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Introduction

Global data on neutrino oscillations Debbie Harris’ lecture

various neutrino sources and vastly different energy and distance scales:

sun reactors atmosphere accelerators

Homestake,SAGE,GALLEX KamLAND, CHOOZ SuperKamiokande K2K, MINOS, T2K
SuperK, SNO, Borexino

I global data fits nicely with the 3 neutrinos from the SM

I for this lecture I will ignore “anomalies” (at 2-3 σ) which do not fit
the 3-flavour picture: LSND, MiniBooNE, reactor anomaly, no LMA
MSW up-turn of solar neutrino spectrum
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Introduction

3-flavour oscillation parameters

 νe
νµ

ντ

 =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 ν1
ν2
ν3



∆m2
31 ∆m2

21

U =

 1 0 0
0 c23 s23
0 −s23 c23

  c13 0 e−iδs13
0 1 0

−e iδs13 0 c13

  c12 s12 0
−s12 c12 0

0 0 1



atm+LBL(dis) react+LBL(app) solar+KamLAND

3-flavour effects are suppressed: ∆m2
21 � ∆m2

31 and θ13 � 1 (Ue3 = s13e−iδ)

⇒ CP-violation is suppressed by θ13
⇒ dominant oscillations are well described by effective two-flavour oscillations
⇒ present data requires already to go beyond two-flavour description
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Introduction

Neutrino mass states and mixing
INVERTEDNORMAL
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3-flavour oscillation parameters, ranges at 1σ (3σ) NuFit 1.3 [θĳ , δCP in ◦]
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Introduction

Global 3-flavour fit
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Introduction

These lectures

I mention some features of global fits of present and (a bit of)
upcoming data

I discuss technical issues of how to do such type of analyses

I statistics techniques (complementary to Glen Cowan’s lecture)
I oriented towards practice in context of neutrino data fitting
I recommend to look up relevant parts in Glen’s lecture and make

contact

I build on lectures by Debbie Harris and Renata Zukanovich-Funchal
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Introduction

Outline

Analysis of present oscillation data and beyond
Degeneracies

Event rates in oscillation experiments
Reactor experiments
More complicated situations

Building the χ2

Systematical errors in χ2 analyses

Using the χ2

Sensitivity of future experiments
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Analysis of present oscillation data and beyond

Global 3-flavour fit
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I very robust determination of
I ∆m2

21, θ12: solar, KamLAND
I θ13: Daya Bay, RENO, DoubleC

I ambiguity in sign of ∆m2
31 (∆χ2 ≈ 1)

→ mass ordering (“hierarchy”)

I θ23: rather broad allowed range
non-significant indications about
non-maximality/octant
results of other groups differ slightly
Capozzi et al., 1312.2878
Forero et al. 1405.7540

I slight preference for δCP ∼ −π/2
T2K νµ → νe + Daya Bay
not significant yet!
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Analysis of present oscillation data and beyond

The LBL appearance oscillation probability:

Pµe ' sin2 2θ13 sin2 θ23
sin2(1− A)∆

(1− A)2

+ sin 2θ13 α̂ sin 2θ23
sin(1− A)∆

1− A
sin A∆

A
cos(∆ + δCP)

+ α̂2 cos2 θ23
sin2 A∆

A2

with ∆ ≡ ∆m2
31L

4Eν
, α̂ ≡ ∆m2

21

∆m2
31

sin 2θ12 , A ≡ 2EνV
∆m2

31

anti-ν: δCP → −δCP, A → −A, Peµ: δCP → −δCP
other mass ordering: ∆ → −∆, A → −A, α̂ → −α̂

νe disappearance at L ∼ 1 km:

Pee = 1− sin2 2θ13sin2 ∆ +O(α2)
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Analysis of present oscillation data and beyond

Combining T2K/MINOS appearance with θ13 reactors
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Analysis of present oscillation data and beyond Degeneracies

Degeneracies
Suppose that the true osc. params. in nature are

θ̂ = (∆m̂2
21,∆m̂2

31, θ̂12, θ̂23, θ̂13, δ̂CP)

A νµ → νe appearance experiment will observe a number of events N̂
corresponding to the probability P̂µe = Pµe(θ̂)

For fixed N̂ there are other values of θ13 6= θ̂13 and δCP 6= δ̂CP, which lead
to the same osc. probability:

P̂µe = Pµe(θ13, δCP)

and similar for anti-neutrinos:

ˆ̄Pµe = P̄µe(θ13, δCP)
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Analysis of present oscillation data and beyond Degeneracies

