Basics

in Misibles

neutrinos, dark matter \& dark energy physics

Invisibles School 2014
8-13 July, Gif-sur-Yvette, France
"False facts are highly injurious to the progress of science, for they often endure long; but false views, if supported by some evidence, do little harm, for every one takes a salutary pleasure in proving their falseness."

Nuclear Reactors

Accelerators

The Imponderable

Lightness
Cosmic Gall
by John Updike (1963)
Neutrinos, they are very small.
They have no charge and have no mass,
And do not interact at all.
The earth is just a silly ball
To them, through which they simply pass
Like dirt maids down a drafty hall,
Or photons through a sheet of glass.
They snub the most exquisite gas,
Ignore the most substantial wall, cold shoulder steel and sounding brass,

Insult the stallion in his stall, And, scorning barriers of class, Infiltrate you and me! Like tall And painless guillotines, they fall Down through our heads into the grass.
At night, they enter from Nepal And pierce the lover and his lass From underneath the bed. You call It wonderful; I call it crass.
Lectures:

1. Basic Neutrino Properties
2. Neutrino Oscillations

Lecture 1

Basic Neutrino Properties

1. From Discovery to the Standard Model

ELEMENTARY PARTICLES

Discovery of the First
 Neutrino

1956 : Fred Reines \& Clyde Cowan
C.L. Cowan Jr, et al. Science 124, 103 (1956)
F. Reines and C.L. Cowan Jr, Nature 178, 446 (1956)

[^0]
Discovery of the
 Second Neutrino

1962 : Steinberger, Lederman \& Schwartz
the mulon neutrino

$$
p+p \rightarrow \pi+X
$$

$$
\nu_{\mu}+N \rightarrow \mu+Y
$$

Discovery of the Third
 Neutrino the tau neutrino

 2000: DONUT CollaborationDONUT Detector

Parity \& Charge
Conjugation Violation

The Standard Model

$$
S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}
$$

Electroweak Symmetry Group

- SU(2) $\mathrm{L}:$ weak isospin Group Generators: $I_{a}(a=1,2,3)$ with $\left[I_{a}, I_{b}\right]=i \varepsilon_{a b c} I_{c}$

$$
\text { egg. in 2D representation } I_{a}=\tau_{a} / 2
$$

- $U(1)_{Y}$: hypercharge Group Generator: Y

The action of Y on fermion fields is constrained by
Gell-Mann-Nishijima Relation

$$
Q=I_{3}+Y
$$

The Standard Model

Representations of the fermion fields（which lead to the correct phenomenology）is

```
left-handed (L) chiral components: weak isospin doublets
```

$$
\begin{aligned}
& \boldsymbol{\sim} \mathbf{L}_{\mathbf{e}}=\binom{\nu_{e L}}{e_{L}} \\
& \mathbf{L}_{\mu}=\binom{\nu_{\mu L}}{\mu_{L}} \\
& \stackrel{\text { 山 }}{\text { 山 }} \mathbf{L}_{\tau}=\binom{\nu_{\tau L}}{\tau_{L}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{L}_{\alpha} \equiv(2,-1 / 2) \\
& Q_{\alpha} \equiv(2,1 / 6)
\end{aligned}
$$

The Standard Model

Representations of the fermion fields (which lead to the correct phenomenology) is
right-handed (R) chiral components: weak isospin singlets

$$
\begin{gathered}
e_{R}, \mu_{R}, \tau_{R} \\
\mathrm{E}_{\alpha} \equiv(1,-1) \\
\nu_{\text {ep }}, \tau_{\tau_{R}}
\end{gathered}
$$

not present in the SM

$$
\begin{aligned}
& \text { (} u_{R}, c_{R}, t_{R} \\
& \mathrm{U}_{\alpha} \equiv(1,2 / 3) \\
& \alpha=u, c, t \\
& d_{R}, s_{R}, b_{R} \\
& \mathrm{D}_{\alpha} \equiv(1,-1 / 3) \\
& \alpha=d, s, b
\end{aligned}
$$

Standard Model

Quarks

u	c	t
d	s	b

$e \mu \tau$

$\boldsymbol{V}_{e} \quad \boldsymbol{v}_{\mu} \quad \boldsymbol{V}_{\tau}$
Leptons
$j_{\mathrm{cc}}^{\mu}=\bar{f}_{\alpha} \gamma^{\mu} P_{L} f_{\alpha}^{\prime}$
$j_{\mathrm{nc}}^{\mu}=\bar{f}_{\alpha} \gamma^{\mu} P_{L} f_{\alpha}$ flavor diagonal

The Standard Model
Since L and R components of the fermion fields transform in different way, the presence of a bare mass term

$$
\mathcal{L}_{\text {mass }} \propto \overline{\mathbf{f}} \mathbf{f}=\overline{\mathbf{f}}_{\mathbf{L}} \mathbf{f}_{\mathbf{R}}+\overline{\mathbf{f}}_{\mathbf{R}} \mathrm{f}_{\mathrm{L}}
$$

in the SM Lagrangian is forbidden by $S U(2)_{L} \times U(1)_{Y}$ symmetry \Rightarrow Fermion masses generated by the WIGS MECHANISM

$$
\begin{gathered}
S U(2)_{L} \times U(1)_{Y} \Rightarrow U(1)_{Q} \quad \text { after spontaneous symmetry breaking } \\
E W S B
\end{gathered}
$$

The Standard Model

fermion masses arise from Yukawa interactions
$-\mathcal{L}_{\mathrm{Y}}=\mathbf{y}_{\alpha \beta}^{\mathbf{d}} \overline{\mathbf{Q}}_{\alpha} \boldsymbol{\Phi} \mathbf{D}_{\beta}+\mathbf{y}_{\alpha \beta}^{\mathbf{u}} \overline{\mathbf{Q}}_{\alpha} \tilde{\boldsymbol{\Phi}} \mathbf{U}_{\beta}+\mathbf{y}_{\alpha \beta}^{\ell} \overline{\mathbf{L}}_{\alpha} \boldsymbol{\Phi} \mathbf{E}_{\beta}+$ h.c.

$$
\begin{aligned}
& \boldsymbol{\Phi}(\mathbf{x})=\binom{\Phi^{+}(x)}{\Phi^{0}(x)} \equiv(\mathbf{2}, \mathbf{1} / \mathbf{2}) \quad \tilde{\mathbf{\Phi}}(\mathbf{x})=\mathbf{i} \tau_{2} \mathbf{\Phi}(\mathbf{x})^{*} \equiv(\mathbf{2},-\mathbf{1} / \mathbf{2}) \\
& \mathbf{\Phi} \rightarrow\langle\boldsymbol{\Phi}\rangle=\frac{\mathbf{1}}{\sqrt{\mathbf{2}}}\binom{0}{\mathbf{v}} \quad \mathbf{\Phi}=\frac{\mathbf{1}}{\sqrt{\mathbf{2}}}\binom{0}{\mathbf{v}+\mathbf{h}}
\end{aligned}
$$

tings acquires a vel
Unitary Gauge
since we do not V_{R} have no mass etree-level
but can they acquire mass by loop corrections?

