Model #1 — Electrodynamics with a light pseudoscalar, ¢, mass u
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renormalizable quantum field theory —
all couplings have zero or positive mass dimension
no couplings are missing

most general couplings for this set of fields with zero or positive dimension and
consistent with symmetries — Lorentz invariance, EM gauge invariance and
parity — complete world except perhaps for Landau poles at very high energy,
and the lack of gravity

we will use this simple world to introduce the idea of an effective quantum field
theory at low energies — assuming m > [
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¢ has no electric charge — but its Yukawa coupling to the charged electron
allows quantum effects to induce the decay ¢ — ~~y through loop diagrams

f)/

f)/

This is a famous Feynman diagram going back to Jack Steinberger’s calculation
of m — 77y in the late *40s. In particular we will be interested in the limit

1 < m, which has something very important to teach us. But first let’s just start
calculate the amplitude from this diagram!



Actually there are two diagrams:
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note that the two diagrams are related by Bose statistics — {q1,£1} <> {2, €2}



Useful to remove the s
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There is another way to understand M#1#2 —
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Note that current conservation implies g,,, M*1#*(qy, ¢2) = 0 and this is automatic
for MH#2(qy, q2) ox €120 10 qog
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looks like integrands go like 1/¢2 for large ¢ — potential divergence
but Lorentz invariance and parity

= M"#2(qy, qo) o< €172°P gy qog

after the two g¢s are extracted, the integral is finite
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What do we know about /(q1, ¢2)?
It is Lorentz invariant - depending only on ¢f, ¢5 and (¢1¢2) = ¢1,¢5

if ¢2, ¢3 and (q1qo) are large, it should scale like 1/¢>
if ¢7, g3 and (q1¢2) < m? it should go to constant over m?
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Euclidean space integral is straightforward
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the parameter 1ntegral is still messy - easier for an “on-shell” ¢ and “on-shell”

photons, ¢? = ¢3 = 0 and = (q1 + ¢2)* = 2(q1q2) = p*.

l1—a 2
32im*m?l = K (u/m) —2/ / e dp da

1€

Mathematica knows how to do this one!



—2// mdﬂda where y = p1/m
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where Li, is the PolyLog function

notice that
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This is the answer - but not the whole story - easy in the limit © << m
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series useful only for y < 1



Explore the Taylor expansion — it’s more than just a handy approximation
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Renormalizable QFT — completely describes a consistent (if boring) world
What does this world look like if ; < m and at energies and momenta very
small compared to m? Only ¢s and s — not enough energy to produce electrons
and positrons. We can always calculate the relevant amplitudes and as we have
seen, even though there are no couplings between ¢ and ~ in £, quantum loops
intoduce interactions between them. And furthermore, we immediately notice
that things are simpler for p, 1 << m. Let’s go back to the messy integral that we
didn’t want to do.
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Now that we are thinking about approximating things for small momenta, you
can see that things simplify even off the photon mass shell, for ¢7, g5 # 0, but
still < m? — to first approximation we can neglect all the momentum
dependence in the numerator —

1= 4B da —1
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So we have an approximate, but very simple result for M#1#2 that is valid off
shell. Putting all the factors back in from
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Polynomial in momentum — this could arise from a local term in £!
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where " is the field strength
F,=0,A,—0,A,

Only polynomials in ¢ can arise in this way - no more complicated functions.
The Taylor series has not only made things simpler, but also because the
result is local, it has allowed us to interpret the effect as a new term in L.



2
6#1 HoviV2

MM (qy, qz) — @

d1v, 920
Am2m L

Polynomial in momentum — this could arise from a local term in L!
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where F'*¥ is the field strength

F, = 0,4, — 0,A,

¢ =7y ---- — ----

Higher order terms in the Taylor expansion in powers of ¢/m would be
equivalent to terms with more derivatives.

Moral: Feynman graphs involving heavy particles can give effects at low
energies that look like the effects of new terms in the Lagrangian.



Moral: Feynman graphs involving heavy particles can give effects at low
energies that look like the effects of new terms in the Lagrangian.

But this is NOT a new term in the same Lagrangian!!! That would be double
counting. This term only makes sense as a term in a Lagrangian of an “effective
low energy field theory” from which the heavy fermions have been removed.
This is an example of the process of “matching” the physics from a high energy
theory to a low energy theory. This is the key to the idea of effective field theory,
and I want to examine it in some detail.



This happens all the time — but in field theory it is complicated!!!

W and Z exchange
weak interactions

momentum

CP Violation
second order —
weak interactions
loop
momentum

N

light by light
scattering — ><
loop
r-’-rr‘nomentum\

How can this MATCHING possibly work??? Convergent versus divergent
diagrams? Counterterms? IR divergences???