“Intrinsic” degeneracy

numerical example (“historical” plots, note θ13 value):
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21 = 7.9× 10−5eV2
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31 = 2.5× 10−3eV2

sin2 θ̂12 = 0.3
sin2 θ̂23 = 0.4
sin2 2θ̂13 = 0.02
δ̂CP = 36◦

Eν = 2.2 GeV
L = 812 km
(NOνA)
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Analysis of present oscillation data and beyond Degeneracies

Sign ∆m2
31 degeneracy Minakata, Nunokawa, JHEP 10 (2001) 001

Exercise: show that the oscillation probability Pµe in vaccum is invariant
under the transformation

∆m2
31 → −∆m2

31 , δCP → π − δCP

for small matter effect (A � 1) the linear order in A cannot break the
degeneracy → need to enter the regime of “strong” matter effect A ∼ 1,
i.e., observe the resonance

(see Schwetz, hep-ph/0703279)
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Analysis of present oscillation data and beyond Degeneracies

Sign ∆m2
31 degeneracy
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Analysis of present oscillation data and beyond Degeneracies

Octant degeneracy Fogli, Lisi, PRD54 (1996) 3667

θ23 is determined dominantly from νµ disappearance experiments
(SK-atmospheric, T2K, MINOS)

0th approximation: Pµµ ≈ 1− sin2 2θ23 sin2 ∆m2
atmL

4E
→ degeneracy between sin2 θ23 and (1− sin2 θ23)
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(SK-atmospheric, T2K, MINOS)

0th approximation: Pµµ ≈ 1− sin2 2θ23 sin2 ∆m2
atmL

4E
→ degeneracy between sin2 θ23 and (1− sin2 θ23)

BUT: appearance probability depends on θ23 in a non-symmetric way:

Pµe ' sin2 2θ13 sin2 θ23
sin2(1− A)∆

(1− A)2

+ sin 2θ13 α̂ sin 2θ23
sin(1− A)∆

1− A
sin A∆

A
cos(∆ + δCP)
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Analysis of present oscillation data and beyond Degeneracies

The eight-fold degeneracy Barger, Marfatia, Whisnant, PRD 02
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I ambiguities in
determination of θ13 and
δCP

I can involve an ambiguity
between CP conserving and
CP violating values of δCP

I sign(∆m2
31) is not

determined (neutrino mass
ordering)

I the octant of θ23 is not
determined
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Analysis of present oscillation data and beyond Degeneracies

Resolving the degeneracies

several possibilities to resolve the degeneracies are known:

I combining information from detectors at different baselines
I using additional oscillation chanels (νe → ντ )
I spectral information (wide band beam)
I adding information on θ13 from a reactor experiment
I adding information from (Mt scale) atmospheric neutrino experiments
I ...

... many of them work quite well for large θ13!
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Analysis of present oscillation data and beyond Degeneracies

Octant degeneracy - beams versus reactor

Fogli, Lisi, 96; Minakata, Sugiyama, Yasuda, Inoue, Suekane, 02; ...

fix θ13 by a reactor experiment and use an appearance experiment to
determine the octant of θ23

Pµe ' sin2 2θ13 sin2 θ23
sin2(1− A)∆

(1− A)2

+ sin 2θ13 α̂ sin 2θ23
sin(1− A)∆

1− A
sin A∆

A
cos(∆ + δCP)
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Analysis of present oscillation data and beyond Degeneracies

Combining T2K/MINOS appearance with θ13 reactors
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Analysis of present oscillation data and beyond Degeneracies

Octant degeneracy - simulated data

T2K + NOvA T2K + NOvA + Daya Bay

Huber, Lindner, Schwetz, Winter, 0907.1896
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Analysis of present oscillation data and beyond Degeneracies

Determination of the mass ordering

I matter effect in the 13-sector: resonance condition for νµ → νe oscillations:

A ≡ ± 2EV
∆m2

31
= cos 2θ13 ≈ 1

can be fulfilled for
neutrinos if ∆m2

31 > 0 (normal ordering)
anti-neutrinos if ∆m2

31 < 0 (inverted ordering)

I Long-baseline experiment (L & 1000 km): NOvA, LBNE, LBNO
I Atmospheric neutrinos: HyperK, INO, PINGU, ORCA

I Interference effect between ∆m2
21 and ∆m2

31

reactor experiment with L ∼ 50 km: JUNO, RENO50

(see my talk at the workshop next week)
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Analysis of present oscillation data and beyond Degeneracies

Degeneracies 2014

after Daya Bay θ13 is no longer a “free” parameter

the relevant degrees of freedom are θ23 and δCP times sign(∆m2
31)

Minakata, Parke 1303.6178; Coloma, Minakata, Parke 1406.2551
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How to analyze data from neutrino oscillation experiments
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Basic steps towards an analysis

I Suppose a given experiment divides the range of observation into N bins.
The outcome is reported in number of observed events in each bin ni .
(Expect Poisson distribution for the number of events in each bin.)

