \left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right) \\
& \Delta m_{31}^{2} \\
& U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right) \quad\left(\begin{array}{ccc}
c_{13} & 0 & e^{-i \delta} s_{13} \\
0 & 1 & 0 \\
-e^{i \delta} s_{13} & 0 & c_{13}
\end{array}\right) \quad\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \text { atm }+\mathrm{LBL} \text { (dis) react+LBL(app) } \\
& \text { solar+KamLAND }
\end{aligned}
$$

3-flavour effects are suppressed: $\Delta m_{21}^{2} \ll \Delta m_{31}^{2}$ and $\theta_{13} \ll 1\left(U_{e 3}=s_{13} e^{-i \delta}\right)$
\Rightarrow CP-violation is suppressed by θ_{13}
\Rightarrow dominant oscillations are well described by effective two-flavour oscillations
\Rightarrow present data requires already to go beyond two-flavour description

Neutrino mass states and mixing

3-flavour oscillation parameters, ranges at $1 \sigma(3 \sigma)$ NuFit $1.3\left[\theta_{i j}, \delta_{\mathrm{CP}}\right.$ in $\left.{ }^{\circ}\right]$

$$
\begin{aligned}
& \Delta m_{21}^{2}=7.5 \pm 0.18\binom{+0.56}{-0.47} \times 10^{-5} \mathrm{eV}^{2} \quad \theta_{12}=33.5_{-0.74}^{+0.77}\binom{+2.4}{-2.2} \\
& \Delta m_{31}^{2}(\mathrm{~N})=2.46_{-0.05}^{+0.05}\left({ }_{-0.14}^{+0.14}\right) \times 10^{-3} \mathrm{eV}^{2} \quad \theta_{23}=\left\{\begin{array}{c}
(\mathrm{N}) 42.1_{-1.5}^{+3.2}\binom{+3.7}{+11.1} \\
(\mathrm{I}) 49.4_{-2.0}^{+1.6}\left(\begin{array}{c}
+11.0
\end{array}\right)
\end{array}\right. \\
& \left|\Delta m_{32}^{2}\right|(\mathrm{I})=2.49_{-0.05}^{+0.05}\binom{+0.14}{-0.14} \times 10^{-3} \mathrm{eV}^{2} \quad \theta_{13}=8.5_{-0.17}^{+0.19}\left(\begin{array}{l}
+0.5
\end{array}\right) \\
& \delta_{\mathrm{CP}}=\left\{\begin{aligned}
(\mathrm{N}) 300_{-45}^{+45} & \binom{+600}{-600} \\
(\mathrm{I}) 251_{-59}^{+67} & \left(\begin{array}{l}
+251
\end{array}\right)
\end{aligned}\right.
\end{aligned}
$$

Global 3-flavour fit

These lectures

- mention some features of global fits of present and (a bit of) upcoming data
- discuss technical issues of how to do such type of analyses
- statistics techniques (complementary to Glen Cowan's lecture)
- oriented towards practice in context of neutrino data fitting
- recommend to look up relevant parts in Glen's lecture and make contact
- build on lectures by Debbie Harris and Renata Zukanovich-Funchal

Outline

Analysis of present oscillation data and beyond Degeneracies

Event rates in oscillation experiments
Reactor experiments
More complicated situations
Building the χ^{2}
Systematical errors in χ^{2} analyses
Using the χ^{2}
Sensitivity of future experiments

Outline

Analysis of present oscillation data and beyond Degeneracies

Event rates in oscillation experiments
 Reactor experiments
 More complicated situations

Building the χ^{2}
Systematical errors in χ^{2} analyses
Using the χ^{2}
Sensitivity of future experiments

Global 3-flavour fit

- very robust determination of
- $\Delta m_{21}^{2}, \theta_{12}$: solar, KamLAND
- θ_{13} : Daya Bay, RENO, DoubleC

mbiguity in sign of $\Delta m_{31}^{2}\left(\Delta \chi^{2} \approx 1\right)$ \rightarrow mass ordering ("hierarchy") θ_{23} : rather broad allowed range non-significant indications about non-maximality/octant results of other groups
\rightarrow slight preference for $\delta_{\mathrm{CP}} \sim-\pi / 2$ T2K $\nu_{\mu} \rightarrow \nu_{e}+$ Daya Bay not significant yet!

Global 3-flavour fit

- very robust determination of
- $\Delta m_{21}^{2}, \theta_{12}$: solar, KamLAND
- θ_{13} : Daya Bay, RENO, DoubleC
- ambiguity in sign of $\Delta m_{31}^{2}\left(\Delta \chi^{2} \approx 1\right)$ \rightarrow mass ordering ("hierarchy")
$\rightarrow \theta_{23}$: rather broad allowed range non-significant indications about non-maximality/octant results of other groups
> slight preference for $\delta_{\mathrm{CP}} \sim-\pi / 2$

Global 3-flavour fit

- very robust determination of
- $\Delta m_{21}^{2}, \theta_{12}$: solar, KamLAND
- θ_{13} : Daya Bay, RENO, DoubleC
- ambiguity in sign of $\Delta m_{31}^{2}\left(\Delta \chi^{2} \approx 1\right)$ \rightarrow mass ordering ("hierarchy")
- θ_{23} : rather broad allowed range non-significant indications about non-maximality/octant results of other groups differ slightly Capozzi et al., 1312.2878
Forero et al. 1405.7540
- slight preference for $\delta_{\mathrm{CP}} \sim-\pi / 2$ T2K $\nu_{\mu} \rightarrow \nu_{e}+$ Daya Bay not significant yet!

Global 3-flavour fit

- ambiguity in sign of $\Delta m_{31}^{2}\left(\Delta \chi^{2} \approx 1\right)$
\rightarrow mass ordering ("hierarchy")
$-\theta_{23}$: rather broad allowed range
non-significant indications about
θ_{23} : rather broad allowed range
non-significant indications about non-maximality/octant results of other groups differ slightly Capozzi et al., 1312.2878
Forero et al. 1405.7540
- slight preference for $\delta_{\mathrm{CP}} \sim-\pi / 2$ T2K $\nu_{\mu} \rightarrow \nu_{e}+$ Daya Bay not significant yet!
- very robust determination of
- $\Delta m_{21}^{2}, \theta_{12}$: solar, KamLAND
- θ_{13} : Daya Bay, RENO, DoubleC

The LBL appearance oscillation probability:

$$
\begin{aligned}
P_{\mu e} & \simeq \sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \frac{\sin ^{2}(1-A) \Delta}{(1-A)^{2}} \\
& +\sin 2 \theta_{13} \hat{\alpha} \sin 2 \theta_{23} \frac{\sin (1-A) \Delta \sin A \Delta}{1-A} \frac{\cos \left(\Delta+\delta_{\mathrm{CP}}\right)}{A} \\
& +\hat{\alpha}^{2} \cos ^{2} \theta_{23} \frac{\sin ^{2} A \Delta}{A^{2}}
\end{aligned}
$$

with

$$
\Delta \equiv \frac{\Delta m_{31}^{2} L}{4 E_{\nu}}, \quad \hat{\alpha} \equiv \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \sin 2 \theta_{12}, \quad A \equiv \frac{2 E_{\nu} V}{\Delta m_{31}^{2}}
$$

anti- $\nu: \delta_{\mathrm{CP}} \rightarrow-\delta_{\mathrm{CP}}, A \rightarrow-A, \quad P_{e \mu}: \delta_{\mathrm{CP}} \rightarrow-\delta_{\mathrm{CP}}$
other mass ordering: $\Delta \rightarrow-\Delta, A \rightarrow-A, \hat{\alpha} \rightarrow-\hat{\alpha}$

The LBL appearance oscillation probability:

$$
\begin{aligned}
P_{\mu e} & \simeq \sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \frac{\sin ^{2}(1-A) \Delta}{(1-A)^{2}} \\
& +\sin 2 \theta_{13} \hat{\alpha} \sin 2 \theta_{23} \frac{\sin (1-A) \Delta}{1-A} \frac{\sin A \Delta}{A} \cos \left(\Delta+\delta_{\mathrm{CP}}\right) \\
& +\hat{\alpha}^{2} \cos ^{2} \theta_{23} \frac{\sin ^{2} A \Delta}{A^{2}}
\end{aligned}
$$

with

$$
\Delta \equiv \frac{\Delta m_{31}^{2} L}{4 E_{\nu}}, \quad \hat{\alpha} \equiv \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \sin 2 \theta_{12}, \quad A \equiv \frac{2 E_{\nu} V}{\Delta m_{31}^{2}}
$$

anti- $\nu: \delta_{\mathrm{CP}} \rightarrow-\delta_{\mathrm{CP}}, A \rightarrow-A, \quad P_{e \mu}: \delta_{\mathrm{CP}} \rightarrow-\delta_{\mathrm{CP}}$
other mass ordering: $\Delta \rightarrow-\Delta, A \rightarrow-A, \hat{\alpha} \rightarrow-\hat{\alpha}$
ν_{e} disappearance at $L \sim 1 \mathrm{~km}$:

$$
P_{e e}=1-\sin ^{2} 2 \theta_{13} \sin ^{2} \Delta+\mathcal{O}\left(\alpha^{2}\right)
$$

Combining T2K/MINOS appearance with θ_{13} reactors

Degeneracies

Suppose that the true osc. params. in nature are

$$
\hat{\boldsymbol{\theta}}=\left(\Delta \hat{m}_{21}^{2}, \Delta \hat{m}_{31}^{2}, \hat{\theta}_{12}, \hat{\theta}_{23}, \hat{\theta}_{13}, \hat{\delta}_{\mathrm{CP}}\right)
$$

A $\nu_{\mu} \rightarrow \nu_{e}$ appearance experiment will observe a number of events \hat{N} corresponding to the probability $\hat{P}_{\mu e}=P_{\mu e}(\hat{\boldsymbol{\theta}})$

For fixed \hat{N} there are other values of $\theta_{13} \neq \hat{\theta}_{13}$ and $\delta_{\mathrm{CP}} \neq \hat{\delta}_{\mathrm{CP}}$, which lead to the same osc. probability:

$$
\hat{P}_{\mu e}=P_{\mu e}\left(\theta_{13}, \delta_{\mathrm{CP}}\right)
$$

and similar for anti-neutrinos:

Degeneracies

Suppose that the true osc. params. in nature are

$$
\hat{\boldsymbol{\theta}}=\left(\Delta \hat{m}_{21}^{2}, \Delta \hat{m}_{31}^{2}, \hat{\theta}_{12}, \hat{\theta}_{23}, \hat{\theta}_{13}, \hat{\delta}_{\mathrm{CP}}\right)
$$