But in spite of the complications of loops, it does work — I want to begin my
series by showing explicitly how it works in perturbation theory in the simplest
case of matching at the scale of a heavy particle. All effects of heavy particles at
low energies small compared to their masses can be MATCHED into parameters
in a new Lagrangian — this is the “effective theory’’ of this model for scales
small compared to m

— NOT a renormalizable theory — terms o< 1/m*
— NOT a complete theory — accurate only for p < m

— BUT perfectly consistent in its domain of validity and it is useful to think
about this theory on its own — without discussing the heavy particles at al

— The last statement is the interesting one. Like any nonrenormalizable theory,
the effective theory requires an co of counter terms and therefore an co number
of terms in £ — not just ¢ etves F,, F,z5 but terms with more derivatives and
more (and fewer) F's and ¢s — anything allowed by Lorentz invariance and
parity will be there with a nonzero coefficient — so what good is it?

— Each coefficient can be calculated in terms of e, m, u, A and f — at least in
perturbation theory. And as we have seen in the example of ¢ e#** F,, F, 3, it is
sometimes much easier to calculate these coefficients than the full amplitude,
because Taylor expanding the denominators may lead to simple polynomial
integrations at least for one loop diagrams.

— But still you can’t calculate an infinite number of them so what good is it?



— Fortunately, only a finite number of terms are needed to calculate any process
to a given accuracy!
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the effects of terms in £ of dimension n are supressed AT LEAST by
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where p is the typical momentum in the process. The « coefficients may also be

small because they involve small couplings from the original theory. This
1/m"~* supression is on top of that.
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At very low energies only the lowest dimension terms are important and the
theory is nearly renormalizable.

As energy increases, more and more terms become important

As energy approaches m, all the infinite number of terms become important and
the theory becomes useless.

This is the life cycle of an effective theory and it mirrors the chronology of
exploration in particle physics.

Very little of this depends on knowing the theory at high energies.

So maybe this is a way of making sense of nonrenormalizable theories



another model — much simpler example, but with two separate scales — 4
complex scalars ¢; for j = 1to 4
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L, invariant under U (1)*
L, invariant under a global U (1) symmetry of the form

o1 — 61%1 P2 — €3w¢2 ¢z — €9i9¢3 Gy — €2m¢4

Exercise 1. Show that these are the most general interactions consistent with the
symmetry and with dimension < 4 (which implies that this is a renormalizable
theory).
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my, My << Mo <K< M3
original renormalizable theory

¢1, ¢2’ ¢37 ¢4

eliminate ¢3
and match

P15 P2, P4
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O1, P2, 3, P4 o
eliminate ¢
and match
¢19 ¢29 ¢4
eliminate ¢»
and match
b1, G4
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and match

nobody home - no particles - no physics
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and match

nobody home - no particles - no physics
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Exercise 2. Find a4 and o 4.

This example is really obvious, because these terms in the effective theory could
be obtained just by “integrating out” the heavy fields — that is (in the functional
language) doing the functional integral over the heavy fields leaving the light
fields unchanged. One of the things I want to show you is that this is not the
general situation (even when it makes sense at all — which it doesn’t in
situations in which the light fields are not present in the high energy theory).
“Integrating out” is not the whole story of effective field theory.

But effetive field theory, properly defined without making simplistic assumptions
about how it works, is both powerful and inevitable..



Renormalizable QFT in n dimensions

interactions terms have dimension n or less

Effective QFT with scale y in n dimensions

no constraint on dimension of interaction terms
BUT coefficient p; of terms of dimension £ > n must

satisfy
1
e S ——
1k

so that the effects of nonrenormalizable interactions are
suppressed by powers (p/ )"



N —

ms

m, My

mi, my < mo <K Mg
original renormalizable theory

QZ51, ¢2’ ¢37 ¢4

eliminate ¢

and match
K12

—?Qﬁ@b; + Qg4 )+

eliminate ¢
and match

—ay s+



e 2 Am
e Aty
e L4

energy F/
+ theory

K<L 1/E
K Q e’“’o‘ﬁFM,,Fag

k2 1/E

the theory is
not useful
at this energy

perturbation
theory works

perturbation
theory works

the theory is
not useful
at this energy



1PI graphs, background fields, and all that — (good reference is 33-42 of
“INTRODUCTION TO THE BACKGROUND FIELD METHOD” Vol. 813
(1982) ACTA PHYSICA POLONICA No 1-2, By L. F. Abbott)

Zls) =" = (0 0), = [ e I1E0 5

Z[s] is the generating function for the Green functions

W {s] is the generating function for the connected Green functions
W0] all connected Feynman graphs with no external lines

W’[0] all connected Feynman graphs with one external line

W"[0] all connected Feynman graphs with two external lines

W) [0] all connected Feynman graphs with three external lines



Zs] = e!"ls]
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Ws] is the generating function for the connected Green functions.