I For given oscillation parameters

θ = (θ12, θ13, θ23, δCP,∆m2
21,∆m2

31) (P = 6)

we can predict the expected number of events per bin µi (θ).

I Build a χ2, e.g. (more details later):

χ2(θ) =
N∑

i=1

[
µi (θ)− ni

σi

]2

I Use χ2(θ) to perform a statistical analysis
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Event rates in oscillation experiments

Outline

Analysis of present oscillation data and beyond
Degeneracies

Event rates in oscillation experiments
Reactor experiments
More complicated situations

Building the χ2

Systematical errors in χ2 analyses

Using the χ2

Sensitivity of future experiments
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Event rates in oscillation experiments

Event rates in oscillation experiments

number of events in a να → νβ oscillation experiment:

N(θ) = TN
∫

dEν φνα(Eν) Pαβ(Eν ;θ) σνβ
(Eν)

T exposure time
N number of target particles
φνα neutrino flux of flavour α at detector
Pαβ να → νβ oscillation probability
σνβ

detection cross section of neutrino νβ
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Event rates in oscillation experiments

Event rates in oscillation experiments

number of events in a να → νβ oscillation experiment:

N(θ) = TN
∫

dEν φνα(Eν) Pαβ(Eν ;θ) σνβ
(Eν)

I in more realistic situations we need to take into account the
characteristics of the particular experiment

I consider in more detail the actual observables
I typically it will involve more integrals

Ex.: atmospheric neutrinos: integrate also over zenith angle,
production height in atmosphere, ....
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Event rates in oscillation experiments Reactor experiments

Example: Reactor experiments

I source of ν̄e with few MeV → ν̄e disappearance
I detection reaction: inverse beta-decay

ν̄e + p → n + e+

observe positron and neutron in coincedence
I visible energy:

Evis ≈ E e+

kin + 2me = Eν − (mn −mp) + me +O(E 2
ν /mn)

Evis ≈ Eν − 0.8 MeV

→ one-to-one relation between Evis and Eν

I accurate spectral information: number of inverse beta-decay events
binned in visible energy
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Event rates in oscillation experiments Reactor experiments

Ex.: DoubleChooz energy spectrum 1406.7763
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Event rates in oscillation experiments Reactor experiments

Number of events per bin

ideal experiment:

Ni (θ) = TN
∫ Eup,i

vis

E low,i
vis

dEν φ(Eν) Pee(Eν ;θ) σ(Eν) Eν ≈ Evis + 0.8 MeV

BUT: need to take into account energy resolution: a “true” E true
vis is

reconstructed as Evis with a certain probability distribution R(Evis, E true
vis )

Ni (θ) = TN
∫ Eup,i

vis

E low,i
vis

dEvis

∫
dEν φ(Eν) Pee(Eν ;θ) σ(Eν)R(Evis, E true

vis )

Eν ≈ E true
vis + 0.8 MeV
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Event rates in oscillation experiments Reactor experiments

can write this as

Ni (θ) = TN
∫

dEν φ(Eν) Pee(Eν ;θ) σ(Eν) Ri (Eν)

Ri (Eν) ≡
∫ Eup,i

vis

E low,i
vis

dEvisR(Evis, E true
vis ) Eν ≈ E true

vis + 0.8 MeV
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Event rates in oscillation experiments Reactor experiments

can write this as

Ni (θ) = TN
∫

dEν φ(Eν) Pee(Eν ;θ) σ(Eν) Ri (Eν)

Ri (Eν) ≡
∫ Eup,i

vis

E low,i
vis

dEvisR(Evis, E true
vis ) Eν ≈ E true

vis + 0.8 MeV

often it is a good approximation to assume a Gaussian resolution function:

R(Evis, E true
vis ) =

1√
2πσ

exp
[
−(Evis − E true

vis )2

2σ2

]
σ = σ(E true

vis )

Ri (Eν) =
1
2

[
erf

(
Eup,i

vis − E true
vis√

2σ

)
− erf

(
E low ,i

vis − E true
vis√

2σ

)]
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Event rates in oscillation experiments Reactor experiments

can write this as

Ni (θ) = TN
∫

dEν φ(Eν) Pee(Eν ;θ) σ(Eν) Ri (Eν)