A $\nu_{\mu} \rightarrow \nu_{e}$ appearance experiment will observe a number of events \hat{N} corresponding to the probability $\hat{P}_{\mu e}=P_{\mu e}(\hat{\boldsymbol{\theta}})$

For fixed \hat{N} there are other values of $\theta_{13} \neq \hat{\theta}_{13}$ and $\delta_{\mathrm{CP}} \neq \hat{\delta}_{\mathrm{CP}}$, which lead to the same osc. probability:

$$
\hat{P}_{\mu e}=P_{\mu e}\left(\theta_{13}, \delta_{\mathrm{CP}}\right)
$$

and similar for anti-neutrinos:
$\hat{P}_{\mu e}=\bar{P}_{\mu e}\left(\theta_{13}, \delta_{\mathrm{CP}}\right)$

Degeneracies

Suppose that the true osc. params. in nature are

$$
\hat{\boldsymbol{\theta}}=\left(\Delta \hat{m}_{21}^{2}, \Delta \hat{m}_{31}^{2}, \hat{\theta}_{12}, \hat{\theta}_{23}, \hat{\theta}_{13}, \hat{\delta}_{\mathrm{CP}}\right)
$$

A $\nu_{\mu} \rightarrow \nu_{e}$ appearance experiment will observe a number of events \hat{N} corresponding to the probability $\hat{P}_{\mu e}=P_{\mu e}(\hat{\boldsymbol{\theta}})$

For fixed \hat{N} there are other values of $\theta_{13} \neq \hat{\theta}_{13}$ and $\delta_{\mathrm{CP}} \neq \hat{\delta}_{\mathrm{CP}}$, which lead to the same osc. probability:

$$
\hat{P}_{\mu e}=P_{\mu e}\left(\theta_{13}, \delta_{\mathrm{CP}}\right)
$$

and similar for anti-neutrinos:

$$
\hat{\bar{P}}_{\mu e}=\bar{P}_{\mu e}\left(\theta_{13}, \delta_{\mathrm{CP}}\right)
$$

"Intrinsic" degeneracy

numerical example ("historical" plots, note θ_{13} value):
Contours of $\mathrm{P}=\mathrm{P}_{\text {true }}$ for

"Intrinsic" degeneracy

numerical example ("historical" plots, note θ_{13} value):
Contours of $\mathrm{P}=\mathrm{P}_{\text {true }}$ for

$$
\begin{aligned}
& \Delta \hat{m}_{21}^{2}=7.9 \times 10^{-5} \mathrm{eV}^{2} \\
& \Delta \hat{m}_{31}^{2}=2.5 \times 10^{-3} \mathrm{eV}^{2} \\
& \sin ^{2} \hat{\theta}_{12}=0.3 \\
& \sin ^{2} \hat{\theta}_{23}=0.4 \\
& \sin ^{2} 2 \hat{\theta}_{13}=0.02 \\
& \hat{\delta}_{\mathrm{CP}}=36^{\circ} \\
& E_{\nu}=2.2 \mathrm{GeV} \\
& L=812 \mathrm{~km} \\
& (\mathbf{N O} \nu \mathbf{A})
\end{aligned}
$$

"Intrinsic" degeneracy

numerical example ("historical" plots, note θ_{13} value):
Contours of $\mathrm{P}=\mathrm{P}_{\text {true }}$ for

$$
\begin{aligned}
& \Delta \hat{m}_{21}^{2}=7.9 \times 10^{-5} \mathrm{eV}^{2} \\
& \Delta \hat{m}_{31}^{2}=2.5 \times 10^{-3} \mathrm{eV}^{2} \\
& \sin ^{2} \hat{\theta}_{12}=0.3 \\
& \sin ^{2} \hat{\theta}_{23}=0.4 \\
& \sin ^{2} 2 \hat{\theta}_{13}=0.02 \\
& \hat{\delta}_{\mathrm{CP}}=36^{\circ} \\
& E_{\nu}=2.2 \mathrm{GeV} \\
& L=812 \mathrm{~km} \\
& (\mathbf{N O} \nu \mathbf{A})
\end{aligned}
$$

Sign Δm_{31}^{2} degeneracy Minakata, Nunokawa, JHEP 10 (2001) 001

Exercise: show that the oscillation probability $P_{\mu e}$ in vaccum is invariant under the transformation

$$
\Delta m_{31}^{2} \rightarrow-\Delta m_{31}^{2}, \quad \delta_{\mathrm{CP}} \rightarrow \pi-\delta_{\mathrm{CP}}
$$

for small matter effect $(A \ll 1)$ the linear order in A cannot break the degeneracy \rightarrow need to enter the regime of "strong" matter effect $A \sim 1$, i.e., observe the resonance
\square

Sign Δm_{31}^{2} degeneracy Minakata, Nunokawa, JHEP 10 (2001) 001

Exercise: show that the oscillation probability $P_{\mu e}$ in vaccum is invariant under the transformation

$$
\Delta m_{31}^{2} \rightarrow-\Delta m_{31}^{2}, \quad \delta_{\mathrm{CP}} \rightarrow \pi-\delta_{\mathrm{CP}}
$$

for small matter effect $(A \ll 1)$ the linear order in A cannot break the degeneracy \rightarrow need to enter the regime of "strong" matter effect $A \sim 1$, i.e., observe the resonance
(see Schwetz, hep-ph/0703279)

Sign Δm_{31}^{2} degeneracy

Octant degeneracy Fogli, Lisi, PRD54 (1996) 3667

θ_{23} is determined dominantly from ν_{μ} disappearance experiments (SK-atmospheric, T2K, MINOS)

0th approximation: $\quad P_{\mu \mu} \approx 1-\sin ^{2} 2 \theta_{23} \sin ^{2} \frac{\Delta m_{\mathrm{atm}}^{2} L}{4 E}$
\rightarrow degeneracy between $\sin ^{2} \theta_{23}$ and $\left(1-\sin ^{2} \theta_{23}\right)$

Octant degeneracy Fogli, Lisi, PRD54 (1996) 3667

θ_{23} is determined dominantly from ν_{μ} disappearance experiments (SK-atmospheric, T2K, MINOS)

$$
\text { Oth approximation: } \quad P_{\mu \mu} \approx 1-\sin ^{2} 2 \theta_{23} \sin ^{2} \frac{\Delta m_{\mathrm{atm}}^{2} L}{4 E}
$$

\rightarrow degeneracy between $\sin ^{2} \theta_{23}$ and $\left(1-\sin ^{2} \theta_{23}\right)$
better approximation:

$$
P_{\mu \mu} \approx 1-4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right) \sin ^{2} \frac{\Delta m_{\mathrm{atm}}^{2} L}{4 E} \quad\left|U_{\mu 3}\right|^{2}=\sin ^{2} \theta_{23} \cos ^{2} \theta_{13}
$$

\rightarrow degeneracy between $\sin ^{2} \theta_{23}$ and $\left(\frac{1}{\cos ^{2} \theta_{13}}-\sin ^{2} \theta_{23}\right)$

$$
\frac{1}{\cos ^{2} \theta_{13}} \approx 1.02
$$

Octant degeneracy Fogli, Lisi, PRD54 (1996) 3667

θ_{23} is determined dominantly from ν_{μ} disappearance experiments (SK-atmospheric, T2K, MINOS)

$$
\text { Oth approximation: } \quad P_{\mu \mu} \approx 1-\sin ^{2} 2 \theta_{23} \sin ^{2} \frac{\Delta m_{\mathrm{atm}}^{2} L}{4 E}
$$

\rightarrow degeneracy between $\sin ^{2} \theta_{23}$ and $\left(1-\sin ^{2} \theta_{23}\right)$
BUT: appearance probability depends on θ_{23} in a non-symmetric way:

$$
\begin{aligned}
P_{\mu e} & \simeq \sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \frac{\sin ^{2}(1-A) \Delta}{(1-A)^{2}} \\
& +\sin 2 \theta_{13} \hat{\alpha} \sin 2 \theta_{23} \frac{\sin (1-A) \Delta \sin A \Delta}{1-A} \frac{\cos \left(\Delta+\delta_{\mathrm{CP}}\right)}{A}
\end{aligned}
$$

The eight-fold degeneracy Barger, Marfatia, Whisnant, PRD 02

The eight-fold degeneracy Barger, Marfatia, Whisnant, PRD 02

- ambiguities in determination of θ_{13} and δ_{CP}
- can involve an ambiguity between CP conserving and CP violating values of δ_{CP}
$-\operatorname{sign}\left(\Delta m_{31}^{2}\right)$ is not determined (neutrino mass ordering)
- the octant of θ_{23} is not determined

Resolving the degeneracies

several possibilities to resolve the degeneracies are known:

- combining information from detectors at different baselines
- using additional oscillation chanels $\left(\nu_{e} \rightarrow \nu_{\tau}\right)$
- spectral information (wide band beam)
- adding information on θ_{13} from a reactor experiment
- adding information from (Mt scale) atmospheric neutrino experiments

Resolving the degeneracies

several possibilities to resolve the degeneracies are known:

- combining information from detectors at different baselines
- using additional oscillation chanels $\left(\nu_{e} \rightarrow \nu_{\tau}\right)$
- spectral information (wide band beam)
- adding information on θ_{13} from a reactor experiment
- adding information from (Mt scale) atmospheric neutrino experiments
... many of them work quite well for large θ_{13} !