[ s¢ is short for
> [ sule)oute)

but we will usually drop the « and the (z) and just remember that these objects
are “vectors” in position space and internal space

['[®], the generating functional for 1PI graphs — T'[®] is obtained by making a
Legendre transformation on W [s] (familiar from thermodynamics and stat mech
I suspect)

F[(I)]_W[S]—/Sq) where @—65_2/

is the “classical field” corresponding to the quantum field ¢ — note

0 0" we want this to be 0 for the theory
0P {F[(I)] = Wls| - / s @} = $= 5% without sources — determines (&)

['[®] is sometimes called the “effective action” — but this terminology would be
confusing, because the “effective Lagrangian” is going to mean something
slightly different to us, so I will just call it I'[®]
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Example - free scalar field L(p) = —%qb(@Q +m®)¢
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L[®] = W(s| — / s® where ¢ = 6(;2/
£(6) = —50(0 + m*)
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For a quadratic £, up to an additive constant, ['[®] = [ L(®)



Symmetry ¢ — ¢ = Up where L(U¢) = L(¢)
Z[s] =" = (0] 0), = /emﬁ(@ﬂd)) 0¢]

_ /6z'f(£(U¢)+s¢) 5] = /eif(ﬁ(U¢)+sU1U¢) 0]

= /eif(ﬁ(o}HsU%) S(U )]
then if [§(U~1¢)] = [69], Z[s] = Z[sU ] and W([s] = W [sU ]
L[U®] = Ws] —/ sUD

=W[sU ] - / SUTUD = W3] — / 50 = I'[9]

thus I" inherits the symmetries of L if the functional integral is also symmetric
(anomalies?)



oW or

F[‘I)]ZW[S]—/SCD where @:E — s=—ss
e ScPw
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is a “matrix” in position space and interal indices («) - it is the full interacting
propagator in the presence of the source — now look at

_00_dsse_ 0T 2W
0D 0D s 0DOD dsds
ds 8 1

T30 60od D
is the inverse propagator and it means that

5 b5 6 16

60 0® ds 4D s
so differentiating with respect to the classical field is like differentiating with
respect to the source, adding an external line, except the line gets amputated

thus I'[®] is a generating functional for amputated diagrams
next let’s see why it actually generates the 1PI diagrams — proof later



three facts

52T 52w ) )
=—[iD™ = [iD — =[iD v
(5@15@2 [Z ]12 581(582 [Z ]12 6(131 [Z ]11 (581/
5T 5 6

0D,0D,0Ds  0Ds 0D, 0D,

0 . o o
= 5, (D) = ~6D b 26D
. o .
— [iD_l]lll[iD_l]QQI[lD 1]33/6 [ZD]1/2/
S3r
BW

— (D s liD [0 sy o —
(D™ Lw[iD™ a2 [iD™ ]s 081108910831

term in I'[®] with three ®s is the amputated connected 3-point function — the
full 3-point vertex in the interacting theory including sources —



so for example

is a graph that could contribute to I')



~
ole

but

is not because the right side is part of a propagator that gets amputated



three facts
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term in I'[®] with three ®s is amputated connected 3-point function

= [iD" 11 [iD™ o [iD sy

o'T : d
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the s, differentiation can act in one of 4 places



three facts
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term in I'[®] with three ®s is amputated connected 3-point function
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if the s, differentiation acts on the §3W/ds1/0s0:0s3 we get an amputated
connected 4-point function

SW
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581/582/583/584/
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three facts
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term in I'[®] with three ®s is amputated connected 3-point function
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if the s, differentiation acts on the [iD 1|33 (say) we get

FWo 5w

~[iD ™M1 Doy s [iD V55—
S e o o o PO o

internal [i D~ ']55 — incomplete amputation — what this (and two cross terms)
do is to subtract out all the diagrams that fall apart into two 3-point vertices
connected by a propagator






so something like this does not contribute to I'*




three facts
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this keeps happening — because each new ® derivative can act on
the external and internal D~'s as well as the vertices, all internal
propagators get removed in I'(")

= ') consists only of graphs that cannot be divided in
two by cutting any single graph — these are called
“one-particle irreducible” or “1PI”” graphs

1Pi has all the physcs — [I'?]~! gives the propagators
that describe the long-distance physics of particles

moving from here to there in space-time — I'") for

n > 2 describes the vertices that describe interactions in
regions of space-time — skeleton expansion



The loop expansion — put the factors of 7 in our Feynman graphs

(0] 0y, = /eif(ﬁ1£(¢>)+8¢) [5¢)

vertices o< h~! — propagators o< h

Zs] = eVl

for amputated Feynman diagrams factors of i <+ loop integrations —

internal line — d¥% o« & h# of lines-# of vertices
vertex  — 0Y(0) o« h7!
ft of ( # of 1) = rerfa?lfing
4 - 4 - =
d*( 5*(0) 7y
. # of # of # of
internal  — . —1 =
T vertices loops
ines
_ 1 :
potloops=1 Pl = — W0 Do[®]?
h J
J=# of

loops



['[®] is the generating function for the sum of 1PI diagram
['[0] is the sum of all 1PI graphs with no external lines
I[''[0] is the sum of all 1PI graphs with one external line
I'"]0] is the sum of all 1PI graphs with two external lines