Can we have $m_{\nu} \neq 0$ in the
SM?
a loop correction could induce an effective mass term like $\frac{\mathbf{y}_{\alpha \beta}^{\nu}}{\mathbf{v}} \Phi \Phi \mathbf{L}_{\alpha} \mathbf{L}_{\beta}$

But the SM has an accidental global symmetry

$$
\mathbf{G}_{\mathrm{SM}}=\mathbf{U}(\mathbf{1})_{\mathbf{B}} \times \mathbf{U}(\mathbf{1})_{\mathbf{L}_{\mathbf{e}}} \times \mathbf{U}(\mathbf{1})_{\mathbf{L}_{\mu}} \times \mathbf{U}(\mathbf{1})_{\mathbf{L}_{\tau}}
$$

No! Neutrinos have no mass in the SM!

Can we have $m_{\nu} \neq 0$ in the
SM?
a loop correction could induce an effective mass term like.... $\frac{\mathbf{y}_{\alpha \beta}^{\nu}}{\mathbf{v}} \boldsymbol{\Phi} \Phi \mathbf{L}_{\alpha} \mathbf{L}_{\beta}$
this term violates GSM
But the SM has an accidental global
symmetry

$$
\mathbf{G}_{\mathrm{SM}}=\mathbf{U}(\mathbf{1})_{\mathbf{B}} \times \mathbf{U}(\mathbf{1})_{\mathbf{L}_{\mathbf{e}}} \times \mathbf{U}(\mathbf{1})_{\mathbf{L}_{\mu}} \times \mathbf{U}(\mathbf{1})_{\mathbf{L}_{\tau}}
$$

No! Neutrinos have no mass in the SM!

LEPTON NUMBER

$$
L \equiv L_{e}+L_{\mu}+L_{\tau}
$$

	L_{e}	L_{μ}	L_{τ}		L_{e}	L_{μ}	L_{τ}
e, ν_{e}	+1	0	0	$\bar{e}, \bar{\nu}_{e}$	-1	0	0
μ, ν_{μ}	0	+1	0	$\bar{\mu}, \nu_{\mu}$	0	-1	0
τ, ν_{τ}	0	0	+1	$\bar{\tau}, \bar{\nu}_{\tau}$	0	0	-1

$$
\ell_{\alpha} \rightarrow e^{i \theta_{\alpha}} \ell_{\alpha} \quad \partial_{\mu} j^{\mu}=0
$$

associated to a conserved current and the conserved charge L_{α}

Neutrino Oscillations w Need Masses \& Mixings

Neutrino Oscillations w Need Masses \& Mixings

Reactor ν

2. Dirac versus Majorana

Majorana \times Dirac ν

Dirac spinor
$\Psi=P_{L} \Psi+P_{R} \Psi=\Psi_{L}+\Psi_{R} 4$ independent components
Dirac equation
$i \gamma_{\mu} \partial^{\mu} \Psi_{L}=m \Psi_{R}$
$i \gamma_{\mu} \partial^{\mu} \Psi_{R}=m \Psi_{L}$

Majorana \times Dirac ν

Dirac spinor
$\Psi=P_{L} \Psi+P_{R} \Psi=\Psi_{L}+\Psi_{R} 4$ independent components

Dirac equation
Weyl (1929)
$i \gamma_{\mu} \partial^{\mu} \Psi_{L}=m \Psi_{R}$ if $m=0 \quad$ 2-component spinor is $i \gamma_{\mu} \partial^{\mu} \Psi_{R}=m \Psi_{L} \quad$ enough (Ψ_{L} or $\left.\Psi_{R}\right)$

Pauli (1933) rejected this idea because leads to Parity Violation

Landau, Lee-Yang, Salam (1957) propose to describe the massless neutrino by a Weyl spinor $V_{L} \quad \begin{aligned} & \text { introduced in the SM } \\ & \text { in the } 60^{\circ} \text { 's }\end{aligned}$

Majorana \times Dirac v
Can we also describe a massive fermion using a 2-component spinor?
(E. Majorana, 1937)

Majorana \times Dirac ν
Can we also describe a massive fermion using a 2-component spinor?
(E. Majorana, 1937)

$$
\begin{array}{ll}
\Psi^{C}=C \bar{\Psi}^{T} & \text { charge conjugate field } \\
\left(\Psi_{L}\right)^{C}=\left(\Psi^{C}\right)_{R} & \left(\Psi_{R}\right)^{C}=\left(\Psi^{C}\right)_{L}
\end{array}
$$

charge conjugation change chirality

$$
\begin{array}{r}
i \gamma_{\mu} \partial^{\mu}\left(\Psi_{L}\right)^{c}=m\left(\Psi_{R}\right)^{c} \Leftrightarrow i \gamma_{\mu} \partial^{\mu}\left(\Psi_{R}\right)^{c}=m\left(\Psi_{L}\right)^{c} \\
\Psi_{L, R} \equiv \xi\left(\Psi_{R, L}\right) c=\xi \subset \bar{\Psi}_{R, L} \tau \\
\xi \equiv e^{-i \alpha} \quad \text { phase factor }
\end{array}
$$

Majorana \times Dirac ν
Can we also describe a massive fermion using a 2-component spinor? Yes!
(E. Majorana, 1937)
ξ is unphysical - can be eliminated by rephasing
Majorana Condition: $\Psi \equiv(\Psi)^{C}$ particle \equiv antiparticle
Majorana Field: $\quad \Psi=\Psi_{L}+\Psi_{R}=\Psi_{L}+\left(\Psi_{L}\right)^{C}$
Majorana Equation: $\mathbf{i} \gamma_{\mu} \partial^{\mu} \mathbf{\Psi}_{\mathbf{L}}=\mathbf{m} \mathbf{C}{\overline{\mathbf{\Psi}_{\mathbf{L}}}}^{\mathbf{T}}$