Octant degeneracy - beams versus reactor

Fogli, Lisi, 96; Minakata, Sugiyama, Yasuda, Inoue, Suekane, 02; ...

fix θ_{13} by a reactor experiment and use an appearance experiment to determine the octant of θ_{23}

$$
\begin{aligned}
P_{\mu e} & \simeq \sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \frac{\sin ^{2}(1-A) \Delta}{(1-A)^{2}} \\
& +\sin 2 \theta_{13} \hat{\alpha} \sin 2 \theta_{23} \frac{\sin (1-A) \Delta \sin A \Delta}{1-A} \frac{\cos \left(\Delta+\delta_{\mathrm{CP}}\right)}{A}
\end{aligned}
$$

Combining T2K/MINOS appearance with θ_{13} reactors

Combining T2K/MINOS appearance with θ_{13} reactors

NuFIT 1.3 (2014)

Octant degeneracy - simulated data

T2K + NOvA

T2K + NOvA + Daya Bay

Huber, Lindner, Schwetz, Winter, 0907.1896

Determination of the mass ordering

- matter effect in the 13-sector: resonance condition for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations:

$$
A \equiv \pm \frac{2 E V}{\Delta m_{31}^{2}}=\cos 2 \theta_{13} \approx 1
$$

can be fulfilled for
neutrinos if $\Delta m_{31}^{2}>0$ (normal ordering)
anti-neutrinos if $\Delta m_{31}^{2}<0$ (inverted ordering)

- Long-baseline experiment ($L \gtrsim 1000 \mathrm{~km}$): NOvA, LBNE, LBNO
- Atmospheric neutrinos: HyperK, INO, PINGU, ORCA
- Interference effect between Δm_{21}^{2} and Δm_{31}^{2}
reactor experiment with $L \sim 50 \mathrm{~km}$: JUNO, RENO50

Determination of the mass ordering

- matter effect in the 13-sector: resonance condition for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations:

$$
A \equiv \pm \frac{2 E V}{\Delta m_{31}^{2}}=\cos 2 \theta_{13} \approx 1
$$

can be fulfilled for
neutrinos if $\Delta m_{31}^{2}>0$ (normal ordering)
anti-neutrinos if $\Delta m_{31}^{2}<0$ (inverted ordering)

- Long-baseline experiment ($L \gtrsim 1000 \mathrm{~km}$): NOvA, LBNE, LBNO
- Atmospheric neutrinos: HyperK, INO, PINGU, ORCA
- Interference effect between Δm_{21}^{2} and Δm_{31}^{2} reactor experiment with $L \sim 50 \mathrm{~km}$: JUNO, RENO50

Determination of the mass ordering

- matter effect in the 13-sector: resonance condition for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations:

$$
A \equiv \pm \frac{2 E V}{\Delta m_{31}^{2}}=\cos 2 \theta_{13} \approx 1
$$

can be fulfilled for
neutrinos if $\Delta m_{31}^{2}>0$ (normal ordering)
anti-neutrinos if $\Delta m_{31}^{2}<0$ (inverted ordering)

- Long-baseline experiment ($L \gtrsim 1000 \mathrm{~km}$): NOvA, LBNE, LBNO
- Atmospheric neutrinos: HyperK, INO, PINGU, ORCA
- Interference effect between Δm_{21}^{2} and Δm_{31}^{2} reactor experiment with $L \sim 50 \mathrm{~km}$: JUNO, RENO50

(see my talk at the workshop next week)

Degeneracies 2014

after Daya Bay θ_{13} is no longer a "free" parameter the relevant degrees of freedom are θ_{23} and δ_{CP} times $\operatorname{sign}\left(\Delta m_{31}^{2}\right)$ Minakata, Parke 1303.6178; Coloma, Minakata, Parke 1406.2551

Degeneracies 2014

after Daya Bay θ_{13} is no longer a "free" parameter the relevant degrees of freedom are θ_{23} and δ_{CP} times $\operatorname{sign}\left(\Delta m_{31}^{2}\right)$ Minakata, Parke 1303.6178; Coloma, Minakata, Parke 1406.2551

Degeneracies 2014
after Daya Bay θ_{13} is no longer a "free" parameter the relevant degrees of freedom are θ_{23} and δ_{CP} times $\operatorname{sign}\left(\Delta m_{31}^{2}\right)$ Minakata, Parke 1303.6178; Coloma, Minakata, Parke 1406.2551

How to analyze data from neutrino oscillation experiments

Basic steps towards an analysis

- Suppose a given experiment divides the range of observation into N bins. The outcome is reported in number of observed events in each bin n_{i}. (Expect Poisson distribution for the number of events in each bin.)
- For given oscillation parameters

$$
\theta=\left(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{\mathrm{CP}}, \Delta m_{21}^{2}, \Delta m_{31}^{2}\right) \quad(P=6)
$$

we can predict the expected number of events per bin $\mu_{i}(\theta)$.

- Build a χ^{2}, e.g. (more details later):

- Use $\chi^{2}(\theta)$ to perform a statistical analysis

Basic steps towards an analysis

- Suppose a given experiment divides the range of observation into N bins.

The outcome is reported in number of observed events in each bin n_{i}. (Expect Poisson distribution for the number of events in each bin.)

- For given oscillation parameters

$$
\boldsymbol{\theta}=\left(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{\mathrm{CP}}, \Delta m_{21}^{2}, \Delta m_{31}^{2}\right) \quad(P=6)
$$

we can predict the expected number of events per bin $\mu_{i}(\boldsymbol{\theta})$.

- Build a χ^{2}, e.g. (more details later):

- Use $\chi^{2}(\theta)$ to perform a statistical analysis

Basic steps towards an analysis

- Suppose a given experiment divides the range of observation into N bins.

The outcome is reported in number of observed events in each bin n_{i}. (Expect Poisson distribution for the number of events in each bin.)

- For given oscillation parameters

$$
\boldsymbol{\theta}=\left(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{\mathrm{CP}}, \Delta m_{21}^{2}, \Delta m_{31}^{2}\right) \quad(P=6)
$$

we can predict the expected number of events per bin $\mu_{i}(\boldsymbol{\theta})$.

- Build a χ^{2}, e.g. (more details later):

$$
\chi^{2}(\boldsymbol{\theta})=\sum_{i=1}^{N}\left[\frac{\mu_{i}(\boldsymbol{\theta})-n_{i}}{\sigma_{i}}\right]^{2}
$$

- Use $\chi^{2}(\theta)$ to perform a statistical analysis

Outline

Analysis of present oscillation data and beyond

 DegeneraciesEvent rates in oscillation experiments
Reactor experiments
More complicated situations
Building the χ^{2}
Systematical errors in χ^{2} analyses
Using the χ^{2}
Sensitivity of future experiments

Event rates in oscillation experiments

number of events in a $\nu_{\alpha} \rightarrow \nu_{\beta}$ oscillation experiment:

$$
N(\boldsymbol{\theta})=T \mathcal{N} \int d E_{\nu} \phi_{\nu_{\alpha}}\left(E_{\nu}\right) P_{\alpha \beta}\left(E_{\nu} ; \boldsymbol{\theta}\right) \sigma_{\nu_{\beta}}\left(E_{\nu}\right)
$$

T

\mathcal{N}
$\phi_{\nu_{\alpha}}$
$P_{\alpha \beta} \quad \nu_{\alpha} \rightarrow \nu_{\beta}$ oscillation probability
$\sigma_{\nu_{\beta}}$ detection cross section of neutrino ν_{β}

Event rates in oscillation experiments

number of events in a $\nu_{\alpha} \rightarrow \nu_{\beta}$ oscillation experiment:

$$
N(\boldsymbol{\theta})=T \mathcal{N} \int d E_{\nu} \phi_{\nu_{\alpha}}\left(E_{\nu}\right) P_{\alpha \beta}\left(E_{\nu} ; \theta\right) \sigma_{\nu_{\beta}}\left(E_{\nu}\right)
$$

- in more realistic situations we need to take into account the characteristics of the particular experiment
- consider in more detail the actual observables
- typically it will involve more integrals Ex.: atmospheric neutrinos: integrate also over zenith angle, production height in atmosphere,

Example: Reactor experiments

- source of $\bar{\nu}_{e}$ with few $\mathrm{MeV} \rightarrow \bar{\nu}_{e}$ disappearance
- detection reaction: inverse beta-decay

$$
\bar{\nu}_{e}+p \rightarrow n+e^{+}
$$

observe positron and neutron in coincedence

- visible energy:

$$
\begin{aligned}
& E_{\mathrm{vis}} \approx E_{\mathrm{kin}}^{e^{+}}+2 m_{e}=E_{\nu}-\left(m_{n}-m_{p}\right)+m_{e}+\mathcal{O}\left(E_{\nu}^{2} / m_{n}\right) \\
& E_{\mathrm{vis}} \approx E_{\nu}-0.8 \mathrm{MeV}
\end{aligned}
$$

\rightarrow one-to-one relation between E_{vis} and E_{ν}

- accurate spectral information: number of inverse beta-decay events binned in visible energy

Ex.: DoubleChooz energy spectrum 1406.7763

Number of events per bin

ideal experiment:

$$
N_{i}(\boldsymbol{\theta})=T \mathcal{N} \int_{E_{\mathrm{vis}}^{\text {low }, i}}^{E_{\mathrm{vis}}^{\text {Lp,i}}} d E_{\nu} \phi\left(E_{\nu}\right) P_{e e}\left(E_{\nu} ; \boldsymbol{\theta}\right) \sigma\left(E_{\nu}\right) \quad E_{\nu} \approx E_{\mathrm{vis}}+0.8 \mathrm{MeV}
$$

Number of events per bin

ideal experiment:

$$
N_{i}(\boldsymbol{\theta})=T \mathcal{N} \int_{E_{\mathrm{vis}} \mathrm{low}, i}^{E_{\mathrm{vis}}^{u p, i}} d E_{\nu} \phi\left(E_{\nu}\right) P_{e e}\left(E_{\nu} ; \boldsymbol{\theta}\right) \sigma\left(E_{\nu}\right) \quad E_{\nu} \approx E_{\mathrm{vis}}+0.8 \mathrm{MeV}
$$