I'®)[0] is the sum of all 1PI graphs with three external lines

you might think that I'[0] and I”[0] would not be very interesting —
but in fact they are very important —

['[0] are sometimes refered to as “vacuum graphs”

[''[0] are sometimes refered to as “tadpole graphs”



background field method (not background field gauge)

W s _ / i [ (L0 39) [55]  iWE=f 560

oy is a “background field” — define classical field @ in the presence of the
background field ¢,

f[@,gbb]:ﬁ/[s,m]—/sci) where éz%—wziﬂ—gbb:@—qﬁb
s s

T[®, ¢y) = W]s] — /mb — / S(® — ¢p) = T[®] = L[ + )

shifting the quantum field by adding the background field gives the same " of a
shifted classical field!!!! — now look at vacuum graphs in the presence of ¢,

I'[0, ¢5] = T[]

vacuum graphs in the shifted theory as a function of the background field ¢, give
you I'[¢]



Exercise 3. Consider a field theory of a single real scalar field with mass m and
coupling A ¢ /4!. Think about I'(®) for a constant classical field ® and calculate
the coefficent of ®° in two ways:

1. Calculate the 1PI 6-point function with conventional Feynman diagrams;
and

2. Use the background field method.



background field method makes it easy to see that I'[®] generates 1PIs
W ls.dn] _ / i [ L@+ 39) [55] = iWE=f 500

f[é,asbJ:W[s,m—/sé where =0 =00 g 0 g,

£, ) = Wis] — [ s / (@ — ¢u) = T[0] = T[d + &)

L0, ¢s] = T[]
I'[¢y) graphs are 1P if T'[0, ¢) vacuum graphs are 1PI

[0, ) = Wls, ¢] evaluated where (Zﬂ =0
s

dW /§s = 0 means that we have chosen s so that the sum of diagrams with a
single line coming out vanishes — this means we can throw out all the 1-particle
reducible diagrams, because we know their contribution vanishes when we sum
over all diagrams connected to the single line



background fields - classical fields - and the loop expansion

W s.dn) _ / i [ (L0039 [55] = iWEl=f 500

L@, gp] = I[D + ¢y I'[0, ¢) = T[]

look at I in the loop expansion I'[®] = > I';[P]

j=% of loops
0-loops: these are just tree graphs

— but tree graphs are not 1PI if they have any propagators! thus
only the bare vertices contribute

— but this is just £ — this is easiest to see in the background field
method where the vacuum contribution — the diagram with no
external lines — is just the value of [ £(¢ + ¢;) for ¢ = 0 — that

is [ L(¢n)
[y[@] = / £(a)

this will allow us systematically to match onto the effective theory



What does this have to do with effective field theory?
what happens at the boundary between two quantum field theories?

compare a high energy theory that has some heavy stuff and some
light stuff with a low energy theory that describes only the light
stuff — expand £, in powers of i and compare powers

how do we choose the parameters in the low energy theory so that
the low energy theory gives us the same physics at low energies as
the high energy theory?

because we are only interested in the low-energy physics, we only
need sources for the light degrees of freedom — what happens
when we construct I'[®]?

internal heavy particle lines are not canceled - 1-light-particle
irreducible (1LPI) graphs



high energy theory
W L (e, o) el

/eif(ﬁh(d)é@h)"‘s(bf) (00 0py]

Fh[q)g] = Wh[s] —/ S(I)g

oW,
b, = 5—h — 1LPI graphs
5

light and heavy internal lines
only light external lines

low energy theory

> oW Ly(en) e
—0
/eif(ﬁe(d)e)JrSW) (0]

Fg[q)g] = Wg[s] —/ S(I)g

oW,
D) = 5—6 — 1PI graphs
s

only light internal lines
only light external lines

how do we choose the parameters in L, to get the same physics at
low energies — what does this mean precisely?