Ri (Eν) ≡
∫ Eup,i

vis

E low,i
vis

dEvisR(Evis, E true
vis ) Eν ≈ E true

vis + 0.8 MeV

to compare with observation add expected background in each bin:

µi (θ) = Ni (θ) + Bi

→ can be used to build χ2, for example:

χ2(θ) =
N∑

i=1

[µi (θ)− ni ]
2

ni

includes only statistical errors → on systematics see later
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Event rates in oscillation experiments More complicated situations

Example: long-baseline experiment

I consider a νµ → νe appearance experiment with Eν ∼ 1 GeV
(e.g., T2K, NOvA)

I detection reaction: νe + N → e + X
significant energy is carried away by hadronic scattering products X
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Event rates in oscillation experiments More complicated situations

Example: long-baseline experiment

I consider a νµ → νe appearance experiment with Eν ∼ 1 GeV
(e.g., T2K, NOvA)

I detection reaction: νe + N → e + X
significant energy is carried away by hadronic scattering products X

assume only electron is observed and events are binned in electron energy

Ni (θ) = TN
∫

dEν φ(Eν) Pµe(Eν ;θ)

∫ Eup,i
e

E low,i
e

dEe
dσ

dEe
(Eν)

→ double integral even before including resolution function
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Event rates in oscillation experiments More complicated situations

Example: long-baseline experiment

I consider a νµ → νe appearance experiment with Eν ∼ 1 GeV
(e.g., T2K, NOvA)

I detection reaction: νe + N → e + X
significant energy is carried away by hadronic scattering products X

some detectors can use info on X to reconstruct Eν → bins in E rec
ν

may require complicated cuts introducing energy dependent efficiences,...
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Event rates in oscillation experiments More complicated situations

Detector response function - migration matrix

Ni (θ) = TN
∫

dEν φ(Eν) Pµe(Eν ;θ) σ(Eν)Ri (Eν)

Ri (Eν): detector response function

I describes the probability that an event with neutrino energy Eν is
reconstructed in the bin i

I the bins may label any observable (e.g., lepton energy, reconstr.
neutrino energy, ...)

I Ri (Eν) can include many effects related to the detector (energy
resolution, energy dep. efficiencies, differential cross sections, ...)

I if the integral over true neutrino energy is discretized Ri (Eν) becomes
a matrix Rĳ → “migration matrix”
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Event rates in oscillation experiments More complicated situations

Detector response function - migration matrix

Ni (θ) = TN
∫

dEν φ(Eν) Pµe(Eν ;θ) σ(Eν)Ri (Eν)

Ri (Eν): detector response function

can be conveniently done with the GLoBES software package
Huber, Lindner, Winter, hep-ph/0407333; Huber et al., hep-ph/0701187
http://www.mpi-hd.mpg.de/lin/globes/
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Event rates in oscillation experiments More complicated situations

Example: atmospheric neutrinos

consider an experiment observing muons induced by atmospheric neutrinos
(e.g., INO):

Nĳ(θ) = TN
∫

dEν

∫
dΩ σ(Eν)Rĳ(Eν ,Ω)×

[φµ(Eν ,Ω) Pµµ(Eν ,Ω; θ) + φe(Eν ,Ω) Peµ(Eν ,Ω; θ)]

i bin in muon energy
j bin in muon zenith angle

φα(Eν ,Ω) flux of να with given Eν and solid angle Ω

Rĳ(Eν ,Ω): probability to reconstruct muon from a neutrino with energy
Eν coming from a solid angle Ω into the muon bin ĳ (includes double
differential cross section)

(still simplified in several respects....)

T. Schwetz (Stockholm U) Neutrino Data Analysis 34 / 72



Building the χ2

Outline

Analysis of present oscillation data and beyond
Degeneracies

Event rates in oscillation experiments
Reactor experiments
More complicated situations

Building the χ2

Systematical errors in χ2 analyses

Using the χ2

Sensitivity of future experiments
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Building the χ2

I Can define:

χ2 =
N∑

i=1

[µi (θ)− ni ]
2

µi (θ)
or

N∑
i=1

[µi (θ)− ni ]
2

ni

I If the number of events is small in some bins (“Poisson χ2”):

χ2 = 2
N∑

i=1

[
µi (θ)− ni + ni log

ni

µi (θ)

]
I If statistical errors include the ones from a subtracted background:

χ2 =
N∑

i=1

[
µi (θ)− ni

σi

]2

I If there is correlation between bins:

χ2 =
N∑

i ,j=1

[µi (θ)− ni ]V−1
ĳ [µj(θ)− nj ]
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Building the χ2 Systematical errors in χ2 analyses

Systematic uncertainties

Assume we have N experimental data points ni with statistical error σi
and theoretical predictions µi for each of the data points:

χ2 =
N∑

i=1

(µi − ni )
2

σ2
i

µi (θ) depends on the parameters of the model θ.