Majorana \times Dirac ν
Can we also describe a massive fermion using a 2-component spinor? Yes!
(E. Majorana, 1937)
ξ is unphysical - can be eliminated by rephasing
Majorana Condition: $\Psi \equiv(\Psi)$ C particle \equiv antiparticle
Majorana Field: $\quad \Psi=\Psi_{L}+\Psi_{R}=\Psi_{L}+\left(\Psi_{L}\right) C$ Majorana Equation: $\quad \mathbf{i} \gamma_{\mu} \partial^{\mu} \mathbf{\Psi}_{\mathbf{L}}=\mathbf{m} \mathbf{C} \overline{\mathbf{\Psi}}_{\mathbf{L}} \mathbf{T}$
em. Current vanishes $Q \equiv 0 \quad$ neutral particle

$$
\overline{\mathbf{\Psi}} \gamma^{\mu} \mathbf{\Psi}=\overline{\mathbf{\Psi}^{\mathbf{c}}} \gamma^{\mu} \mathbf{\Psi}^{\mathbf{c}}=-\boldsymbol{\Psi}^{\mathbf{T}} \mathbf{C}^{\dagger} \gamma^{\mu} \mathbf{C} \overline{\boldsymbol{\Psi}}^{\mathbf{T}}=\overline{\mathbf{\Psi}} \mathbf{C}^{\mathbf{T}} \gamma^{\mu \mathbf{T}} \mathbf{C}^{*} \boldsymbol{\Psi}=-\overline{\mathbf{\Psi}} \gamma^{\mu} \mathbf{\Psi}
$$

Some Properties

$$
\begin{gathered}
\gamma^{\circ} \gamma^{\mu t}=\gamma^{\mu} \gamma^{\circ} \\
C^{\top}=C^{+}=C^{-1}=-C \\
C^{-1} \gamma^{\mu}=-\gamma^{\mu \top} C^{-1} \\
\frac{\Psi^{C}}{C}=\left(C \gamma^{\circ} \Psi^{*}\right)^{t} \gamma^{0}=\Psi^{\top} \gamma^{\circ} C^{+} \gamma^{0}=\Psi^{\top} C \\
C^{\top} \gamma^{\mu \top} C^{*}=(-C) \gamma^{\mu \top}\left(-C^{-1}\right)=C \gamma^{\mu \top} C^{-1} \\
\therefore C^{\top} \gamma^{\mu \top} C^{*}=-C C^{-1} \gamma^{\mu}=-\gamma^{\mu}
\end{gathered}
$$

Majorana \times Dirac ν
Dirac:

$$
\nu(\vec{p}, h) \stackrel{\hat{p}}{\Rightarrow} \nu(-\vec{p},-h) \stackrel{\hat{C}}{\leftrightarrows} \nu(\vec{p},-h) \stackrel{\hat{T}}{\Rightarrow} \bar{\nu}(\vec{p},-h)
$$

$\angle \psi_{1}$ neutrino $(h=-1)$
P_{H} antineutrino $(h=+1)$
Majorana:

$$
\nu(\vec{p}, h) \stackrel{\hat{p}}{\Rightarrow} \nu(-\vec{p},-h) \stackrel{\hat{C}}{\Rightarrow} \nu(\vec{p},-h) \stackrel{\hat{T}}{\Rightarrow} \nu(\vec{p},-h)
$$

$\angle \psi$ neutrino $(h=-1)$ $R H$ neutrino $(h=+1)$
interactions involve on $\angle \psi \mid$ fields

$$
\begin{aligned}
& \nu_{L}\left\langle\begin{array}{l}
\text { destroys } L H \text { neutrino } \\
\text { creates } R H \text { antineutrino }
\end{array}\right. \\
& \bar{\nu}_{L} \text { distal } \text { dirac antineutrino } \\
& \text { creates } L H \text { neutrino }
\end{aligned}
$$

Majorana \times Dirac ν
Dirac:

$$
\nu(\vec{p}, h) \stackrel{\hat{p}}{\vec{p}} v(-\vec{p},-h) \stackrel{\hat{C}}{\leftrightharpoons} \bar{\nu}(-\vec{p},-h) \stackrel{\hat{T}}{\Rightarrow} \bar{v}(\vec{p},-h)
$$

$\angle H$ neutrino ($h=-1$)
RH/ antineutrino $(h=+1)$
Majorana:

$$
\nu(\vec{p}, h) \stackrel{\hat{p}}{\Rightarrow} \nu(-\vec{p},-h) \stackrel{\hat{C}}{\Leftrightarrow} \nu(\vec{p},-h) \stackrel{\hat{T}}{\Rightarrow} \nu(\vec{p},-h)
$$

$\angle H$ neutrino ($h=-1$)
RH/ neutrino $(h=+1)$
interactions involve on $\angle H$ fields

$$
\begin{aligned}
& \nu L \text { destroys } \angle H \text { neutrino } \begin{array}{l}
\text { creates } R H \text { neutrino }
\end{array} \quad \text { Majorana } \\
& \bar{\nu}_{L} \text { destroys } R H \text { neutrino } \\
& \text { creates } L H \text { neutrino }
\end{aligned}
$$

3. Mass Terms for Neutrinos

(1) "Poor man's" extension of the SM

If $\nu \neq \nu^{\mathrm{c}}=\mathrm{C} \bar{\nu}^{\mathrm{T}} \quad$ Dirac Particle

symmetrize the model, offers no explanation to the smallness of $M v$

$$
L_{\alpha} \equiv(2,-1 / 2) \quad E_{\alpha} \equiv(1,-1) \quad N_{\alpha} \equiv(1,0)
$$

$$
-\mathcal{L}_{\mathrm{Y}}=\mathbf{y}_{\alpha \beta}^{\mathbf{d}} \overline{\mathbf{Q}}_{\alpha} \boldsymbol{\Phi} \mathbf{D}_{\beta}+\mathbf{y}_{\alpha \beta}^{\mathbf{u}} \overline{\mathbf{Q}}_{\alpha} \tilde{\boldsymbol{\Phi}} \mathbf{U}_{\beta}+\mathbf{y}_{\alpha \beta}^{\ell} \overline{\mathbf{L}}_{\alpha} \boldsymbol{\Phi} \mathbf{E}_{\beta}+\text { h.c. }
$$

$$
+\mathbf{y}_{\alpha \beta}^{\nu} \overline{\mathbf{L}}_{\alpha} \tilde{\boldsymbol{\Phi}} \mathbf{N}_{\beta}+\text { h.c. }
$$