YLy (e, dn)— e!MVhls]

Fh[q)g] = Wh[s] —/ S(I)g
oWy,

&)= —— — ILPI graphs
0s

light and heavy internal lines

0-loops: heavy particle trees

S WLy (g M
=0

Fg[q)g] = Wg[S] — / S(I)g
oW,

&)= —— — 1PI graphs
s

only light internal lines

0-loops: T'o[®s] = [ Lio(Pyr)

0-loops: we can calculate I';y by summing over all heavy particle
trees with external (amputated) light particle lines —

because all internal lines are heavy, we can Taylor expand each
diagram in powers of momenta over the heavy particle masses —

this gives a series of local terms with increasing dimension
(because of more power of p which become derivatives) —

we identify the terms in this series with the terms in f L (Py)



Lo, o) — e/l

Fh[@g] = Wh[s] - / S(I)g

oW,
b, = 5—h — 1LPI graphs

light andsheavy internal lines

0-loops: heavy particle trees

1-loop - h": 1 loop attached
to heavy particle trees

2-loops - h': 2 loops attached
to heavy particle trees

Z hj_lﬁgj (gbg)% ein[s]

Fg[q)g] = Wg[s] - / S(I)g

SW,
By =
Ty

only li?;ht internal lines

[ Li(Py)

“I-loop” - A" a light particle
loop with only Ly, vertices
or f £z1
“2-loops” - h': 2 light particle
loops with only Ly vertices
or one light particle loop
with one Ly or [ L

— 1PI graphs

0-loops: T'y[®/] =

set equal order by order in A



another scalar example — just showing “non-compulsory” couplings

®2 ®s

* o112 * A1225
G im0 Gy el Gy

; ;

¢1 o

1o a real scalar field — what are the symmetries?
take mg, m1, ms << my and look at effective theory below m.



Lo, o) — e/l

Fh[@g] = Wh[s] - / S(I)g

oW,
b, = 5—h — 1LPI graphs

light andsheavy internal lines

0-loops: heavy particle trees

N WLy () €M

j=0
Fg[q)g] = Wg[s] - / S(I)g
O, = ﬂ — 1PI graphs

only li?;ht internal lines

0-loops: T's[®s] = [ Lu(Pyr)



another scalar example — just showing “non-compulsory” couplings

®2 Ps

* o112 * A1225
G im0 Gy el Gy

; ;

¢1 o

take mg, my, ms << my and look at effective theory below mo

b o5 b Taylor

b5
. . expansion o1 N . &
{41 ~ s
o -->'-,--¢>'-i-<--,-<-' 1 ¢1 """"/‘1:\"""“ ¢
| 2 2 | 4 AN
: . : ~ )\(2)112)\1225 7 \ N
4
o & o ms o o To



another scalar example — just showing “non-compulsory” couplings

P2 Ps

‘ Aot12 A A1225
P1 ~W=l-===T Py -B—!-—a- )y

A :

o ¢1

take mg, my, ms < my and look at effective theory below m



another scalar example — just showing “non-compulsory” couplings

P2 Ps

‘ Aot12 A A1225
P1 ~W=l-===T Py -B—!-—a- )y

A :

o ¢1

take mg, my, ms < my and look at effective theory below m

o1 s ®1

L

O —— - ----

Mo ¢1 Mo



another scalar example — just showing “non-compulsory” couplings

P2 Ps

‘ Aot12 A A1225
P1 ~W=l-===T Py -B—!-—a- )y

A :

o ¢1

take mg, my, ms < my and look at effective theory below m

$1 . s ) P1
¢ -- -»—X/- >-i< -\[—4— -- ¢

Mo ¢1 Mo



another scalar example — just showing “non-compulsory” couplings

P2 Ps

‘ Aot12 A A1225
P1 ~W=l-===T Py -B—!-—a- )y

A :

o ¢1

take mg, my, ms < my and look at effective theory below m

¢1\ s /¢1
U
¢1 """/‘)T(‘\"‘"' $1



another scalar example — just showing “non-compulsory” couplings

P2 Ps

‘ Aot12 A A1225
P1 ~W=l-===T Py -B—!-—a- )y

A :

o ¢1

take mg, my, ms < my and look at effective theory below m

1 s 1
N * rd
| —=—=— =2l a----
rd N
// ‘ \\
rd N
7 1 N



Lo, o) — e/l

Ph[q)g] = Wh[s] - / S(I)g

oW,
b, = 5—h — 1LPI graphs

light andsheavy internal lines

0-loops: heavy particle trees

1-loop - h": 1 loop attached
to heavy particle trees

Z hj_lﬁgj(gbg)% ein[s]
7=0
Fg[q)g] = Wg[s] - / S(I)g

SW,
By =
Ty

only li?;ht internal lines

[ Li(Py)

“I-loop” - A" a light particle
loop with only Ly, vertices
or f £z1

— 1PI graphs

0-loops: T'y[®/] =



1-loop - h": 1 loop attached
to heavy particle trees

“I-loop” - K": a light particle
loop with only Ly vertices

or [ Lpn

¢1 R s /¢1
N *//

o1 ’ ‘770

_I_

o1 . s /</>1

b
b1 ""’""1’"'*"" P1



Potential IR divergences from the 7, propagator

/ 1 d*q
q> +mi + ie (2m)*

UV divergent and IR finite, but the m3 dependence is problematic -
derivatives wrto m3 have IR divergences as mg — 0