Consider the situation that µi depends also on additional parameters ξ,
describing systematical uncertainties (“nuisance parameters”): µi (θ, ξ)

We may have some knowledge on ξ: mean values 〈ξα〉 = ξ̂α and
uncertainty σξ

α
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Building the χ2 Systematical errors in χ2 analyses

Example

µi (θ) = ξ1 (ξ2 Ni (θ) + ξ3 Bi ) ξα = 1± xα%

≈ (1 + δ1 + δ2)Ni (θ) + (1 + δ1 + δ3)Bi δα = ξα − 1

ξ1 overall detector normalization
ξ2 overall signal normalization (e.g., flux uncertainty)
ξ3 background normalization

can be generalized to more complicated systematics, including energy
dependent uncertainties (shape), energy scale,...
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Building the χ2 Systematical errors in χ2 analyses

Consider ξ at the same level as θ and add info to χ2

χ2(θ, ξ) =
N∑

i=1

[µi (θ, ξ)− ni ]
2

σ2
i

+
∑
α

(ξα − ξ̂α)2

(σξ
α)2

χ2(θ) = min
ξ

χ2(θ, ξ)

χ2(θ) is distributed as usual with N = (N − P) + P dof

no conceptual issue also for P & N
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Building the χ2 Systematical errors in χ2 analyses

Linearize the problem

µi (θ, ξ) ≈ µi (θ, ξ̂) +
∑
α

∂µi

∂ξα
(ξα − ξ̂α)

define: µi (θ, ξ̂) ≡ µ̂i (θ) , ξ′α ≡
ξα − ξ̂α

σξ
α

, Riα ≡ σξ
α

∂µi

∂ξα

χ2(θ, ξ′) =
∑

i

[µ̂i (θ) +
∑

α Riαξ′α − ni ]
2

σ2
i

+
∑
α

ξ′α
2

χ2(θ, ξ′) is quadratic in ξ′ ⇒ ∂χ2

∂ξα
= 0 is a linear system of equations

⇒ solve the system to obtain ξmin and obtain χ2(θ) = χ2(θ, ξmin)

I this proceedure works fine if ξ′α . 1 and (Rξ′)i � µi
I if (Rξ′)i ∼ µi , the prediction can become negative
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Building the χ2 Systematical errors in χ2 analyses

Equivalence of pull and covariance approaches

I "pull" approach:
χ2

pull(θ) = min
ξ

χ2(θ, ξ)

I "covariance" approach:

Vĳ =
∑
α

∂µi

∂ξα

∂µj

∂ξα
(σξ

α)2 =
∑
α

RiαRjα

χ2
cov(θ) =

∑
ĳ

[µ̂i (θ)− ni ]
T S−1

ĳ [µ̂j(θ)− nj ] with Sĳ ≡ σ2
i δĳ + Vĳ

Exercise: proof that χ2
pull(θ) ≡ χ2

cov(θ)

Fogli, Lisi, Marrone, Montanino, Palazzo, PRD02 [hep-ph/0206162]
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Building the χ2 Systematical errors in χ2 analyses
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Building the χ2 Systematical errors in χ2 analyses

Simple example

Consider the case of a single systematic describing an over-all
normalization uncertainty

χ2(θ, ξ) =
∑

i

[
µi (θ)(1 + ξ)− ni

σi

]2

+

(
ξ

σξ

)2

Ri = µi (θ)

covariance matrix for the covariance method: Sĳ = δĳσ2
i + µiµjσ

2
ξ
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Building the χ2 Systematical errors in χ2 analyses

Simple example

Consider the case of a single systematic describing an over-all
normalization uncertainty

χ2(θ, ξ) =
∑

i

[
µi (θ)(1 + ξ)− ni

σi

]2

+

(
ξ

σξ

)2

Ri = µi (θ)

covariance matrix for the covariance method: Sĳ = δĳσ2
i + µiµjσ

2
ξ

Exercise:
I minimize the χ2 and calculate ξmin and χ2(θ, ξmin)

I consider the same systematic using the Poisson χ2

(check that your solution makes sense!)
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Building the χ2 Systematical errors in χ2 analyses

Simple example

Consider the case of a single systematic describing an over-all
normalization uncertainty