$E W S B$
*riggs acquires aver $\quad \Rightarrow-m_{\mathbf{D}} \bar{\nu}_{\mathbf{L}} \nu_{\mathbf{R}}+$ h.c.
(1) "Poor man's" extension of the SM $-\mathcal{L}_{\mathrm{Y}}=\left(\frac{\mathbf{v}+\mathbf{h}}{\sqrt{\mathbf{2}}}\right)\left[\overline{\ell_{\mathbf{L}}^{\prime}} \mathbf{y}^{\ell^{\prime}} \ell_{\mathbf{R}}^{\prime}+\overline{\mathbf{N}_{\mathbf{L}}^{\prime}} \mathbf{y}^{\nu^{\prime}} \mathbf{N}_{\mathbf{R}}^{\prime}\right]+$ h.c.
$\ell_{\mathbf{L}, \mathbf{R}}^{\prime} \equiv\left(\begin{array}{c}e^{\prime} \\ \mu^{\prime} \\ \tau^{\prime}\end{array}\right)_{\mathbf{L}, \mathbf{R}} \begin{array}{ll}\ell_{\mathbf{L}, \mathbf{R}}=\mathbf{V}_{\mathbf{L}, \mathbf{R}}^{\ell \dagger} \ell_{\mathbf{L}, \mathbf{R}}^{\prime} & \begin{array}{c}\text { real positive } \\ \mathbf{y}^{\ell}=\mathbf{V}_{\mathbf{t}}^{\ell \dagger} \mathbf{y}^{\mathbf{y}^{\prime}} \mathbf{V}_{\mathbf{R}}^{\ell} \\ \text { unites } \\ \text { unitary matrices }\end{array} \\ \mathbf{y}_{\alpha \beta}^{\ell}=\mathbf{y}_{\alpha}^{\ell} \delta_{\alpha \beta}\end{array}$

$$
\mathbf{N}_{\mathbf{L}, \mathbf{R}}^{\prime} \equiv\left(\begin{array}{c}
\nu_{e}^{\prime} \\
\nu_{\mu}^{\prime} \\
\nu_{\tau}^{\prime}
\end{array}\right)_{\mathbf{L}, \mathbf{R}} \quad \mathbf{N}_{\mathbf{L}, \mathbf{R}}=\mathbf{V}_{\mathbf{L}, \mathbf{R}}^{\nu}=\mathbf{V}_{\mathbf{L}}^{\nu \dagger} \mathbf{N}_{\mathbf{L}, \mathbf{R}}^{\prime} \mathbf{y}^{\nu^{\prime}} \mathbf{V}_{\mathbf{R}}^{\nu} \quad \begin{gathered}
\text { real positive } \\
\mathbf{y}_{\alpha \beta}^{\nu}=\mathbf{y}_{\alpha}^{\nu} \delta_{\alpha \beta}
\end{gathered}
$$

(1) "Poor man's" extension of the SM

$$
\begin{gathered}
\text { masses } \\
\ell_{\mathbf{L}, \mathbf{R}} \equiv\left(\begin{array}{c}
e \\
\mu \\
\tau
\end{array}\right)_{\mathbf{L}, \mathbf{R}} \equiv\left(\begin{array}{c}
e_{e} \\
e_{\mu} \\
e_{\tau}
\end{array}\right)_{\mathbf{L}, \mathbf{R}} \text { nesses } \\
\text { new } \\
\mathbf{N}_{\mathbf{L}, \mathbf{R}} \equiv\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)_{\mathbf{L}, \mathbf{R}}
\end{gathered}
$$

Yukawas have to be fine-tuned to explain smallness of neutrino masses
Ok. But what happens to the CC and NC?
(1) "Poor man's" extension of the SM
charged current for leptons
$\mathbf{j}_{\mathbf{W}, \mathbf{L}}^{\mu}=\mathbf{2} \bar{\nu}_{\alpha}^{\prime} \gamma^{\mu} \mathbf{P}_{\mathbf{L}} \mathbf{e}_{\alpha}^{\prime}=\mathbf{2} \bar{\nu}_{\alpha \mathbf{L}}^{\prime} \gamma^{\mu} \mathbf{e}_{\alpha \mathbf{L}}^{\prime}=\mathbf{2} \overline{\mathbf{N}}_{\mathbf{L}}^{\prime} \gamma^{\mu} \ell_{\mathbf{L}}^{\prime}$ chiral flavor diagonal interaction
$=\mathbf{2} \overline{\mathbf{N}_{\mathbf{L}}} \mathbf{V}_{\mathbf{L}}^{\nu \dagger} \mathbf{V}_{\mathbf{L}}^{\ell} \gamma^{\mu} \ell_{\mathbf{L}}=\mathbf{2} \overline{\nu_{\mathbf{i} \mathbf{L}}} \mathbf{U}_{\alpha \mathbf{i}}^{*} \gamma^{\mu} \mathbf{e}_{\alpha \mathbf{L}}$
Mixing Matrix (Pontecorvo, Maki, Sakata, Nakagawa)
define $\angle \psi \mid$ flavor neutrinos as

$$
\nu_{\alpha \mathbf{L}}=\mathbf{U}_{\alpha \mathbf{i}} \nu_{\mathbf{i} \mathbf{L}}
$$

Mixing \Rightarrow family Lepton Number $\left(L_{e}, L_{\mu}, L_{\tau}\right)$ violated but Total Lepton Number (L) conserved
(1) "Poor man's" extension of the SM
neutral current for neutrinos

$$
\begin{aligned}
& \mathbf{j}_{\mathbf{Z}, \nu}^{\mu}=\bar{\nu}_{\alpha \mathbf{L}} \gamma^{\mu} \nu_{\alpha \mathbf{L}} \quad \text { chirod flacor diggonou interaction } \\
& =\bar{\nu}_{\mathbf{i} \mathbf{L}} \gamma^{\mu} \nu_{\mathbf{i} \mathbf{L}} \quad \text { Nomiximg here: }
\end{aligned}
$$

NC is the same (GIM Mechanism)
[S.L.Glashow, J. Iliopolos, L. Maiani, Phys. Rev. D 2, 1285 (1970)]
ν_{p} is sterile!
L_{α} Violating Processes
Dirac mass term allows for K_{e}, K_{μ}, K_{τ} processes such as: $\mu^{ \pm} \rightarrow e^{ \pm} \gamma$ or $\mu^{ \pm} \rightarrow e^{ \pm} e^{+} e^{-}$
eg. $\mu^{ \pm} \rightarrow e^{ \pm} \gamma \quad \sum_{\mathbf{j}} \mathbf{U}_{\mu \mathbf{j}}^{*} \mathbf{U}_{\mathbf{e j}}=\mathbf{0} \quad$ GIM Mechanism

Phases of U

$$
\mathbf{j}_{\mathbf{W}, \mathbf{L}}^{\mu}=\mathbf{2} \overline{\nu_{\mathbf{i L}}} \mathbf{U}_{\alpha \mathbf{i}}^{*} \gamma^{\mu} \mathbf{e}_{\alpha \mathbf{L}}
$$