BUT: need to take into account energy resolution: a "true" $E_{\text {vis }}^{\text {true }}$ is reconstructed as $E_{\text {vis }}$ with a certain probability distribution $R\left(E_{\mathrm{vis}}, E_{\mathrm{vis}}^{\text {true }}\right)$

$$
\begin{aligned}
N_{i}(\boldsymbol{\theta}) & =T \mathcal{N} \int_{E_{\mathrm{vis}}^{\text {low }, i}}^{E_{\mathrm{vvi}}^{u p, i}} d E_{\mathrm{vis}} \int d E_{\nu} \phi\left(E_{\nu}\right) P_{e e}\left(E_{\nu} ; \boldsymbol{\theta}\right) \sigma\left(E_{\nu}\right) R\left(E_{\mathrm{vis}}, E_{\mathrm{vis}}^{\text {true }}\right) \\
E_{\nu} & \approx E_{\mathrm{vis}}^{\text {true }}+0.8 \mathrm{MeV}
\end{aligned}
$$

can write this as

$$
\begin{aligned}
N_{i}(\boldsymbol{\theta}) & =T \mathcal{N} \int d E_{\nu} \phi\left(E_{\nu}\right) P_{e e}\left(E_{\nu} ; \boldsymbol{\theta}\right) \sigma\left(E_{\nu}\right) R_{i}\left(E_{\nu}\right) \\
R_{i}\left(E_{\nu}\right) & \equiv \int_{E_{\mathrm{vis}}^{\text {low }, i}}^{E_{\mathrm{vvi}}^{\text {lp,i }}} d E_{\mathrm{vis}} R\left(E_{\mathrm{vis}}, E_{\mathrm{vis}}^{\text {true }}\right) \quad E_{\nu} \approx E_{\mathrm{vis}}^{\text {true }}+0.8 \mathrm{MeV}
\end{aligned}
$$

can write this as

$$
\begin{aligned}
N_{i}(\boldsymbol{\theta}) & =T \mathcal{N} \int d E_{\nu} \phi\left(E_{\nu}\right) P_{e e}\left(E_{\nu} ; \boldsymbol{\theta}\right) \sigma\left(E_{\nu}\right) R_{i}\left(E_{\nu}\right) \\
R_{i}\left(E_{\nu}\right) & \equiv \int_{E_{\mathrm{vis}}^{\text {low } i}}^{E_{\mathrm{vis}}^{\mu \mathrm{p}, i}} d E_{\mathrm{vis}} R\left(E_{\mathrm{vis}}, E_{\mathrm{vis}}^{\text {true }}\right) \quad E_{\nu} \approx E_{\mathrm{vis}}^{\text {true }}+0.8 \mathrm{MeV}
\end{aligned}
$$

often it is a good approximation to assume a Gaussian resolution function:

$$
\begin{gathered}
R\left(E_{\mathrm{vis}}, E_{\mathrm{vis}}^{\text {true }}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{\left(E_{\mathrm{vis}}-E_{\mathrm{vis}}^{\text {true }}\right)^{2}}{2 \sigma^{2}}\right] \quad \sigma=\sigma\left(E_{\mathrm{vis}}^{\text {true }}\right) \\
R_{i}\left(E_{\nu}\right)=\frac{1}{2}\left[\operatorname{erf}\left(\frac{E_{\mathrm{vis}}^{\text {tp }, i}-E_{\mathrm{vis}}^{\text {true }}}{\sqrt{2} \sigma}\right)-\operatorname{erf}\left(\frac{E_{\mathrm{vis}}^{\text {tow }, i}-E_{\mathrm{vis}}^{\text {true }}}{\sqrt{2} \sigma}\right)\right]
\end{gathered}
$$

can write this as

$$
\begin{aligned}
N_{i}(\boldsymbol{\theta}) & =T \mathcal{N} \int d E_{\nu} \phi\left(E_{\nu}\right) P_{e e}\left(E_{\nu} ; \boldsymbol{\theta}\right) \sigma\left(E_{\nu}\right) R_{i}\left(E_{\nu}\right) \\
R_{i}\left(E_{\nu}\right) & \equiv \int_{E_{\mathrm{vis}}^{\text {low }, i}}^{E_{\mathrm{vvis}}^{u p, i}} d E_{\mathrm{vis}} R\left(E_{\mathrm{vis}}, E_{\mathrm{vis}}^{\text {true }}\right) \quad E_{\nu} \approx E_{\mathrm{vis}}^{\text {true }}+0.8 \mathrm{MeV}
\end{aligned}
$$

to compare with observation add expected background in each bin:

$$
\mu_{i}(\boldsymbol{\theta})=N_{i}(\boldsymbol{\theta})+B_{i}
$$

\rightarrow can be used to build χ^{2}, for example:

$$
\chi^{2}(\boldsymbol{\theta})=\sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-n_{i}\right]^{2}}{n_{i}}
$$

includes only statistical errors \rightarrow on systematics see later

Example: long-baseline experiment

- consider a $\nu_{\mu} \rightarrow \nu_{e}$ appearance experiment with $E_{\nu} \sim 1 \mathrm{GeV}$ (e.g., T2K, NOvA)
- detection reaction: $\nu_{e}+N \rightarrow e+X$ significant energy is carried away by hadronic scattering products X

Example: long-baseline experiment

- consider a $\nu_{\mu} \rightarrow \nu_{e}$ appearance experiment with $E_{\nu} \sim 1 \mathrm{GeV}$ (e.g., T2K, NOvA)
- detection reaction: $\nu_{e}+N \rightarrow e+X$ significant energy is carried away by hadronic scattering products X
assume only electron is observed and events are binned in electron energy

$$
N_{i}(\boldsymbol{\theta})=T \mathcal{N} \int d E_{\nu} \phi\left(E_{\nu}\right) P_{\mu e}\left(E_{\nu} ; \boldsymbol{\theta}\right) \int_{E_{e}^{\text {low }, i}}^{E_{e}^{\text {Lp, }, i}} d E_{e} \frac{d \sigma}{d E_{e}}\left(E_{\nu}\right)
$$

\rightarrow double integral even before including resolution function

Example: long-baseline experiment

- consider a $\nu_{\mu} \rightarrow \nu_{e}$ appearance experiment with $E_{\nu} \sim 1 \mathrm{GeV}$ (e.g., T2K, NOvA)
- detection reaction: $\nu_{e}+N \rightarrow e+X$ significant energy is carried away by hadronic scattering products X
some detectors can use info on X to reconstruct $E_{\nu} \rightarrow$ bins in $E_{\nu}^{\text {rec }}$ may require complicated cuts introducing energy dependent efficiences,...

Detector response function - migration matrix

$$
N_{i}(\theta)=T \mathcal{N} \int d E_{\nu} \phi\left(E_{\nu}\right) P_{\mu e}\left(E_{\nu} ; \theta\right) \sigma\left(E_{\nu}\right) \mathcal{R}_{i}\left(E_{\nu}\right)
$$

$\mathcal{R}_{i}\left(E_{\nu}\right)$: detector response function

- describes the probability that an event with neutrino energy E_{ν} is reconstructed in the bin i
- the bins may label any observable (e.g., lepton energy, reconstr. neutrino energy, ...)
- $\mathcal{R}_{i}\left(E_{\nu}\right)$ can include many effects related to the detector (energy resolution, energy dep. efficiencies, differential cross sections, ...)
- if the integral over true neutrino energy is discretized $\mathcal{R}_{i}\left(E_{\nu}\right)$ becomes a matrix $\mathcal{R}_{i j} \rightarrow$ "migration matrix"

Detector response function - migration matrix

$$
N_{i}(\theta)=T \mathcal{N} \int d E_{\nu} \phi\left(E_{\nu}\right) P_{\mu e}\left(E_{\nu} ; \theta\right) \sigma\left(E_{\nu}\right) \mathcal{R}_{i}\left(E_{\nu}\right)
$$

$\mathcal{R}_{i}\left(E_{\nu}\right)$: detector response function
can be conveniently done with the GLoBES software package Huber, Lindner, Winter, hep-ph/0407333; Huber et al., hep-ph/0701187 http://www.mpi-hd.mpg.de/lin/globes/

Example: atmospheric neutrinos

consider an experiment observing muons induced by atmospheric neutrinos (e.g., INO):

$$
\begin{aligned}
N_{i j}(\boldsymbol{\theta})=T \mathcal{N} & \int d E_{\nu} \int d \Omega \sigma\left(E_{\nu}\right) \mathcal{R}_{i j}\left(E_{\nu}, \Omega\right) \times \\
& {\left[\phi_{\mu}\left(E_{\nu}, \Omega\right) P_{\mu \mu}\left(E_{\nu}, \Omega ; \boldsymbol{\theta}\right)+\phi_{e}\left(E_{\nu}, \Omega\right) P_{e \mu}\left(E_{\nu}, \Omega ; \boldsymbol{\theta}\right)\right] }
\end{aligned}
$$

i	bin in muon energy
j	bin in muon zenith angle
$\phi_{\alpha}\left(E_{\nu}, \Omega\right)$	flux of ν_{α} with given E_{ν} and solid angle Ω

$\mathcal{R}_{i j}\left(E_{\nu}, \Omega\right)$: probability to reconstruct muon from a neutrino with energy E_{ν} coming from a solid angle Ω into the muon bin ij (includes double differential cross section)
(still simplified in several respects....)

Outline

Analysis of present oscillation data and beyond

 Degeneracies
Event rates in oscillation experiments Reactor experiments More complicated situations

Building the χ^{2}
Systematical errors in χ^{2} analyses
Using the χ^{2}
Sensitivity of future experiments

- Can define:

$$
\chi^{2}=\sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-n_{i}\right]^{2}}{\mu_{i}(\boldsymbol{\theta})} \text { or } \sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-n_{i}\right]^{2}}{n_{i}}
$$

- If the number of events is small in some bins ("Poisson $\chi^{2 "}$):

- If statistical errors include the ones from a subtracted background:

- If there is correlation between bins:

- Can define:

$$
\chi^{2}=\sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-n_{i}\right]^{2}}{\mu_{i}(\boldsymbol{\theta})} \text { or } \sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-n_{i}\right]^{2}}{n_{i}}
$$

- If the number of events is small in some bins ("Poisson $\chi^{2 "}$):

$$
\chi^{2}=2 \sum_{i=1}^{N}\left[\mu_{i}(\boldsymbol{\theta})-n_{i}+n_{i} \log \frac{n_{i}}{\mu_{i}(\boldsymbol{\theta})}\right]
$$

- If statistical errors include the ones from a subtracted background:

- If there is correlation between bins:

- Can define:

$$
\chi^{2}=\sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-n_{i}\right]^{2}}{\mu_{i}(\boldsymbol{\theta})} \quad \text { or } \quad \sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-n_{i}\right]^{2}}{n_{i}}
$$

- If the number of events is small in some bins ("Poisson $\chi^{2 "}$):

$$
\chi^{2}=2 \sum_{i=1}^{N}\left[\mu_{i}(\boldsymbol{\theta})-n_{i}+n_{i} \log \frac{n_{i}}{\mu_{i}(\boldsymbol{\theta})}\right]
$$

- If statistical errors include the ones from a subtracted background:

$$
\chi^{2}=\sum_{i=1}^{N}\left[\frac{\mu_{i}(\boldsymbol{\theta})-n_{i}}{\sigma_{i}}\right]^{2}
$$

- If there is correlation between bins:
- Can define:

$$
\chi^{2}=\sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-n_{i}\right]^{2}}{\mu_{i}(\boldsymbol{\theta})} \quad \text { or } \quad \sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-n_{i}\right]^{2}}{n_{i}}
$$

- If the number of events is small in some bins ("Poisson $\chi^{2 "}$):

$$
\chi^{2}=2 \sum_{i=1}^{N}\left[\mu_{i}(\boldsymbol{\theta})-n_{i}+n_{i} \log \frac{n_{i}}{\mu_{i}(\boldsymbol{\theta})}\right]
$$

- If statistical errors include the ones from a subtracted background:

$$
\chi^{2}=\sum_{i=1}^{N}\left[\frac{\mu_{i}(\boldsymbol{\theta})-n_{i}}{\sigma_{i}}\right]^{2}
$$

- If there is correlation between bins:

$$
\chi^{2}=\sum_{i, j=1}^{N}\left[\mu_{i}(\boldsymbol{\theta})-n_{i}\right] V_{i j}^{-1}\left[\mu_{j}(\boldsymbol{\theta})-n_{j}\right]
$$

Systematic uncertainties

Assume we have N experimental data points n_{i} with statistical error σ_{i} and theoretical predictions μ_{i} for each of the data points:

$$
\chi^{2}=\sum_{i=1}^{N} \frac{\left(\mu_{i}-n_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

$\mu_{i}(\theta)$ depends on the parameters of the model θ.