1-loop - h": 1 loop attached
to heavy particle trees

¢» Lpisa P1
difference
between 1-loop
h and ¢ graphs

“I-loop” - K": a light particle
loop with only Ly vertices

or [ Lpn
¢1 R s /¢1
N * ,
®1 ’ 1o
_I_
o1 . s /</>1
b
R St BN 0J]
A
P1



Potential IR divergences from the 7, propagator

/ 1 d*q
¢ +mi + ie (2m)*

This is IR finite, but the m?2 dependence is problematic - derivative
wrto m3 has IR divergences as mg — 0

But the matching term L/ is a difference of / and ¢ diagrams
with the same small ¢ behavior by construction so the result is
IR finite and it can be explanded in powers of m safely — this will
turn out to be a big advantage, because it means that we can use
dimensional regularization and minimal subtraction even though
this scheme (I will argue later) changes the physics both in the UV
(which we want) and 1n the IR (which couldp be dangerous).



1973 —- mass indendent renormalization schemes — Weinberg
and ’t Hooft—Veltman

great advantages to eliminating UV divergences from the zero-mass
theory — treating the masses just like coupling constants — leads
to simple, homogeneous renormalization group equations

liberates us from the notion that parameters in the Lagragian are
necessarily “physical”

dimensional regularization and minimal subtraction or M S is a
great example

I will focus on M S — 40 years ago, 't Hooft and Veltman showed
mathematically that it works to eliminate UV divergences, and we
all use it, but there are subtleties that are easy to forget.

I will try to explain more physically why it works, when it works
and why this very convenient tool really requires effective field
theory to be of much use.



formal review of dimensional regularization (DR) - begin with the calculation of
the n-dimensional volume Q(n) such that d"k = Q(n)k"'dk

a2 — ( / e dk) = / e d'k = Q(n) / e KV dk
—00 0

1 0 ) 1 n
- -Q K231 e d(k?) = ~Q(n) T (-)
50 [ E R ) = So0T (3
N Q( )_ 2 /2 this form can be extended

n)= F(n/2) to fractional dimensions

now compute generic Feynman graph in x dimensions (in Euclidean space):

[y
I(a, B, k) :/ (k2 + A2)> (27)"

where A? is a polynomial in momenta, masses and Feynman parameters

. Q(/ﬁ?) /OO kn+2ﬁ % . Q<K1) (AQ)B—O(+H/2 /OO yﬁ+26 @
@ Jo (R2+ A ko (2m)F o (I+y?)> y




(k2% &k Qx) /°° k28
o

logn(A%) = / (k2 + AZ)e (2m)F  (2m)F K2+ A% &

Q(/§> (AQ),B—OH—H/Q /OO y’i—‘r?ﬂ @
(27)" o (L+y%)*y
2

_ Y 2_ T 2 1

ey Voo MY S
2Ilny =Inz —In(1 — ),

dy 1 1 dx
2 —_— = — = .

y da (x+1—x> z(l—x)
Q(r)
(2m)%
Q<I€) (A2)57a+1€/2 1 F(ﬁ + R/Q) F(OC B 6 — R/Q)
(2m)" 2 I'(«)

1—2x’

1
(A2)Fmots/2 %/ aPHRPEN(L — )R gy
0

Lopn(A?) =

or

K2+ A2y (27)r  (dm)n2 T(x/2)T(a)

/ (k)8 dk (APt 2 T(B+ k/2) T (o — B — 1/2)
(



K2+ A2)a (2m)5  (dm)/2 T'(x/2)T(a)
k = 4 — ¢, dividing by ¢ to get dimensions right —

/ (K*8  dk (ADFHR2 DB+ k/2) T(a — B — K/2)
(

(k2 + A2)o (2m)d—ey—c  (4m)2=</2p—¢ ['2—-¢/2)T(a)

/ (k2)P d=k (A2)2H8-a=¢/2 D(3 +2 — ¢/2) T(a — B — 2+ ¢/2)

The important thing I want to focus is the completely trivial way
that the dimensional parameter 1 1s introduced, completely
independent of the details of masses and momenta. Calculationally,
this is a huge advantage.

But what on earth does this mean physically???

defined by analytic continuation from regions in ¢ where the
calculation is well-defined

why is this a sensible thing to do?