Can re-phase $\mathbf{e}_{\alpha \mathbf{L}} \rightarrow \mathbf{e}^{\mathbf{i} \phi_{\alpha}} \mathbf{e}_{\alpha \mathbf{L}} \quad \nu_{\mathbf{i L}} \rightarrow \mathbf{e}^{\mathbf{i} \phi_{\mathbf{i}}} \nu_{\mathbf{i L}}$

$$
\mathbf{j}_{\mathbf{W}, \mathbf{L}}^{\mu}=\mathbf{2} \overline{\nu_{\mathbf{i} \mathbf{L}}} \mathbf{e}^{-\mathbf{i}\left(\phi_{\mathbf{1}}-\phi_{\mathbf{e}}\right)} \mathbf{e}^{-\mathbf{i}\left(\phi_{\mathbf{i}}-\phi_{\mathbf{1}}\right)} \mathbf{e}^{\mathbf{i}\left(\phi_{\alpha}-\phi_{\mathbf{e}}\right)} \mathbf{U}_{\alpha \mathbf{i}}^{*} \gamma^{\mu} \mathbf{e}_{\alpha \mathbf{L}}
$$

$1+2(N-1)=2 N-1$ phases can be arbitrarily chosen
$N=3 \rightarrow 5$ phases can be eliminated from U only I physical phase

Basic Points:
we need to introduce singlet R neutrino fields (νR)
we make use of the SM Higgs Mechanism

$$
\mathcal{L}_{\mathrm{mass}}^{\mathrm{D}}=-m \bar{\nu} \nu=-m\left(\bar{\nu}_{R} \nu_{L}+\bar{\nu}_{L} \nu_{R}\right)
$$

mass hierarchy problem remains $m_{j}^{\nu}=\frac{y_{j}^{\nu} v}{\sqrt{2}}$
L_{e}, L_{μ}, L_{τ} are violated
L is conserved (exact global symmetry at the classical level, just like B)
generates a mixing matrix analogous to $V_{C K M}$
(2) + Clever extensions of the SM

If $\nu=\nu^{\mathrm{c}}=\mathrm{C} \bar{\nu}^{\mathrm{T}} \quad$ Majorana Particle
if we introduce ν_{R} we can have
Majorana Mass Term

El.

$$
-\frac{1}{2} \mathrm{~m}_{\mathbf{R}} \overline{\nu_{\mathbf{R}}^{\mathrm{c}}} \nu_{\mathbf{R}}+\text { h.c. }
$$

L is violated by 2 units
$\mathbf{P}_{\mathbf{L}} \nu_{\mathbf{R}}^{\mathbf{c}}=\nu_{\mathbf{R}}^{\mathrm{c}} \quad$ this is invariant under $S U(2)_{L} \times U(1)_{Y}$

Dirac-Majorana

$$
\mathbf{M}^{\mathbf{D}+\mathbf{M}}=\left(\begin{array}{cc}
0 & \left(M^{D}\right)^{T} \\
M^{D} & M^{R}
\end{array}\right) \quad \text { complex symmetric }
$$

M_{D} is a $3 \times m$ complex matrix M_{R} is a $m \times m$ symmetric matrix
(a) mass eigenvalues of $M^{R} \gg v \Rightarrow$ framework of seesaw mechanism sterile neutrinos integrated out \& get a low energy effective theory with 3 light active Majorana neutrinos
(b) Some mass eigenvalues of $M^{R} \leq v \Rightarrow$ more than 3 light Majorana neutrinos
(c) $M^{R}=0 \Rightarrow$ equivalent to impose L conservation, $m=3$ and we can identify the 3 sterile neutrinos $C / R H$ components of the LH fields (Dirac Neutrinos)
(2) + Clever extensions of the SM If $\nu=\nu^{\mathrm{c}}=\mathrm{C} \bar{\nu}^{\mathrm{T}} \quad$ Majorana Particle if we don't introduce v_{p} we can have Majorana Mass Term

$$
\begin{aligned}
& \text { Et. } \quad-\frac{1}{2} \mathrm{~m}_{\mathrm{L}} \overline{\nu_{\mathrm{L}}^{\mathrm{c}}} \nu_{\mathrm{L}}+\text { h.c. } \quad \text { Lis violated } \\
& \text { by } 2 \text { units }
\end{aligned}
$$

$\mathrm{P}_{\mathrm{R}} \nu_{\mathrm{L}}^{\mathrm{C}}=\nu_{\mathrm{L}}^{\mathrm{C}}$ but not invariant under $\mathrm{S} U(2)_{L} \times U(1)_{Y}$ need to extend the SM ...

Majorana Mass Term

we can write a Majorana mass term with only ν_{L}

$$
\text { (or } \nu R)
$$

$\mathbf{P}_{\mathbf{R}} \nu_{\mathbf{L}}^{\mathbf{c}}=\nu_{\mathbf{L}}^{\mathbf{c}}$
$\nu^{\mathbf{c}}=\nu \Longrightarrow \nu=\nu_{\mathbf{L}}+\nu_{\mathbf{L}}^{\mathbf{c}} \Longrightarrow \mathcal{L}_{\text {mass }}^{\mathrm{ML}}=-\frac{1}{\mathbf{2}} \mathbf{m}_{\mathbf{L}} \overline{\nu_{\mathbf{L}}^{\mathbf{c}}} \nu_{\mathbf{L}}+$ h.c.
the $1 / 2$ factor avoids double counting since ν_{L} and ν_{L}
are not independent

$$
\begin{gathered}
\mathcal{L}^{\mathrm{ML}}=\frac{\mathbf{1}}{\mathbf{2}}\left[\bar{\nu}_{\mathbf{L}} \imath \not \partial \nu_{\mathbf{L}}+\bar{\nu}_{\mathbf{L}}^{\mathbf{c}} \imath \not \partial \nu_{\mathbf{L}}^{\mathbf{c}}-\mathbf{m}_{\mathbf{L}}\left(\bar{\nu}_{\mathbf{L}}^{\mathbf{c}} \nu_{\mathbf{L}}+\bar{\nu}_{\mathbf{L}} \nu_{\mathbf{L}}^{\mathbf{c}}\right)\right] \\
\mathcal{L}_{\text {mass }}^{\mathrm{ML}}=\frac{\mathbf{m}_{\mathbf{L}}}{\mathbf{2}}\left(\nu_{\mathbf{L}}^{\mathbf{T}} \mathbf{C}^{\dagger} \nu_{\mathbf{L}}+\nu_{\mathbf{L}}^{\dagger} \mathbf{C} \nu_{\mathbf{L}}^{*}\right)
\end{gathered}
$$

Basic Points:

- no need to introduce singlet R fields (ν, R)
- use $\nu_{\mathbf{R}} \rightarrow \nu_{\mathbf{L}}^{\mathbf{c}}=\mathbf{C}{\overline{\nu_{\mathbf{L}}}}^{\mathbf{T}}$ and $\nu=\nu^{\mathbf{c}}$

$$
\begin{array}{r}
\nu=\nu_{\mathbf{L}}+\nu_{\mathbf{R}}=\nu_{\mathbf{L}}+\mathbf{C}{\overline{\nu_{\mathbf{L}}}}^{\mathbf{T}} \\
\mathcal{L}_{\text {mass }}^{\mathrm{ML}}=-\frac{\mathbf{m}}{\mathbf{2}}\left(\overline{\nu_{\mathbf{L}}^{\mathbf{c}}} \nu_{\mathbf{L}}+\text { h.c. }\right)
\end{array}
$$

need a Wigs triplet $(Y=1)$ to form a $S U(2)_{L} \otimes U(1)_{Y}$ invariant term ($\angle \Delta L$)
L_{e}, L_{μ}, L_{τ} are violated
L is also violated by 2 units

The most general mass term is a Dirac-Majorana Mass Term

Ez.

$$
\mathcal{L}_{\text {mass }}^{\mathrm{D}+\mathrm{M}}=\mathcal{L}_{\text {mass }}^{\mathrm{D}}+\mathcal{L}_{\text {mass }}^{\mathrm{ML}}+\mathcal{L}_{\text {mass }}^{\mathrm{MR}}
$$

$\mathcal{L}_{\text {mass }}^{\mathrm{D}}=-\mathbf{m}_{\mathbf{D}} \bar{\nu}_{\mathbf{R}} \nu_{\mathbf{L}}+$ h.c. \quad Dirac Mass Term $\mathcal{L}_{\text {mass }}^{\mathrm{ML}}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{m}_{\mathbf{L}} \nu_{\mathbf{L}}^{\mathbf{T}} \mathbf{C}^{\dagger} \nu_{\mathbf{L}}+$ h.c. \quad Majorana Mass Term

$$
\mathcal{L}_{\text {mass }}^{\mathrm{MR}}=\frac{1}{\mathbf{2}} \mathbf{m}_{\mathbf{R}} \nu_{\mathbf{R}}^{\mathrm{T}} \mathbf{C}^{\dagger} \nu_{\mathbf{R}}+\text { h.c. } \quad \text { Majorana Mass Term }
$$

Mixing in General

$$
\begin{gathered}
\mathbf{N}_{\mathbf{L}}^{\prime} \equiv\binom{\nu_{L}^{\prime}}{\nu_{R}^{\prime c}} \quad \nu_{\mathbf{L}}^{\prime} \equiv\left(\begin{array}{c}
\nu_{e L}^{\prime} \\
\nu_{\mu L}^{\prime} \\
\nu_{\tau L}^{\prime}
\end{array}\right) \quad \nu_{\mathbf{R}}^{\prime \mathbf{c}} \equiv\left(\begin{array}{c}
\nu_{1 R}^{\prime c} \\
\cdot \\
\cdot \\
\nu_{N_{s} R}^{\prime c}
\end{array}\right) \\
\mathcal{L}_{\text {mass }}^{\mathrm{D}+\mathrm{M}} \equiv \frac{\mathbf{1}}{\mathbf{2}} \mathbf{N}_{\mathbf{L}}^{\prime \prime \mathbf{T}} \mathbf{C}^{\dagger} \mathbf{M}^{\mathrm{D}+\mathrm{M}} \mathbf{N}_{\mathbf{L}}^{\prime}+\text { h.c. } \mathbf{M}^{\mathrm{D}+\mathbf{M}}=\left(\begin{array}{cc}
M^{L} & \left(M^{D}\right)^{T} \\
M^{D} & M^{R}
\end{array}\right)
\end{gathered}
$$

- Diagonalization of the Dirac-Majorana Mass Term \Rightarrow Massive Majorana

Neutrinos
Es. EA.

+ F. Feruglio
 Lectures

4. Some Consequences of Masses and Mixing

Single $\boldsymbol{\beta}$-Decay - Effective $\boldsymbol{\nu}_{e}$ Mass ${ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{e}^{-}+\bar{\nu}_{\mathrm{e}} \quad Q=M_{\mathrm{H}}-M_{\mathrm{He}}-m_{e}=18.58 \mathrm{keV}$
$\frac{d \Gamma}{d T} \propto|\mathcal{M}|^{2} F(E) p E(Q-T) \sqrt{(Q-T)^{2}-m_{\bar{\nu}_{e}}^{2}}$
Kurie plot:
$K(T)=\sqrt{(Q-T) \sqrt{(Q-T)^{2}-m_{\bar{\nu}_{e}}^{2}}}$

$$
\mathbf{m}_{\bar{\nu}_{\mathbf{e}}} \rightarrow \mathbf{m}_{\beta}
$$

$$
m_{\nu_{e}}<2.2 \mathrm{eV}
$$

Troitsk \& Mainz (2002)

Future KATRIN sensitivity 0.2 eV

Two Neutrino Double- β Decay

$$
\Delta \mathrm{L}=0
$$

$$
\left(T_{1 / 2}^{2 \nu}\right)^{-1}=G_{2 \nu}\left|M_{2 \nu}\right|^{2}
$$

$N(A, Z) \rightarrow N(A, Z+2)+e^{-}+e^{-}+\bar{\nu}_{e}+\bar{\nu}_{e}$
second order weak interaction process

Neutrinoless Double- β Decay

$\Delta L=2$
if Majorana particle

$$
\left(T_{1 / 2}^{0 \nu}\right)^{-1}=G_{0 \nu}\left|M_{0 \nu}\right|^{2}\left|m_{\beta \beta}\right|^{2}
$$

sensitive to phases
$N(A, Z) \rightarrow N(A, Z+2)+e^{-}+e^{-}$
effective Majorana mass

5. Effective Lagrangian Approach and Seesaw Mechanism

Effective Lagrangian

+ H. Georgi Lectures

SM is an Effective Lower Energy Theory

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}+\delta \mathcal{L}^{\mathrm{d}=5}+\delta \mathcal{L}^{\mathrm{d}=6}+\ldots
$$

non-renormalizable higher-dimension operators invariant under $S U(2)_{L} \times U(1)_{Y}$ made of SM fields active e low energies with coefficients (model dependent) weighted by inverse powers of Λ (new physics scale)

$$
\delta \mathcal{L}^{\mathrm{d}=5}=\frac{\mathbf{g}}{\Lambda}\left(\mathrm{L}^{\mathrm{T}} \sigma_{2} \Phi\right) \mathrm{C}^{\dagger}\left(\Phi^{\mathrm{T}} \sigma_{2} \mathrm{~L}\right)+\text { h.c. }
$$