Consider the situation that μ_{i} depends also on additional parameters ξ, describing systematical uncertainties ("nuisance parameters"): $\mu_{i}(\theta, \xi)$

We may have some knowledge on ξ : mean values $\left\langle\xi_{\alpha}\right\rangle=\hat{\xi}_{\alpha}$ and uncertainty σ_{α}^{ξ}

Example

$$
\begin{aligned}
\mu_{i}(\theta) & =\xi_{1}\left(\xi_{2} N_{i}(\theta)+\xi_{3} B_{i}\right) & & \xi_{\alpha}=1 \pm x_{\alpha} \% \\
& \approx\left(1+\delta_{1}+\delta_{2}\right) N_{i}(\theta)+\left(1+\delta_{1}+\delta_{3}\right) B_{i} & & \delta_{\alpha}=\xi_{\alpha}-1
\end{aligned}
$$

ξ_{1} overall detector normalization
ξ_{2} overall signal normalization (e.g., flux uncertainty)
ξ_{3} background normalization
can be generalized to more complicated systematics, including energy dependent uncertainties (shape), energy scale,...

Example

$$
\begin{aligned}
\mu_{i}(\theta) & =\xi_{1}\left(\xi_{2} N_{i}(\theta)+\xi_{3} B_{i}\right) & & \xi_{\alpha}=1 \pm x_{\alpha} \\
& \approx\left(1+\delta_{1}+\delta_{2}\right) N_{i}(\theta)+\left(1+\delta_{1}+\delta_{3}\right) B_{i} & & \delta_{\alpha}=\xi_{\alpha}-1
\end{aligned}
$$

ξ_{1} overall detector normalization
ξ_{2} overall signal normalization (e.g., flux uncertainty)
ξ_{3} background normalization
can be generalized to more complicated systematics, including energy dependent uncertainties (shape), energy scale,...

Consider ξ at the same level as θ and add info to χ^{2}

$$
\begin{aligned}
\chi^{2}(\theta, \xi) & =\sum_{i=1}^{N} \frac{\left[\mu_{i}(\theta, \xi)-n_{i}\right]^{2}}{\sigma_{i}^{2}}+\sum_{\alpha} \frac{\left(\xi_{\alpha}-\hat{\xi}_{\alpha}\right)^{2}}{\left(\sigma_{\alpha}^{\xi}\right)^{2}} \\
\chi^{2}(\theta) & =\min _{\xi} \chi^{2}(\theta, \xi)
\end{aligned}
$$

$\chi^{2}(\theta)$ is distributed as usual with $N=(N-P)+P$ dof

Consider ξ at the same level as θ and add info to χ^{2}

$$
\begin{aligned}
\chi^{2}(\theta, \xi) & =\sum_{i=1}^{N} \frac{\left[\mu_{i}(\theta, \xi)-n_{i}\right]^{2}}{\sigma_{i}^{2}}+\sum_{\alpha} \frac{\left(\xi_{\alpha}-\hat{\xi}_{\alpha}\right)^{2}}{\left(\sigma_{\alpha}^{\xi}\right)^{2}} \\
\chi^{2}(\theta) & =\min _{\xi} \chi^{2}(\theta, \xi)
\end{aligned}
$$

$\chi^{2}(\theta)$ is distributed as usual with $N=(N-P)+P$ dof no conceptual issue also for $P \gtrsim N$

Linearize the problem

$$
\mu_{i}(\theta, \xi) \approx \mu_{i}(\theta, \hat{\xi})+\sum_{\alpha} \frac{\partial \mu_{i}}{\partial \xi_{\alpha}}\left(\xi_{\alpha}-\hat{\xi}_{\alpha}\right)
$$

define: $\quad \mu_{i}(\theta, \hat{\xi}) \equiv \hat{\mu}_{i}(\theta), \quad \xi_{\alpha}^{\prime} \equiv \frac{\xi_{\alpha}-\hat{\xi}_{\alpha}}{\sigma_{\alpha}^{\xi}}, \quad R_{i \alpha} \equiv \sigma_{\alpha}^{\xi} \frac{\partial \mu_{i}}{\partial \xi_{\alpha}}$

$$
\chi^{2}\left(\theta, \xi^{\prime}\right)=\sum_{i} \frac{\left[\hat{\mu}_{i}(\theta)+\sum_{\alpha} R_{i \alpha} \xi_{\alpha}^{\prime}-n_{i}\right]^{2}}{\sigma_{i}^{2}}+\sum_{\alpha} \xi_{\alpha}^{\prime 2}
$$

$\chi^{2}\left(\theta, \xi^{\prime}\right)$ is quadratic in $\xi^{\prime} \Rightarrow \frac{\partial \chi^{2}}{\partial \xi_{\alpha}}=0$ is a linear system of equations \Rightarrow solve the system to obtain $\xi_{\text {min }}$ and obtain $\chi^{2}(\theta)=\chi^{2}\left(\theta, \xi_{\text {min }}\right)$

Linearize the problem

$$
\mu_{i}(\theta, \xi) \approx \mu_{i}(\theta, \hat{\xi})+\sum_{\alpha} \frac{\partial \mu_{i}}{\partial \xi_{\alpha}}\left(\xi_{\alpha}-\hat{\xi}_{\alpha}\right)
$$

define: $\quad \mu_{i}(\theta, \hat{\xi}) \equiv \hat{\mu}_{i}(\theta), \quad \xi_{\alpha}^{\prime} \equiv \frac{\xi_{\alpha}-\hat{\xi}_{\alpha}}{\sigma_{\alpha}^{\xi}}, \quad R_{i \alpha} \equiv \sigma_{\alpha}^{\xi} \frac{\partial \mu_{i}}{\partial \xi_{\alpha}}$

$$
\chi^{2}\left(\theta, \xi^{\prime}\right)=\sum_{i} \frac{\left[\hat{\mu}_{i}(\theta)+\sum_{\alpha} R_{i \alpha} \xi_{\alpha}^{\prime}-n_{i}\right]^{2}}{\sigma_{i}^{2}}+\sum_{\alpha} \xi_{\alpha}^{\prime 2}
$$

$\chi^{2}\left(\theta, \xi^{\prime}\right)$ is quadratic in $\xi^{\prime} \Rightarrow \frac{\partial \chi^{2}}{\partial \xi_{\alpha}}=0$ is a linear system of equations \Rightarrow solve the system to obtain $\xi_{\text {min }}$ and obtain $\chi^{2}(\theta)=\chi^{2}\left(\theta, \xi_{\text {min }}\right)$

- this proceedure works fine if $\xi_{\alpha}^{\prime} \lesssim 1$ and $\left(R \xi^{\prime}\right)_{i} \ll \mu_{i}$
- if $\left(R \xi^{\prime}\right)_{i} \sim \mu_{i}$, the prediction can become negative

Equivalence of pull and covariance approaches

- "pull" approach:

$$
\chi_{\text {pull }}^{2}(\theta)=\min _{\xi} \chi^{2}(\theta, \xi)
$$

- "covariance" approach:

$$
\begin{aligned}
V_{i j} & =\sum_{\alpha} \frac{\partial \mu_{i}}{\partial \xi_{\alpha}} \frac{\partial \mu_{j}}{\partial \xi_{\alpha}}\left(\sigma_{\alpha}^{\xi}\right)^{2}=\sum_{\alpha} R_{i \alpha} R_{j \alpha} \\
\chi_{\mathrm{cov}}^{2}(\theta) & =\sum_{i j}\left[\hat{\mu}_{i}(\theta)-n_{i}\right]^{T} S_{i j}^{-1}\left[\hat{\mu}_{j}(\theta)-n_{j}\right] \quad \text { with } \quad S_{i j} \equiv \sigma_{i}^{2} \delta_{i j}+V_{i j}
\end{aligned}
$$

Equivalence of pull and covariance approaches

- "pull" approach:

$$
\chi_{\text {pull }}^{2}(\theta)=\min _{\xi} \chi^{2}(\theta, \xi)
$$

- "covariance" approach:

$$
\begin{aligned}
V_{i j} & =\sum_{\alpha} \frac{\partial \mu_{i}}{\partial \xi_{\alpha}} \frac{\partial \mu_{j}}{\partial \xi_{\alpha}}\left(\sigma_{\alpha}^{\xi}\right)^{2}=\sum_{\alpha} R_{i \alpha} R_{j \alpha} \\
\chi_{\mathrm{cov}}^{2}(\theta) & =\sum_{i j}\left[\hat{\mu}_{i}(\theta)-n_{i}\right]^{T} S_{i j}^{-1}\left[\hat{\mu}_{j}(\theta)-n_{j}\right] \quad \text { with } \quad S_{i j} \equiv \sigma_{i}^{2} \delta_{i j}+V_{i j}
\end{aligned}
$$

Exercise: proof that $\chi_{\text {pull }}^{2}(\theta) \equiv \chi_{\text {cov }}^{2}(\theta)$
Fogli, Lisi, Marrone, Montanino, Palazzo, PRD02 [hep-ph/0206162]

Simple example

Consider the case of a single systematic describing an over-all normalization uncertainty

$$
\begin{gathered}
\chi^{2}(\theta, \xi)=\sum_{i}\left[\frac{\mu_{i}(\theta)(1+\xi)-n_{i}}{\sigma_{i}}\right]^{2}+\left(\frac{\xi}{\sigma_{\xi}}\right)^{2} \\
R_{i}=\mu_{i}(\theta)
\end{gathered}
$$

covariance matrix for the covariance method: $S_{i j}=\delta_{i j} \sigma_{i}^{2}+\mu_{i} \mu_{j} \sigma_{\xi}^{2}$

Simple example

Consider the case of a single systematic describing an over-all normalization uncertainty

$$
\begin{gathered}
\chi^{2}(\theta, \xi)=\sum_{i}\left[\frac{\mu_{i}(\theta)(1+\xi)-n_{i}}{\sigma_{i}}\right]^{2}+\left(\frac{\xi}{\sigma_{\xi}}\right)^{2} \\
R_{i}=\mu_{i}(\theta)
\end{gathered}
$$

covariance matrix for the covariance method: $S_{i j}=\delta_{i j} \sigma_{i}^{2}+\mu_{i} \mu_{j} \sigma_{\xi}^{2}$

Exercise:

- minimize the χ^{2} and calculate $\xi_{\text {min }}$ and $\chi^{2}\left(\theta, \xi_{\text {min }}\right)$
- consider the same systematic using the Poisson χ^{2} (check that your solution makes sense!)