χ2(θ, ξ) =
∑

i

[
µi (θ)(1 + ξ)− ni

σi

]2

+

(
ξ

σξ

)2

Ri = µi (θ)

covariance matrix for the covariance method: Sĳ = δĳσ2
i + µiµjσ

2
ξ

for σξ →∞ this corresponds to a shape-only analysis (free normalization)

exactly this method has been used recently by the Daya Bay collaboration
for their analysis based on near-far comparison
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Building the χ2 Systematical errors in χ2 analyses

Real-life example Daya Bay 1203.1669
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Building the χ2 Systematical errors in χ2 analyses

Real-life example Daya Bay 1203.1669

Exercise: study the χ2 used in the Daya Bay paper
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Building the χ2 Systematical errors in χ2 analyses

Pull versus covariance approaches

I Pull approach requires to solve a linear system of equations of
dimension P (number of pulls)

I Covariance approach requires to invert the N × N covariance matrix
(N number of bins)

I Depending on whether N is larger or smaller than P one or the other
method may be preferred (often P � N)

I Pull method allows for more diagnostics of the fit, e.g.:
I look at ξαmin to identify a systematic with large “pull”,
I look at contours of θ versus ξ to identify correlations between

systematics and parameters
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Building the χ2 Systematical errors in χ2 analyses

Example for “pull diagram” from solar neutrino fit

Fogli et al hep-ph/0206162
T. Schwetz (Stockholm U) Neutrino Data Analysis 46 / 72



Building the χ2 Systematical errors in χ2 analyses

Correlations between reactor flux normalization and θ13
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Building the χ2 Systematical errors in χ2 analyses

Poisson χ2

The pull method can be generalized to the Poissonian form of the χ2

which should be used in case of small event numbers per bin:

χ2(θ, ξα) =2
N∑

i=1

[
µi (θ, ξα)− ni + ni log

ni

µi (θ, ξα)

]
+
∑
α

ξ2
α

I allows to introduce correlated errors in the Poisson χ2

I µ(θ, ξ) can still be linearized in ξ, but the χ2 will no longer be a
quadratic function in ξ ⇒ have to use numerical or semi-analytic
methods to do the minimization
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Building the χ2 Systematical errors in χ2 analyses

Comments - 1
I straight forward to generalize to correlated data and/or pulls:

χ2(θ, ξ) =
N∑

i ,j=1

[µi (θ, ξ)− ni ]V−1
ĳ [µj(θ, ξ)− nj ]

+
∑
α,β

(ξα − ξ̂α)W−1
αβ (ξβ − ξ̂β)

I can also be applied in the framework of likelihood analysis

L(θ, ξ) = Ldata(θ, ξ)× Lnuis(ξ)

L(θ) = maxξ L(θ, ξ)

Lnuis(ξ) contains all information we have on the nuisance parameters

If L(θ, ξ) and/or Lnuis(ξ) are "complicated" the minimization
(maximization) has to be done numerically.
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Building the χ2 Systematical errors in χ2 analyses

Comments - 2
I The methods discussed here for the treatment of systematic erros

assume that systematic uncertainties are of statistical nature.
Their effects on the analysis are encoded by assuming some random
distribution for them (often Gaussian).

I Sometimes these assumptions are justified e.g. when the origin of the
uncertainty is some measurment (e.g., normalization uncertainty).

I Sometimes these assumptions are not justified, in case of true
“theoretical uncertainties” (e.g. nuclear matrix elements for
neutrino-less double-beta decay).

I Frequentist interpretation in the strict sense is not clear
I pull method fits very natural in Bayesian framework:

L(θ,ξ) = Ldata(θ, ξ)× Lnuis(ξ) →

f (θ, ξ) = Ldata(θ, ξ)π(θ)π(ξ) → f (θ) =

∫
dξf (θ, ξ)
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Building the χ2 Systematical errors in χ2 analyses

Referenzes on pull method in neutrino context

I in the context of solar neutrinos
G. L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Phys. Rev. D
66 (2002) 053010 [hep-ph/0206162]

I in the context of short-baseline oscillation experiments
T. Schwetz, PhD thesis, Univ. Vienna 2002, see appendix A, available at
http://www.cern.ch/schwetz

I in the context of SuperKamiokande atmospheric neutrinos
M. C. Gonzalez-Garcia and M. Maltoni, Phys. Rept. 460 (2008) 1
[arXiv:0704.1800], see appendix A

I in the context of future long-baseline oscillation experiment simulation
P. Huber, M. Mezzetto and T. Schwetz, JHEP 0803 (2008) 021
[arXiv:0711.2950]
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Using the χ2

Outline

Analysis of present oscillation data and beyond
Degeneracies

Event rates in oscillation experiments
Reactor experiments
More complicated situations

Building the χ2

Systematical errors in χ2 analyses

Using the χ2

Sensitivity of future experiments
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Using the χ2

Using the χ2

in the “χ2 appoximation”:

χ2(θ) = χ2
min(θ̂) + ∆χ2(θ)

N N − P P

parameter estimation, confidence intervall
goodness of fit

I The parameter values θ̂α which minimize the χ2 (usually called “best
fit values”) are estimators of the “true values”.