[S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979)] only possible $d=5$ operator

$$
\delta \mathcal{L}^{\mathrm{d}=5} \underset{\text { EWSB }}{\Longrightarrow} \delta \mathcal{L}_{\mathrm{mass}}^{\mathrm{M}}=\frac{1}{2} \frac{\mathrm{gv}^{2}}{\Lambda} \nu_{\mathrm{L}}^{\mathrm{T}} \mathrm{C}^{\dagger} \nu_{\mathrm{L}}+\mathrm{hajorana} \mathrm{Mass}^{\mathrm{h} . \mathrm{c} .}
$$

Tree-level Realizations
[E. Ma, Phys. Rev. Lett. $81,1171(1998)$]

Tree-level Realizations

[E. Ma, Phys. Rev. Lett. 81, 1171 (1998)]

fermion singlets

Tree-level Realizations

[E. Ma, Phys. Rev. Lett. 81,1171 (1998)]

fermion singlets

Tree-level Realizations

 [E. Ma, Phys. Rev. Lett. 81, 1171 (1998)]
fermion singlets

fermion triplet
[P. Minkowski, Phys. Lett. B 67, 421 (1977); M. Gell-Mann, P. Ramond and R. Slansky, Supergravity (1979); T. Yanagida, Proc. Workshop on the Unif. Theo. and the Baryon Numb. in the Univ. (1979); R.N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980) I
minimal seesaw Lagrangian: only add R neutrinos to SM

Seesaw Type I
[P. Minkowski, Phys. Lett. B 67, 421 (1977); M. Gell-Mann, P. Raymond and R. Slansky, Supergravity (1979); T. Yanagida, Proc. Workshop on the Unif. Theo. and the Baryon Numb. in the Univ. (1979); R.N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980)]
minimal seesaw Lagrangian: only add R neutrinos to SM

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{KE}}=\imath \overline{\mathbf{L}} \not \mathbf{L}+\imath \overline{\mathbf{R}} \not \mathbf{\mathbf { R }}+\imath \overline{\mathbf{N}}_{\mathbf{R}} \not \supset \mathbf{N}_{\mathbf{R}} \\
& \text { SM lepton doublets } \quad \text { SM lepton singlets } R \text { neutrino singlets } \quad \text { New Physics scale } \\
& \mathcal{L}_{\mathrm{Y}}=-\overline{\mathbf{L}} \boldsymbol{\Phi} \mathbf{y}_{\ell} \mathbf{R}-\overline{\mathbf{L}} \tilde{\boldsymbol{\Phi}} \mathbf{y}_{\mathbf{N}}^{\dagger} \mathbf{N}_{\mathbf{R}}-\frac{\mathbf{1}}{\mathbf{2}} \overline{\mathbf{N}}_{\mathbf{R}} \mathbf{M}_{\mathbf{R}} \mathbf{N}_{\mathbf{R}}^{\mathrm{N}}+\mathrm{p} \text { physics scale } .
\end{aligned}
$$

Seesaw Type I
[P. Minkowski, Phys. Lett. B 67, 421 (1977); M. Gell-Mann, P. Raymond and R. Slansky, Supergravity (1979); T. Yanagida, Proc. Workshop on the Unif. Theo. and the Baryon Numb. in the Univ. (1979); R.N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980)]
minimal seesaw Lagrangian: only add R neutrinos to SM

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{KE}}=\imath \overline{\mathbf{L}} \not \mathbf{L}+\imath \overline{\mathbf{R}} \not \mathbf{\mathbf { R }}+\imath \overline{\mathbf{N}}_{\mathbf{R}} \not \supset \mathbf{N}_{\mathbf{R}} \\
& \text { SM lepton doublets SM lepton singlets } \quad \text { neutrino singlets New Physics Scale } \\
& \mathcal{L}_{\mathrm{Y}}=-\overline{\mathbf{L}} \boldsymbol{\Phi} \mathbf{y}_{\ell} \mathbf{R}-\overline{\mathbf{L}} \tilde{\boldsymbol{\Phi}} \mathbf{y}_{\mathbf{N}}^{\dagger} \mathbf{N}_{\mathbf{R}}-\frac{1}{\mathbf{2}} \overline{\mathbf{N}}_{\mathbf{R}} \mathbf{M}_{\mathbf{R}} \mathbf{N}_{\mathbf{R}}^{\mathrm{N}}+\text { hic. }
\end{aligned}
$$

$$
\mathbf{m}_{\nu} \equiv \frac{\mathbf{g}}{\Lambda} \mathbf{v}^{2}=-\frac{1}{2} \mathbf{y}_{\mathbf{N}}^{\mathbf{T}} \frac{1}{\mathbf{M}_{\mathbf{R}}} \mathbf{y}_{\mathbf{N}} \mathbf{v}^{2}
$$

Seesaw Type I

[P. Minkowski, Phys. Lett. B 67, 421 (1977); M. Gell-Mann, P. Ramond and R. Slansky, Supergravity (1979); T. Yanagida, Proc. Workshop on the Unif. Theo. and the Baryon Numb. in the Univ. (1979); R.N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980) I
minimal seesaw Lagrangian: only add R neutrinos to SM

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{KE}}=\imath \overline{\mathbf{L}} \not \mathbf{L}+\imath \overline{\mathbf{R}} \not \mathbf{R}+\imath \overline{\mathbf{N}}_{\mathbf{R}} \not \supset \mathbf{N}_{\mathbf{R}} \\
& \mathcal{L}_{\mathrm{Y}}=-\overline{\mathbf{L}} \mathbf{\Phi} \mathbf{y}_{\ell} \mathbf{R}-\overline{\mathbf{L}} \tilde{\mathbf{\Phi}} \mathbf{y}_{\mathbf{N}}^{\dagger} \mathbf{N}_{\mathbf{R}}-\frac{1}{2} \overline{\mathbf{N}}_{\mathbf{R}} \mathbf{M}_{\mathbf{R}} \mathbf{N}_{\mathbf{R}}^{\mathbf{c}}+\text { hic. }
\end{aligned}
$$

$$
\mathbf{m}_{\nu} \equiv \frac{\mathbf{g}}{\Lambda} \mathbf{v}^{2}=-\frac{1}{2} \mathbf{y}_{\mathbf{N}}^{\mathbf{T}} \frac{1}{\mathbf{M}_{\mathbf{R}}} \mathbf{y}_{\mathbf{N}} \mathbf{v}^{2}
$$

M_{R} should of the order $10^{11} \mathrm{TeV}\left(10^{5} \mathrm{TeV}\right)$ for $y_{N} \approx 1\left(y_{N} \approx 10^{-3}\right)$