Simple example

Consider the case of a single systematic describing an over-all normalization uncertainty

$$
\begin{gathered}
\chi^{2}(\theta, \xi)=\sum_{i}\left[\frac{\mu_{i}(\theta)(1+\xi)-n_{i}}{\sigma_{i}}\right]^{2}+\left(\frac{\xi}{\sigma_{\xi}}\right)^{2} \\
R_{i}=\mu_{i}(\theta)
\end{gathered}
$$

covariance matrix for the covariance method: $S_{i j}=\delta_{i j} \sigma_{i}^{2}+\mu_{i} \mu_{j} \sigma_{\xi}^{2}$
for $\sigma_{\xi} \rightarrow \infty$ this corresponds to a shape-only analysis (free normalization)
exactly this method has been used recently by the Daya Bay collaboration for their analysis based on near-far comparison

Real-life example Daya Bay 1203.1669

The value of $\sin ^{2} 2 \theta_{13}$ was determined with a χ^{2} constructed with pull terms accounting for the correlation of the systematic errors [28],

$$
\begin{align*}
\chi^{2} & =\sum_{d=1}^{6} \frac{\left[M_{d}-T_{d}\left(1+\varepsilon+\sum_{r} \omega_{r}^{d} \alpha_{r}+\varepsilon_{d}\right)+\eta_{d}\right]^{2}}{M_{d}+B_{d}} \\
& +\sum_{r} \frac{\alpha_{r}^{2}}{\sigma_{r}^{2}}+\sum_{d=1}^{6}\left(\frac{\varepsilon_{d}^{2}}{\sigma_{d}^{2}}+\frac{\eta_{d}^{2}}{\sigma_{B}^{2}}\right) \tag{2}
\end{align*}
$$

where M_{d} are the measured IBD events of the d-th AD with backgrounds subtracted, B_{d} is the corresponding background, T_{d} is the prediction from neutrino flux, MC , and neutrino oscillations [29], ω_{r}^{d} is the fraction of IBD contribution of the r th reactor to the d-th AD determined by baselines and reactor fluxes. The uncertainties are listed in Table III. The uncorrelated reactor uncertainty is $\sigma_{r}(0.8 \%), \sigma_{d}(0.2 \%)$ is the uncorrelated detection uncertainty, and σ_{B} is the background uncertainty listed in Table II. The corresponding pull parameters are $\left(\alpha_{r}, \varepsilon_{d}, \eta_{d}\right)$. The detector- and reactor-related correlated

Real-life example Daya Bay 1203.1669

Exercise: study the χ^{2} used in the Daya Bay paper

The value of $\sin ^{2} 2 \theta_{13}$ was determined with a χ^{2} constructed with pull terms accounting for the correlation of the systematic errors [28],

$$
\begin{align*}
\chi^{2} & =\sum_{d=1}^{6} \frac{\left[M_{d}-T_{d}\left(1+\varepsilon+\sum_{r} \omega_{r}^{d} \alpha_{r}+\varepsilon_{d}\right)+\eta_{d}\right]^{2}}{M_{d}+B_{d}} \\
& +\sum_{r} \frac{\alpha_{r}^{2}}{\sigma_{r}^{2}}+\sum_{d=1}^{6}\left(\frac{\varepsilon_{d}^{2}}{\sigma_{d}^{2}}+\frac{\eta_{d}^{2}}{\sigma_{B}^{2}}\right) \tag{2}
\end{align*}
$$

where M_{d} are the measured IBD events of the d-th AD with backgrounds subtracted, B_{d} is the corresponding background, T_{d} is the prediction from neutrino flux, MC , and neutrino oscillations [29], ω_{r}^{d} is the fraction of IBD contribution of the r th reactor to the d-th AD determined by baselines and reactor fluxes. The uncertainties are listed in Table III. The uncorrelated reactor uncertainty is $\sigma_{r}(0.8 \%), \sigma_{d}(0.2 \%)$ is the uncorrelated detection uncertainty, and σ_{B} is the background uncertainty listed in Table II. The corresponding pull parameters

Pull versus covariance approaches

- Pull approach requires to solve a linear system of equations of dimension P (number of pulls)
- Covariance approach requires to invert the $N \times N$ covariance matrix (N number of bins)
- Depending on whether N is larger or smaller than P one or the other method may be preferred (often $P \ll N$)
- Pull method allows for more diagnostics of the fit, e.g.
- look at $\xi_{\alpha m i n}$ to identify a systematic with large "pull"
\rightarrow look at contours of θ versus ξ to identify correlations between systematics and parameters

Pull versus covariance approaches

- Pull approach requires to solve a linear system of equations of dimension P (number of pulls)
- Covariance approach requires to invert the $N \times N$ covariance matrix (N number of bins)
- Depending on whether N is larger or smaller than P one or the other method may be preferred (often $P \ll N$)
- Pull method allows for more diagnostics of the fit, e.g.:
- look at $\xi_{\alpha \text { min }}$ to identify a systematic with large "pull",
- look at contours of θ versus ξ to identify correlations between systematics and parameters

Example for "pull diagram" from solar neutrino fit

Correlations between reactor flux normalization and θ_{13}

Poisson χ^{2}

The pull method can be generalized to the Poissonian form of the χ^{2} which should be used in case of small event numbers per bin:

$$
\chi^{2}\left(\theta, \xi_{\alpha}\right)=2 \sum_{i=1}^{N}\left[\mu_{i}\left(\theta, \xi_{\alpha}\right)-n_{i}+n_{i} \log \frac{n_{i}}{\mu_{i}\left(\theta, \xi_{\alpha}\right)}\right]+\sum_{\alpha} \xi_{\alpha}^{2}
$$

- allows to introduce correlated errors in the Poisson χ^{2}
- $\mu(\theta, \xi)$ can still be linearized in ξ, but the χ^{2} will no longer be a quadratic function in $\xi \Rightarrow$ have to use numerical or semi-analytic methods to do the minimization

Comments - 1

- straight forward to generalize to correlated data and/or pulls:

$$
\begin{aligned}
\chi^{2}(\theta, \xi) & =\sum_{i, j=1}^{N}\left[\mu_{i}(\theta, \xi)-n_{i}\right] V_{i j}^{-1}\left[\mu_{j}(\theta, \xi)-n_{j}\right] \\
& +\sum_{\alpha, \beta}\left(\xi_{\alpha}-\hat{\xi}_{\alpha}\right) W_{\alpha \beta}^{-1}\left(\xi_{\beta}-\hat{\xi}_{\beta}\right)
\end{aligned}
$$

- can also be applied in the framework of likelihood analysis

$\mathcal{L}_{\text {nuis }}(\xi)$ contains all information we have on the nuisance parameters
If $\mathcal{L}(\theta, \xi)$ and/or $\mathcal{L}_{\text {nuis }}(\xi)$ are "complicated" the minimization
(maximization) has to be done numerically.

Comments - 1

- straight forward to generalize to correlated data and/or pulls:

$$
\begin{aligned}
\chi^{2}(\theta, \xi) & =\sum_{i, j=1}^{N}\left[\mu_{i}(\theta, \xi)-n_{i}\right] V_{i j}^{-1}\left[\mu_{j}(\theta, \xi)-n_{j}\right] \\
& +\sum_{\alpha, \beta}\left(\xi_{\alpha}-\hat{\xi}_{\alpha}\right) W_{\alpha \beta}^{-1}\left(\xi_{\beta}-\hat{\xi}_{\beta}\right)
\end{aligned}
$$

- can also be applied in the framework of likelihood analysis

$$
\begin{aligned}
\mathcal{L}(\theta, \xi) & =\mathcal{L}_{\text {data }}(\theta, \xi) \times \mathcal{L}_{\text {nuis }}(\xi) \\
\mathcal{L}(\theta) & =\max _{\xi} \mathcal{L}(\theta, \xi)
\end{aligned}
$$

$\mathcal{L}_{\text {nuis }}(\xi)$ contains all information we have on the nuisance parameters If $\mathcal{L}(\theta, \xi)$ and/or $\mathcal{L}_{\text {nuis }}(\xi)$ are "complicated" the minimization (maximization) has to be done numerically.