I χ2
min follows a χ2-distribution with N − P d.o.f. and can be used to

evaluate the goodness of fit.
I The ∆χ2 relative to the minimum follows a χ2-distribution with P

d.o.f. and can be used to determine confidence intervalls (or regions)
for the parameters θ.
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Using the χ2

Confidence regions from ∆χ2

A P-dimensional region in the space θ at given CL is obtained by requiring
∆χ2(θ) < X (CL) (contours in ∆χ2)

d.o.f. \ CL 68%(1σ) 90% 95%(2σ) 99% 99.73%(3σ)

1 1 2.71 4 6.64 9
2 2.28 4.61 5.99 9.21 11.8
3 3.51 6.25 7.82 11.4 14.2
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Using the χ2

Confidence regions from ∆χ2

Suppose you want to show regions at a CL β for p parameters x , and you
are not interested in q = P − p parameters y :

I use p d.o.f. and minimize wrt to y :
“the p-dimensional region for x , irrespective of the values of y”

I use p d.o.f. and fix y to some values:
“the p-dimensional region for x , assuming some true values of y”

I use P d.o.f. and show a projection of the P-dimensional volume onto
the p-dimensional x-space. (This is not a β CL region for x!)
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Using the χ2

Confidence regions from ∆χ2

Suppose you want to show regions at a CL β for p parameters x , and you
are not interested in q = P − p parameters y [note: θ = (x , y)]:

I use p d.o.f. and minimize wrt to y :
“the p-dimensional region for x , irrespective of the values of y”

χ2(θ) = χ2
min(θ̂) + ∆χ2(θ)

N N − P P

∆χ2(x , y) = ∆χ2
min,y (x) + δχ2(x , y)

P p = P − q q

∆χ2
min,y (x) ≡ min[∆χ2(x , y); y ] (p d.o.f.)

comment: this is exactly what is used for the pull-method to include systematics
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Using the χ2

Example: 1-dim and 2-dim projections
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Using the χ2

Combining several experiments

I consider M experiments.
I experiment ex consists of Nex data points.
I each experiment has its own χ2 function: χ2

ex(θ)

I the combined χ2 is simply

χ2
glob(θ) =

M∑
ex=1

χ2
ex(θ) # d.o.f. =

M∑
ex=1

Nex

I any minimization over oscillation parameters has to be done for
χ2

glob(θ), not the individual experiments

min[f (x)] + min[g(x)] 6= min[f (x) + g(x)]
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Using the χ2

Comments on Gaussian approximation

I In the Gaussian approximation (“χ2 approximation”)
I 1-dimensional χ2 projections will be parabolas
I p-dimensional regions will be p-dimensional ellipsoids
I inclination of the ellipse in a 2-dim plane gives the correlation between

those two parameters

I In the θ12, θ13, ∆m2
21 space we are close to Gaussian

I non-Gaussianities are relevant:
I mass ordering degeneracy ∆m2

31
I octant degeneracy χ2(θ23)
I CP phase δ (periodic parameter space!)

I In these cases translation of ∆χ2 values into CL (or probabilities) is
only approximate.
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Sensitivity of future experiments

Outline

Analysis of present oscillation data and beyond
Degeneracies

Event rates in oscillation experiments
Reactor experiments
More complicated situations

Building the χ2

Systematical errors in χ2 analyses
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Sensitivity of future experiments

Open questions in neutrino oscillations

I Neutrino mass ordering (sign of ∆m2
31)

I θ23: maximality and octant

I CP violation, range of δ

How to estimate the sensitivity of a given proposed experiment?
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Sensitivity of future experiments

Consider an experiment which has data ni :

χ2(θ) =
N∑

i=1

[µi (θ)− ni ]
2

ni

µi (θ): theoretical prediction of event rates, including experimental details,
resolutions, backgrounds,...

future experiment: replace data ni by predicted event rate assuming some
“true” values of the oscillation parameters θtr

χ2(θ;θtr ) =
N∑

i=1

[µi (θ)− µi (θ
tr )]2

µi (θ
tr )

I does not include statistical fluctuations (“perfect data”)

I “best fit point” (θ = θtr ) has always χ2 = 0 → ∆χ2
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Sensitivity of future experiments

Including statistical fluctuations
Simulate statistical fluctuations by using your random number generator
(Monte Carlo simulation):

nsim
i (θtr ) = P[µi (θ

tr )] , P[µ] : Poisson distribution

I For fixed θtr and a given statistical realisation a certain sensitivity will
be obtained.