Seesaw Type II

[M. Mage and C. Wetterich, Phys. Lett. B 94, 61 (1980); J. Schechter and J.W.F.Valle, Phys. Rev. D 22, 2227 (1980); R.N. Mohapatra and G. Senjanovic, Phys. Rev. D 23, 165 (1981)] add SU(2)L triplet scalar field $\vec{\Delta} \quad(Y=1)$
minimal Lagrangian gauge invariant allows for

$$
\mathcal{L}_{\Delta,(\mathrm{L}, \Phi)}=\underset{\text { coupling to sM lepton doublets }}{\overline{\tilde{L}}} y_{\Delta}(\vec{\sigma} \cdot \vec{\Delta}) L \mu_{\Delta} \tilde{\Phi}^{\dagger}{ }^{\dagger}(\vec{\sigma}
$$

$$
\vec{\Delta}=\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)
$$

where

$$
\tilde{L}=\imath \sigma_{2}(L)^{c}
$$

physical fields
$\left\langle\Delta^{0}\right\rangle=u / \sqrt{2}=\mu_{\Delta} \mathbf{v}^{2} /\left(\sqrt{2} \mathbf{M}_{\Delta}^{2}\right)$

$$
\Delta^{++} \equiv \frac{1}{\sqrt{2}}\left(\Delta_{1}-\imath \Delta_{2}\right) \quad \Delta^{+} \equiv \Delta_{3} \quad \Delta^{0} \equiv \frac{1}{\sqrt{2}}\left(\Delta_{1}+\imath \Delta_{2}\right)
$$

$$
\mathbf{m}_{\nu} \equiv \frac{\mathbf{g}}{\Lambda} \mathbf{v}^{2}=-\mathbf{2} \mathbf{y}_{\Delta} \underset{\text { New Physics Scale }}{\mathbf{u}=-\mathbf{\mathbf { y } _ { \Delta }}} \frac{\mu_{\boldsymbol{\Delta}}}{\mathbf{M}_{\Delta}^{2}} \mathbf{v}^{\mathbf{2}}
$$

Seesaw Type III
[R. Foot, H. Lew, X.G.Ye and G.C. Joshi, Z. Phys. C 44, 441 (1989); E. Ma, Phys.
Rev. Lett. 81, 1171 (1998) I
add $\mathrm{SU}(2)_{L}$ fermion triplet $\vec{\Sigma} \quad(Y=0)$

Seesaw Type III

[R. Foot, H. Lew, X.G. He and G.C. Joshi, Z. Phys. C 44, 441 (1989); E. Ma, Phys. Rev. Lett. 81, 1171 (1998)]

add $S U(2)_{L}$ fermion triplet $\vec{\Sigma} \quad(Y=0)$

$$
\mathcal{L}_{\Sigma}=\imath \overline{\vec{\Sigma}}_{R} \not \supset \vec{\Sigma}_{R}-\left[\frac{1}{2} \underset{\text { Maiorana Mass term }}{\vec{\Sigma}_{R}} M_{\Sigma} \vec{\Sigma}_{R}^{c}+\overline{\vec{\Sigma}}_{R} y_{\Sigma}\left(\tilde{\Phi}^{\dagger} \vec{\sigma} L\right)+\text { h.cuping with L and } \oplus>\right]
$$

$$
\vec{\Sigma}=\left(\Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)
$$

$$
\Sigma^{ \pm} \equiv \frac{1}{\sqrt{2}}\left(\Sigma_{1} \mp \imath \Sigma_{2}\right) \quad \Sigma^{0} \equiv \Sigma_{3}
$$

Seesaw Type III

[R. Foot, H. Lew, X.G. He and G.C. Joshi, Z. Phys. C 44, 441 (1989); E. Ma, Phys. Rev. Lett. 81, 1171 (1998)]

$$
\text { add } S U(2)_{L} \text { fermion triplet } \vec{\Sigma} \quad(Y=0)
$$

$$
\left.\mathcal{L}_{\Sigma}=\imath{\overline{\vec{\Sigma}_{R}} \not D \vec{\Sigma}_{R}-\left[\frac{1}{2} \vec{\Sigma}_{\text {Maiorana Mass term }} M_{\Sigma} \vec{\Sigma}_{R}^{c}+\overline{\vec{\Sigma}}_{R} y_{\Sigma}\left(\tilde{\Phi}^{\dagger} \vec{\sigma} L\right)+\text { h.cuping with L and } \Phi\right.}\right]
$$

$$
\vec{\Sigma}=\left(\Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)
$$

$$
\Sigma^{ \pm} \equiv \frac{1}{\sqrt{2}}\left(\Sigma_{1} \mp \imath \Sigma_{2}\right) \quad \Sigma^{0} \equiv \Sigma_{3}
$$

if $M_{\Sigma} \gg v$ EWSB

$$
\mathbf{m}_{\nu} \equiv \frac{\mathbf{g}}{\boldsymbol{\Lambda}} \mathbf{v}^{2}=-\mathbf{y}_{\boldsymbol{\Sigma}}^{\mathbf{T}} \frac{\mathbf{1}}{2 \mathbf{M}_{\boldsymbol{\Sigma}}} \underset{\mathbf{y}_{\boldsymbol{\Sigma}} \mathbf{v}_{\text {New Physics scale }}^{2}}{ }
$$

Majorana Mass Matrix for light neutrinos

Proposed Problems:

El.
Show explicitly why we need $1 / 2$ in the Majorana mass term

E2. Show that the most general mass term Lagrangian for a 4-component field

$$
\mathcal{L}_{D+M}=-m_{D} \overline{\Psi_{L}} \Psi_{R}-a \overline{\Psi_{L}^{c}} \Psi_{L}-b \overline{\Psi_{R}^{c}} \Psi_{R}+h . c .
$$

describes two Majorana particles with different masses. Discuss in what limit the 4-component Dirac formalism can be recovered.

Ez. How many physical phases there are in the mixing matrix if neutrinos are Major ana particles?

Proposed Problems:

EM.
Show that a Majorana mass matrix is, in general, a complex symmetric matrix that can be diagonalized by an orthogonal matrix.

Es.
Show that neutrinoless double beta decay implies in Majorana neutrinos. Can we distinguish Majorana from Dirac using neutrino interactions?

El.
Consider the two body decay $\pi^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu}$ at rest. Calculate the momentum p_{i} and energy E_{i} of mass m_{i}. as a function of the masses of the pion, the muon and m_{i}. Estimate, to first non-zero order in mi, the difference between E_{i} and p_{i}. Can we assume the neutrinos produced in this decay have the same energy or momentum?

[^0]: "We are happy to inform you that we have definitely detected neutrinos ..."