(R + A) @ryep  (@m)e P [(2 - ¢/2) (o)

/ (k%)” d'~k (A2)2HP-e=<2 D(B4+2—¢/2)P(a— —2+¢€/2)
everything is finite and well-defined as ¢ — 0 except for ['(av — 3 — 2 4 ¢/2)

10}

&

poles as e — 0 for 2 + 3 — a any nonnegative integer — makes sense — the LHS
is a divergent graph fore = 0 — 2 + § — o = 0 — log divergence —
2+ [ — a = 1 — quadradic divergence — etc



(P + A) @ryep  (@dm) e [(2 - ¢/2)T(a)

/ (k*)P d*k (A2)2HBe=e2 (342 —€/2)T(a— B —2+¢€/2)
everything is finite and well-defined as e — 0 except for I'(aw — 5 — 2 + ¢/2)

10}

&

but the nature of the divergences is a little peculiar — no large scale just powers
of A — all divergences are 1/¢



o [k
Ia,B,4—e<A ) - / (k2 +A2)o¢ (277')4_5/1_6
(A2 T(5 42— ¢/2)T(a— f — 2+ ¢/2)

o (4m)2e2pe (2 —¢/2)T(a)

the integral is convergent for o > 3 + 2 and A% > 0 and then we can just take the
limit

Lopa(A?) =1lim Lo g4 c(A%)
e—0
no regularization or subtraction is required

for a < 8 + 2 the interval is UV divergent, but there is no large scale — just
powers of A with 1/e poles for non-negative integral values of 5 — o — 2



MS and M S

divergences appear in a standard way as poles in € — rather than “renormalzing’
them we just throw them away — “‘subtract” them by adding counterterms

2

step 1 — calculate with € # 0 and expand the result around ¢ = 0 — note that ¢
dependence can arise in many different places from the extension to 4 — €
dimensions, and all these must be included

step2 — MS — 1/e — 0 — subtract poles in ¢
step2 — MS —1/e — ('y — log(47r)> /2 — designed so that simple 1-loop
graphs are unchanged

D(e/2) = 2 — 7+ O

/(WJAWMJZX%*:G§>ﬂQé§§%
1

2 A? 1 12
= 1673 (E — v + log(4m) — log <F)) + O(e) — 62 log <ﬁ)

exactly what we would get in a momentum-space cut-off with A — p




for a = [ + 2 the integral is log divergent — this is where all the physics is —
all the other divergences are positive interger powers of A? times this —
associated with local counterterms.

) (kQ)a—Q d4—ek
]oz,oc—274—6<A ) = / (k2+A2)a (271-)476#*6

(A%)~ T(a—¢/2)T(¢/2)
@m)? 2 T(2=€/2)T(a)
using k% = (k% + A?) — A? we can always write this as

1 d*—<k finite
2\ __
[a,a—2,4—€(A ) - / (kQ —|—A2)2 (27T)476M76 + terms

(A%)~</2T(e/2) finite let’s try to understand what
(47)2—</2p—¢ terms this means physically




physical idea of a regularization scheme — a modification of the physics of the
theory at short distances that allows us to calculate the quantum corrections

if we modify the physics only at short distances, we expect that all the effects of
the regularization can be MATCHED into the parameters of the theory

it is not obvious that DR is a modification of the physics at short distances

;o / 1 d'=k
€ (k62+k2 +A2)2 e (QW)476

B / 1 d~k d'k

~ ) R A2 2 (20)
explicitly separating out the “extra” —e dimensions, so that & is the 4
dimensional squared norm of £ — do the integral over the —e extra dimensions

(of course this is not the way we would actually calculate the graph — but it will
help us to understand what is happening)



I / 1 d—k  d*k
T R A2 (2mp) (2
explicitly separating out the “extra” —e dimensions, so that & is the 4
dimensional squared norm of £ — do the integral over the —e extra dimensions

(this is not the way we would actually calculate — but it will help us to
understand what is happening)

Y r(e B+ AP\ dtk where 7(€) = L2+¢/2)
L= | “( P ) ami Ve 19 =)

multiplicative factor, r(¢) — 1 as ¢ — 0 — important factor is

—€/2 where _ k? + A2 p~/? = 1ase— 0but
P= A7 depends on k and A

p

1
p =2 521 for |Inp| < -
€

DR does not change the physics for k£ and A of order p
differentin UV if k OR A > —  differentin IR if t AND A < p
DR changes the physics in the infrared as well as the ultraviolet region



DR changes the physics in the infrared as well as the ultraviolet
region

We have argued that this is OK for matching at a boundary between two different
effective theories because the matching contributions involve differences
between the high energy and low energy theories, from which the IR physics
cancels because it is constructed to be in the same in the two theories order by
order in the loop expansion.

But how and why do we choose p in either theory? The goal is to make
perturbation theory work as well as possible. So choose ;. to minimize the logs
that appear in calculation of physical quantities.

This is hopeless if there are heavy particles with different masses in the theory
because different heavy particle loops will give different logs and you cannot
eliminate all of them by choosing . It is nice that the renormalization group
equations in M S are simple, but without effective theory they don’t do any good
because there is no way to choose p that really helps. If you want to use the
simple renormalization group you get with M S, you must eliminate heavy
particles as you go down in energy and match onto a succession of new effective
theories at each threshold. You can do this because each matching makes sense
in spite of the M/ Ss issues with IR divergences.