I Have to simulate many experiments to obtain a “distribution of
sensitivities”.

Example CP violation
I want to discover CPV at 99.9% CL
I simulate many experiments (at fixed θtr )
I a certain fraction β of those will discover CPV at 99.9% CL
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Sensitivity of future experiments

Type I and II errors see Glen Cowan’s lecture

To quantify the sensitivity we need to quote two numbers:
the CL at which we want to make a discovery and the probability
with which a given proposed experiment will reach this.

I Type I error: probability that CP is conserved although we claim
discovery of CPV (0.1% in the previous example)

I Type II error: probability that CP is violated although our experiment
does not find it (1− β in the previous example)

for discussions in the context of neutrino oscillations see
Schwetz, Phys.Lett. B648 (2007) 54-59 [hep-ph/0612223]
Blennow, Coloma, Huber, Schwetz, JHEP 1403 (2014) 028 [1311.1822]
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Blennow, Coloma, Huber, Schwetz, JHEP 1403 (2014) 028 [1311.1822]
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Sensitivity of future experiments

Type I and II errors see Glen Cowan’s lecture

T. Schwetz (Stockholm U) Neutrino Data Analysis 65 / 72



Sensitivity of future experiments

Including statistical fluctuations

In practice Monte Carlo simulations can be quite “expensive”:

I have to simulate many experiments,
I calculate sensitivity for each of them,
I do this for each choice of θtr
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Sensitivity of future experiments

Analytical approximations
In some cases it may be possible to use analytic expressions (“Gaussian
approximation”) for the relevant probability distributions functions to
calculate type I and type II errors

Example:
mass ordering sensitivity
Blennow et al., 1311.1822
simple expressions in terms of
error function
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Sensitivity of future experiments

Median experiment
Median sensitivity corresponds to type II error rate of 50% ⇒
with 50% chance the actual experiment will obtain a better/worse result

Instead of type I and II errors one can also quote the median sensitivity
and its spread (again two numbers)

ex.: mass ordering sensitivity Blennow et al., 1311.1822
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Sensitivity of future experiments

Median experiment

Coming back to the χ2 using the predicted event rate as “data”
(no statistical fluctuation):

χ2(θ;θtr ) =
N∑

i=1

[µi (θ)− µi (θ
tr )]2

µi (θ
tr )

ni = µi (θ
tr ) can be considered as “most probable outcome” or the result

of the “median experiment”

I interpret sensitivities based on the above χ2 as median sensitivity, i.e.,
type II error rate of 50%.
holds only approximately, in general needs to be checked by MC
Schwetz, hep-ph/0612223, Blennow et al., 1311.1822
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Sensitivity of future experiments

Median experiment

Coming back to the χ2 using the predicted event rate as “data”
(no statistical fluctuation):

χ2(θ;θtr ) =
N∑

i=1

[µi (θ)− µi (θ
tr )]2

µi (θ
tr )

ni = µi (θ
tr ) can be considered as “most probable outcome” or the result

of the “median experiment”

I this is by far the most common method in the literature to calculate
sensitivities of neutrino oscillation epxeriments

GLoBES software is designed primarily for this purporse
Huber, Lindner, Winter, hep-ph/0407333; Huber et al., hep-ph/0701187
http://www.mpi-hd.mpg.de/lin/globes/
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Sensitivity of future experiments

Sensitivity calculations

“doubling” of the parameter space: χ2(θ;θtr )

for each choice of θtr one has to perform a fit to the “data”, similar as
one would do in case of real data

sensitivity depends on the assumed θtr → have to scan θ × θtr space
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Sensitivity of future experiments

Example: CP phase δ

Christensen, Coloma, Huber, 1301.7727
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Sensitivity of future experiments

Example: CP violation
define

χ2
CP = min

[
χ2(δCP = 0;θtr ), χ2(δCP = π;θtr )

]
(minimize wrt to all other parameters except δCP, incl. degeneracies)

√
χ2

CP corresponds to the
number of σ with which
CP-conserving values of δ can be
excluded (1 d.o.f.)

Christensen, Coloma, Huber, 1301.7727
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