Comments - 2

- The methods discussed here for the treatment of systematic erros assume that systematic uncertainties are of statistical nature. Their effects on the analysis are encoded by assuming some random distribution for them (often Gaussian).
- Sometimes these assumptions are justified e.g. When the origin of the uncertainty is some measurment (e.g., normalization uncertainty)
- Sometimes these assumntions are not justified in case of true "theoretical uncertainties" (e.g. nuclear matrix elements for neutrino-less double-beta decay)
\Rightarrow Freauentist internretation in the strict sense is not clear
> pull method fits very natural in Bayesian framework

Comments - 2

- The methods discussed here for the treatment of systematic erros assume that systematic uncertainties are of statistical nature. Their effects on the analysis are encoded by assuming some random distribution for them (often Gaussian).
- Sometimes these assumptions are justified e.g. when the origin of the uncertainty is some measurment (e.g., normalization uncertainty).
- Sometimes these assumptions are not justified, in case of true "theoretical uncertainties" (e.g. nuclear matrix elements for neutrino-less double-beta decay).
> - Frequentist interpretation in the strict sense is not clear - pull method fits very natural in Bayesian framework

Comments - 2

- The methods discussed here for the treatment of systematic erros assume that systematic uncertainties are of statistical nature. Their effects on the analysis are encoded by assuming some random distribution for them (often Gaussian).
- Sometimes these assumptions are justified e.g. when the origin of the uncertainty is some measurment (e.g., normalization uncertainty).
- Sometimes these assumptions are not justified, in case of true "theoretical uncertainties" (e.g. nuclear matrix elements for neutrino-less double-beta decay).
- Frequentist interpretation in the strict sense is not clear
pull method fits very natural in Bayesian framework

Comments - 2

- The methods discussed here for the treatment of systematic erros assume that systematic uncertainties are of statistical nature. Their effects on the analysis are encoded by assuming some random distribution for them (often Gaussian).
- Sometimes these assumptions are justified e.g. when the origin of the uncertainty is some measurment (e.g., normalization uncertainty).
- Sometimes these assumptions are not justified, in case of true "theoretical uncertainties" (e.g. nuclear matrix elements for neutrino-less double-beta decay).
- Frequentist interpretation in the strict sense is not clear
- pull method fits very natural in Bayesian framework:

$$
\begin{aligned}
\mathcal{L}(\theta, \xi)=\mathcal{L}_{\text {data }}(\theta, \xi) \times \mathcal{L}_{\text {nuis }}(\xi) & \rightarrow \\
f(\theta, \xi)=\mathcal{L}_{\text {data }}(\theta, \xi) \pi(\theta) \pi(\xi) & \rightarrow \quad f(\theta)=\int d \xi f(\theta, \xi)
\end{aligned}
$$

Referenzes on pull method in neutrino context

- in the context of solar neutrinos
G. L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Phys. Rev. D 66 (2002) 053010 [hep-ph/0206162]
- in the context of short-baseline oscillation experiments
T. Schwetz, PhD thesis, Univ. Vienna 2002, see appendix A, available at http://www.cern.ch/schwetz
- in the context of SuperKamiokande atmospheric neutrinos
M. C. Gonzalez-Garcia and M. Maltoni, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800], see appendix A
- in the context of future long-baseline oscillation experiment simulation
P. Huber, M. Mezzetto and T. Schwetz, JHEP 0803 (2008) 021 [arXiv:0711.2950]

Outline

```
Analysis of present oscillation data and beyond
    Degeneracies
Event rates in oscillation experiments
        Reactor experiments
    More complicated situations
Building the }\mp@subsup{\chi}{}{2
    Systematical errors in }\mp@subsup{\chi}{}{2}\mathrm{ analyses
Using the }\mp@subsup{\chi}{}{2
Sensitivity of future experiments
```

Using the χ^{2}
in the " χ^{2} appoximation":

$$
\begin{array}{lccc}
\hline \chi^{2}(\boldsymbol{\theta})= & \chi_{\min }^{2}(\hat{\boldsymbol{\theta}}) & + & \Delta \chi^{2}(\boldsymbol{\theta}) \\
N & N-P & P \\
& & \begin{array}{c}
\text { parameter estimation, } \\
\text { goodness of fit }
\end{array} & \\
& & \text { confidence int }
\end{array}
$$

- The parameter values $\hat{\theta}_{\alpha}$ which minimize the χ^{2} (usually called "best fit values") are estimators of the "true values".
- $\chi_{\text {min }}^{2}$ follows a χ^{2}-distribution with $N-P$ d.o.f. and can be used to evaluate the goodness of fit.
- The $\Delta \chi^{2}$ relative to the minimum follows a χ^{2}-distribution with P d.o.f. and can be used to determine confidence intervalls (or regions) for the parameters $\boldsymbol{\theta}$.

Confidence regions from $\Delta \chi^{2}$

A P-dimensional region in the space $\boldsymbol{\theta}$ at given CL is obtained by requiring $\Delta \chi^{2}(\theta)<X(C L)$ (contours in $\Delta \chi^{2}$)

d.o.f. $\backslash \mathrm{CL}$	$68 \%(1 \sigma)$	90%	$95 \%(2 \sigma)$	99%	$99.73 \%(3 \sigma)$
1	1	2.71	4	6.64	9
2	2.28	4.61	5.99	9.21	11.8
3	3.51	6.25	7.82	11.4	14.2

Confidence regions from $\Delta \chi^{2}$

Suppose you want to show regions at a $\mathrm{CL} \beta$ for p parameters x, and you are not interested in $q=P-p$ parameters y :

- use p d.o.f. and minimize wrt to y :
"the p-dimensional region for x, irrespective of the values of y "
- use p d.o.f. and fix y to some values:
"the p-dimensional region for x, assuming some true values of y "
- use P d.o.f. and show a projection of the P-dimensional volume onto the p-dimensional x-space. (This is not a β CL region for $x!$)

Confidence regions from $\Delta \chi^{2}$

Suppose you want to show regions at a $\mathrm{CL} \beta$ for p parameters x, and you are not interested in $q=P-p$ parameters y :

- use p d.o.f. and minimize wrt to y :
"the p-dimensional region for x, irrespective of the values of y "
- use p d.o.f. and fix y to some values:
"the p-dimensional region for x, assuming some true values of y "
- use P d.o.f. and show a projection of the P-dimensional volume onto the p-dimensional x-space. (This is not a $\beta \mathrm{CL}$ region for x !)

Confidence regions from $\Delta \chi^{2}$

Suppose you want to show regions at a $\mathrm{CL} \beta$ for p parameters x, and you are not interested in $q=P-p$ parameters y :

- use p d.o.f. and minimize wrt to y :
"the p-dimensional region for x, irrespective of the values of y "
- use p d.o.f. and fix y to some values:
"the p-dimensional region for x, assuming some true values of y "
- use P d.o.f. and show a projection of the P-dimensional volume onto the p-dimensional x-space. (This is not a β CL region for x !)

Confidence regions from $\Delta \chi^{2}$

Suppose you want to show regions at a $\mathrm{CL} \beta$ for p parameters x, and you are not interested in $q=P-p$ parameters y [note: $\boldsymbol{\theta}=(x, y)$]:

- use p d.o.f. and minimize wrt to y :
"the p-dimensional region for x, irrespective of the values of y "

$$
\begin{array}{lccc}
\chi^{2}(\boldsymbol{\theta}) & = & \chi_{\min }^{2}(\hat{\theta}) & + \\
N & N-P & & \Delta \chi^{2}(\boldsymbol{\theta}) \\
N \\
\Delta \chi^{2}(x, y)= & \Delta \chi_{\min , y}^{2}(x)+ & \delta \chi^{2}(x, y) \\
P & p=P-q & q
\end{array}
$$

$$
\Delta \chi_{\min , y}^{2}(x) \equiv \min \left[\Delta \chi^{2}(x, y) ; y\right] \quad(p \text { d.o.f. })
$$

Confidence regions from $\Delta \chi^{2}$

Suppose you want to show regions at a $\mathrm{CL} \beta$ for p parameters x, and you are not interested in $q=P-p$ parameters $y[$ note: $\boldsymbol{\theta}=(x, y)]$:

- use p d.o.f. and minimize wrt to y :
"the p-dimensional region for x, irrespective of the values of y "

$$
\begin{array}{lcc}
\chi^{2}(\boldsymbol{\theta}) & = & \chi_{\min }^{2}(\hat{\theta}) \\
N & N-P & \Delta \chi^{2}(\boldsymbol{\theta}) \\
N \\
\Delta \chi^{2}(x, y)= & \Delta \chi_{\min , y}^{2}(x)+ & \delta \chi^{2}(x, y) \\
P & p=P-q & q
\end{array}
$$

$$
\Delta \chi_{\min , y}^{2}(x) \equiv \min \left[\Delta \chi^{2}(x, y) ; y\right] \quad(p \text { d.o.f. })
$$

comment: this is exactly what is used for the pull-method to include systematics

Example: 1-dim and 2-dim projections

Combining several experiments

- consider M experiments.
- experiment ex consists of $N_{\text {ex }}$ data points.
- each experiment has its own χ^{2} function: $\chi_{\text {ex }}^{2}(\boldsymbol{\theta})$
- the combined χ^{2} is simply

- any minimization over oscillation parameters has to be done for (θ), not the individual experiments $\min [f(x)]+\min [g(x)] \neq \min [f(x)+g(x)]$

Combining several experiments

- consider M experiments.
- experiment ex consists of $N_{\text {ex }}$ data points.
- each experiment has its own χ^{2} function: $\chi_{e x}^{2}(\theta)$
- the combined χ^{2} is simply

$$
\chi_{g l o b}^{2}(\boldsymbol{\theta})=\sum_{e x=1}^{M} \chi_{e x}^{2}(\boldsymbol{\theta}) \quad \text { \#d.o.f. }=\sum_{e x=1}^{M} N_{e x}
$$

- any minimization over oscillation parameters has to be done for $\chi_{\text {glob }}^{2}(\theta)$, not the individual experiments

Combining several experiments

- consider M experiments.
- experiment ex consists of $N_{\text {ex }}$ data points.
- each experiment has its own χ^{2} function: $\chi_{\text {ex }}^{2}(\boldsymbol{\theta})$
- the combined χ^{2} is simply

$$
\chi_{g l o b}^{2}(\boldsymbol{\theta})=\sum_{e x=1}^{M} \chi_{e x}^{2}(\boldsymbol{\theta}) \quad \text { \#d.o.f. }=\sum_{e x=1}^{M} N_{e x}
$$

- any minimization over oscillation parameters has to be done for $\chi_{\text {glob }}^{2}(\theta)$, not the individual experiments
$\min [f(x)]+\min [g(x)] \neq \min [f(x)+g(x)]$

Comments on Gaussian approximation

- In the Gaussian approximation (" χ^{2} approximation")
- 1-dimensional χ^{2} projections will be parabolas
- p-dimensional regions will be p-dimensional ellipsoids
- inclination of the ellipse in a 2-dim plane gives the correlation between those two parameters
- In the $\theta_{12}, \theta_{13}, \Delta m_{21}^{2}$ space we are close to Gaussian
- non-Gaussianities are relevant:
- mass ordering degeneracy Δm_{3}^{2}
- octant degeneracy $\chi^{2}\left(\theta_{23}\right)$
- CP phase δ (periodic parameter space!)
- In these cases translation of $\Delta \chi^{2}$ values into $C L$ (or probabilities) is
only approximate.