Of course, this argument is close to my heart, because it is the basis of coupling
constant unification in GUTS.

|

4 B8 8 10 12 14 16 18
Log, ,(Q/1 GeV)



If we want to use a mass-independent scheme we are forced to replace our single
theory in an on-mass-shell scheme with a whole tower of effective field theories
— then the large logs can be controlled

the extreme perturbative effective field picture theory replaces a single theory
with a tower of effective theories depending on the continuous scale ;. — at the
mass of each type of particle (or other new physics with a mass scale) there is a
boundary where we switch from one effective theory to another, matching the
couplings in the two theories to get the same physics on the boundary — between
the boundaries the couplings (and masses) of the theory evolve or “run” with p
— matching and running are the basic tools we use in working with effective
field theory — going down in y we can calculate — this gets less useful when the
scales are not well-separate, as often happens in our world — but it is still the
best way to think about QFT

Of course, what we really want to do to understand the world at short distances is
to go UP in p — this is an imperfect process of trying to find clues in the low
energy theory to the physics of the boundary and above



It is worth emphasizing that this depends on the unknown details of physics
between a TeV and GUT scale. Somewhat robust because complete multiplets
leading order do not affect the rate at which the inverse couplings approach one
another.

4 6 8 10 12 14 16 18
Log, ,(Q/1 GeV)



Altarelli et al. A non supersymmetric SO(10) grand unified model for all the
physics below Mayr
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Morals

Something has to be left out to go from a high energy theory to a lower energy
effective theory — otherwise you are double counting. Sometimes in the
literature, people ignore this obvious fact and use the term “effective theory” to
describe the full theory in a restricted energy range, and this is not very helpful.
You understand an effective theory only when you really understand what is left
out to get it from the high energy theory above it.

In constructing the Lagrangian of the effective theory, you are not just integrating
something out. You are matching!

You can see the difference in one of the examples we discussed earlier which
shows that you can’t just do the functional integral over heavy fields.



1-loop - h": 1 loop attached
to heavy particle trees

¢» Lpisa P1
difference
between 1-loop
h and ¢ graphs

“I-loop” - K": a light particle
loop with only Ly vertices

or [ Lpn
¢1 R s /¢1
N * ,
®1 ’ 1o
_I_
o1 . s /</>1
b
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There is a closely related issue. Within the general framework of the effective
field theory idea, there are two rather different approaches, which I will call the
Wilsonian approach, and the continuum effective field theory approach. It is the
second of these that I will discuss in detail here. But I should start by explaining
why I think that they are different. I will argue that the two take a very different
approach to renormalization.

In Wilson effective theory, the fundamental question is How does the full theory
change as you integrate out high momentum modes and look at it at larger
distances? This question fits in nicely with a physical renormalization scheme
such as momentum space subtraction and physical renormalization.

In what I call continuum effective field theory, the question is How do we
modify the theory to allow the use of a mass independent scheme and still
get the physics right? The idea is to put in by hand as much as possible of the
dependence on distance scale. The more of the physics of distance scale that is
put in by hand, the easier it becomes to extract the physics that your really care
about.



Many years ago, my wonderful former colleague Sidney Coleman once asked

me: What’s wrong with form factors? What’s wrong with just integrating
out heavy particles and large momentum modes, ala Wilson and using the
resulting nonlocal theory as your interaction?

The answer of course is There nothing wrong with it — but this is not an
effective field theory calculation. It is just a way of doing the full theory
calculation. and so you do not get any of the advantages of an EFT
calculation.

The fact that one of the world’s greatest field-theorists would ask such a question
convinced me that the idea of continuum effective field theory was not
universally understood then. I think that people are still sometimes confused.



The advantages that we have seen of continuum EFT include

1. Concentration on relevant physics: It allows us to deal just with the
particles that we actually know about, and interactions that we already see,
and postpone speculation about higher energies.

2. Consistency with a mass independent renormalization scheme: It allows us
to use a convenient scheme like //.S and still get the physics right. This
leads to simpler, more transparent calculations.

3. Dealing efficiently with IR divergences: As I have shown you, the effective
theory calculations can be organized to explicitly avoid infrared
divergences. In particular, calculations of matching corrections are
automatically infrared finite.

4. The EFT stucture incorporates important nonperturbative information
automatically (as in coupling-constant running).



Quadratic divergences and fine tuning.

One thing that is missing in continuum EFT is quadratic divergences. Mass
independent schemes don’t have quadratic divergences for the obvious reason
that power-law dependence on a cut-off mass is not mass independent.

It is not obvious what this means for arguments that depend on cancellation of
quadratic divergences. Personally, I believe that fine-tuning IS an issue, I am just
not sure that it can always be quantified in this simplistic way.