Comments on Gaussian approximation

- In the Gaussian approximation (" χ^{2} approximation")
- 1-dimensional χ^{2} projections will be parabolas
- p-dimensional regions will be p-dimensional ellipsoids
- inclination of the ellipse in a 2-dim plane gives the correlation between those two parameters
- In the $\theta_{12}, \theta_{13}, \Delta m_{21}^{2}$ space we are close to Gaussian
- non-Gaussianities are relevant:
- mass ordering degeneracy Δm_{31}^{2}
- octant degeneracy $\chi^{2}\left(\theta_{23}\right)$
- CP phase δ (periodic parameter space!)
- In these cases translation of $\Delta \chi^{2}$ values into CL (or probabilities) is only approximate.

Outline

Analysis of present oscillation data and beyond Degeneracies
 Event rates in oscillation experiments Reactor experiments More complicated situations

Building the χ^{2}
Systematical errors in χ^{2} analyses
Using the χ^{2}
Sensitivity of future experiments

Open questions in neutrino oscillations

- Neutrino mass ordering (sign of Δm_{31}^{2})
- θ_{23} : maximality and octant
- CP violation, range of δ

How to estimate the sensitivity of a given proposed experiment?

Consider an experiment which has data n_{i} :

$$
\chi^{2}(\boldsymbol{\theta})=\sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-n_{i}\right]^{2}}{n_{i}}
$$

$\mu_{i}(\boldsymbol{\theta})$: theoretical prediction of event rates, including experimental details, resolutions, backgrounds,...
future experiment: replace data n_{i} by predicted event rate assuming some "true" values of the oscillation parameters $\boldsymbol{\theta}^{\operatorname{tr}}$

> does not include statistical fluctuations ("perfect data") "best fit point" $\left(\theta=\theta^{+r}\right)$ has always $\chi^{2}=0 \rightarrow \Delta x^{2}$

Consider an experiment which has data n_{i} :

$$
\chi^{2}(\boldsymbol{\theta})=\sum_{i=1}^{N} \frac{\left[\mu_{i}(\theta)-n_{i}\right]^{2}}{n_{i}}
$$

$\mu_{i}(\boldsymbol{\theta})$: theoretical prediction of event rates, including experimental details, resolutions, backgrounds,...
future experiment: replace data n_{i} by predicted event rate assuming some "true" values of the oscillation parameters $\boldsymbol{\theta}^{\text {tr }}$

$$
\chi^{2}\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{t r}\right)=\sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-\mu_{i}\left(\boldsymbol{\theta}^{t r}\right)\right]^{2}}{\mu_{i}\left(\boldsymbol{\theta}^{t r}\right)}
$$

- does not include statistical fluctuations ("perfect data") "best fit point" $\left(\boldsymbol{\theta}=\boldsymbol{\theta}^{t r}\right)$ has alwavs $\chi^{2}=0 \rightarrow \Delta \chi^{2}$

Consider an experiment which has data n_{i} :

$$
\chi^{2}(\boldsymbol{\theta})=\sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-n_{i}\right]^{2}}{n_{i}}
$$

$\mu_{i}(\boldsymbol{\theta})$: theoretical prediction of event rates, including experimental details, resolutions, backgrounds,...
future experiment: replace data n_{i} by predicted event rate assuming some "true" values of the oscillation parameters $\boldsymbol{\theta}^{\text {tr }}$

$$
\chi^{2}\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{t r}\right)=\sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-\mu_{i}\left(\boldsymbol{\theta}^{t r}\right)\right]^{2}}{\mu_{i}\left(\boldsymbol{\theta}^{t r}\right)}
$$

- does not include statistical fluctuations ("perfect data")
- "best fit point" $\left(\boldsymbol{\theta}=\boldsymbol{\theta}^{\text {tr }}\right)$ has always $\chi^{2}=0 \rightarrow \Delta \chi^{2}$

Including statistical fluctuations

Simulate statistical fluctuations by using your random number generator (Monte Carlo simulation):

$$
n_{i}^{\operatorname{sim}}\left(\boldsymbol{\theta}^{t r}\right)=P\left[\mu_{i}\left(\boldsymbol{\theta}^{t r}\right)\right], \quad P[\mu]: \text { Poisson distribution }
$$

- For fixed $\theta^{\text {tr }}$ and a given statistical realisation a certain sensitivity will be obtained.
- Have to simulate many experiments to obtain a "distribution of sensitivities"

Example CP violation

- want to discover CPV at $99.9 \% \mathrm{CL}$
- simulate many experiments (at fixed $\theta^{\text {tr }}$)
- a certain fraction β of those will discover CPV at 99.9\% CL

Including statistical fluctuations

Simulate statistical fluctuations by using your random number generator (Monte Carlo simulation):

$$
n_{i}^{s i m}\left(\boldsymbol{\theta}^{t r}\right)=P\left[\mu_{i}\left(\boldsymbol{\theta}^{t r}\right)\right], \quad P[\mu]: \text { Poisson distribution }
$$

- For fixed $\theta^{\text {tr }}$ and a given statistical realisation a certain sensitivity will be obtained.
- Have to simulate many experiments to obtain a "distribution of sensitivities".

Example CP violation

- want to discover CPV at $99.9 \% \mathrm{CL}$
- simulate many experiments (at fixed $\theta^{\text {tr }}$)
- a certain fraction β of those will discover CPV at 99.9\% CL

Including statistical fluctuations

Simulate statistical fluctuations by using your random number generator (Monte Carlo simulation):

$$
n_{i}^{s i m}\left(\boldsymbol{\theta}^{t r}\right)=P\left[\mu_{i}\left(\boldsymbol{\theta}^{t r}\right)\right], \quad P[\mu]: \text { Poisson distribution }
$$

- For fixed $\theta^{\text {tr }}$ and a given statistical realisation a certain sensitivity will be obtained.
- Have to simulate many experiments to obtain a "distribution of sensitivities".

Example CP violation

- want to discover CPV at 99.9\% CL
- simulate many experiments (at fixed $\boldsymbol{\theta}^{\text {tr }}$)
- a certain fraction β of those will discover CPV at 99.9% CL

Type I and II errors see Glen Cowan's lecture

To quantify the sensitivity we need to quote two numbers: the CL at which we want to make a discovery and the probability with which a given proposed experiment will reach this.

Type I and II errors see Glen Cowan's lecture

To quantify the sensitivity we need to quote two numbers: the CL at which we want to make a discovery and the probability with which a given proposed experiment will reach this.

- Type I error: probability that CP is conserved although we claim discovery of CPV (0.1% in the previous example)
- Type II error: probability that CP is violated although our experiment does not find it ($1-\beta$ in the previous example)
for discussions in the context of neutrino oscillations see
Schwetz, Phys.Lett. B648 (2007) 54-59 [hep-ph/0612223]
Blennow, Coloma, Huber, Schwetz, JHEP 1403 (2014) 028 [1311.1822]

Type I and II errors see Glen Cowan's lecture

Including statistical fluctuations

In practice Monte Carlo simulations can be quite "expensive":

- have to simulate many experiments,
- calculate sensitivity for each of them,
- do this for each choice of $\boldsymbol{\theta}^{t r}$

Analytical approximations

In some cases it may be possible to use analytic expressions ("Gaussian approximation") for the relevant probability distributions functions to calculate type I and type II errors

Example:

mass ordering sensitivity
Blennow et al., 1311.1822
simple expressions in terms of error function

Median experiment

Median sensitivity corresponds to type II error rate of $50 \% \Rightarrow$ with 50% chance the actual experiment will obtain a better/worse result

Instead of type I and II errors one can also quote the median sensitivity and its spread (again two numbers)

Median experiment

Median sensitivity corresponds to type II error rate of $50 \% \Rightarrow$ with 50% chance the actual experiment will obtain a better/worse result

Instead of type I and II errors one can also quote the median sensitivity and its spread (again two numbers)
ex.: mass ordering sensitivity Blennow et al., 1311.1822

Median experiment

Coming back to the χ^{2} using the predicted event rate as "data" (no statistical fluctuation):

$$
\chi^{2}\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{t r}\right)=\sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-\mu_{i}\left(\boldsymbol{\theta}^{t r}\right)\right]^{2}}{\mu_{i}\left(\boldsymbol{\theta}^{t r}\right)}
$$

$n_{i}=\mu_{i}\left(\boldsymbol{\theta}^{t r}\right)$ can be considered as "most probable outcome" or the result of the "median experiment"

- interpret sensitivities based on the above χ^{2} as median sensitivity, i.e., type II error rate of 50%. holds only approximately, in general needs to be checked by MC Schwetz, hep-ph/0612223, Blennow et al., 1311.1822

Median experiment

Coming back to the χ^{2} using the predicted event rate as "data" (no statistical fluctuation):

$$
\chi^{2}\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{t r}\right)=\sum_{i=1}^{N} \frac{\left[\mu_{i}(\boldsymbol{\theta})-\mu_{i}\left(\boldsymbol{\theta}^{t r}\right)\right]^{2}}{\mu_{i}\left(\boldsymbol{\theta}^{t r}\right)}
$$

$n_{i}=\mu_{i}\left(\boldsymbol{\theta}^{t r}\right)$ can be considered as "most probable outcome" or the result of the "median experiment"

- this is by far the most common method in the literature to calculate sensitivities of neutrino oscillation epxeriments

GLoBES software is designed primarily for this purporse Huber, Lindner, Winter, hep-ph/0407333; Huber et al., hep-ph/0701187 http://www.mpi-hd.mpg.de/lin/globes/

Sensitivity calculations

"doubling" of the parameter space: $\chi^{2}\left(\boldsymbol{\theta} ; \boldsymbol{\theta}^{\text {tr }}\right)$
for each choice of $\boldsymbol{\theta}^{\text {tr }}$ one has to perform a fit to the "data", similar as one would do in case of real data
sensitivity depends on the assumed $\boldsymbol{\theta}^{t r} \rightarrow$ have to scan $\boldsymbol{\theta} \times \boldsymbol{\theta}^{\text {tr }}$ space

Example: CP phase δ

Christensen, Coloma, Huber, 1301.7727

Example: CP violation

define

$$
\chi_{\mathrm{CP}}^{2}=\min \left[\chi^{2}\left(\delta_{\mathrm{CP}}=0 ; \boldsymbol{\theta}^{t r}\right), \chi^{2}\left(\delta_{\mathrm{CP}}=\pi ; \boldsymbol{\theta}^{t r}\right)\right]
$$

(minimize wrt to all other parameters except δ_{CP}, incl. degeneracies)
Christensen, Coloma, Huber, 1301.7727
$\sqrt{\chi_{\mathrm{CP}}^{2}}$ corresponds to the number of σ with which CP-conserving values of δ can be excluded (1 d.o.f.)

