

New Geometical Approaches to Amplitudes:

Stephen Parke Fermilab

New Geometical Approaches to Amplitudes:

Stephen Parke Fermilab

http://www.simonsfoundation.org/quanta/20130917-a-jewel-at-the-heart-of-quantum-physics/

Amplitudes $=$ on mass shell scattering amplitudes

massless external particles
all particles outgoing

Outline:

- Motivations
- Some Amplitudes
- Twistor String Theory
- Amplituhedron
- Summary

I. Movitations

Why are Amplitudes Interesting?

- Phenomenology: LHC processes
- Structure of the Theory
- Principals

Principals:

- Classical Mechanics:

Principals:

- Classical Mechanics:
- Quantum Mechanics:

Principals:

- Classical Mechanics:
- Quantum Mechanics:
- Quantum Field Theory:

Principals:

Principal •Classical Mechanics: of Least Action:

Principals:

Principal of Least Action:
 - Classical Mechanics:
 - Quantum Mechanics:
 - Quantum Field Theory:

- What is the correct way
to incorporate Gravity?

Principals:

Principal of Least Action:
 - Classical Mechanics:
 - Quantum Mechanics:
 - Quantum Field Theory:

- What is the correct way
to incorporate Gravity?

Space-Time, Quantum Mechanics and Scattering Amplitudes

Nima Arkani-Hamed

Abstract

Scattering amplitudes in gauge theories and gravity have extraordinary properties that are completely invisible in the textbook formulation of quantum field theory using Feynman diagrams. In the standard approach--going back to the birth of quantum field theory--space-time locality and quantum-mechanical unitarity are made manifest at the cost of introducing huge gauge redundancies in our description of physics. As a consequence, apart from the very simplest processes, Feynman diagram calculations are enormously complicated, while the final results turn out to be amazingly simple, exhibiting hidden infinite-dimensional symmetries. This strongly suggests the existence of a new formulation of quantum field theory where locality and unitarity are derived concepts, while other physical principles are made more manifest. Rapid advances have been made towards uncovering this new picture, especially for the maximally supersymmetric gauge theory in four dimensions. These developments have interwoven and exposed connections between a remarkable collection of ideas from string theory, twistor theory and integrable systems, as well as a number of new mathematical structures in algebraic geometry. In this talk I will review the current state of this subject and and describe a number of ongoing directions of research.

Quantum Mechanics
 and Gravity

"Space-Time is Doomed"

Nina Arkani-Hamed

Space-Time has to emerge from "the" fundamental description!

Summary: We are after a theory for

$$
M_{n, k}\left[\lambda_{a} \tilde{\lambda}_{a} \tilde{\eta}_{a}, l_{i}\right]
$$

Without Unitary evolution through Spacetime

$$
\{[\text { morgen }\{\text { Spoe-time, Emergent Qu }\}
$$

II. Amplitudes in Feynman Perturbation Theory

Supercollider physics
Rev. Mod. Phys. 56, 579 - Published 1 October 1984
E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg

Multijet Phenomena:

For multijet events containing more than three jets, the theoretical situation is considerably more primitive. A specific question of interest concerns the QCD four-jet background to the detection of $\mathrm{W}+\mathrm{W}$ - pairs in their nonleptonic decays. The cross sections for the elementary two to four processes have not been calculated, and their complexity is such that they may not be evaluated in the foreseeable future. It is worthwhile to seek estimates of the four-jet cross sections, even if these are only reliable in restricted regions of phase space.

2 gluons to 4 gluons:

for each gluon: momentum p_{i}, polarization vector ϵ_{i} and color charge a_{i}

2 gluons to 4 gluons:

for each gluon: momentum p_{i}, polarization vector ϵ_{i} and color charge a_{i}

2 gluons to 4 gluons:

for each gluon: momentum p_{i}, polarization vector ϵ_{i} and color charge a_{i}

2 gluons to 4 gluons:

for each gluon: momentum p_{i}, polarization vector ϵ_{i} and color charge a_{i}

$$
i g f_{a_{1} a_{2} a_{3}}\left[g_{\mu_{1} \mu_{2}}\left(p_{1}-p_{2}\right)_{\mu_{3}}+g_{\mu_{2} \mu_{3}}\left(p_{2}-p_{3}\right)_{\mu_{1}}+g_{\mu_{3} \mu_{1}}\left(p_{3}-p_{1}\right)_{\mu_{2}}\right]
$$

$$
f_{a_{1} a_{2} X} f_{X a_{3} Y} f_{Y a_{4} Z} f_{Z a_{5} a_{6}} \epsilon_{1}^{\mu_{1}} \epsilon_{2}^{\mu_{2}} \epsilon_{3}^{\mu_{3}} \epsilon_{4}^{\mu_{4}} \epsilon_{5}^{\mu_{5}} \epsilon_{6}^{\mu_{6}}
$$

2 gluons to 4 gluons:

for each gluon: momentum p_{i}, polarization vector ϵ_{i} and color charge a_{i}

$$
\begin{array}{r}
f_{a_{1} a_{2} X} f_{X a_{3} Y} f_{Y a_{4} Z} f_{Z a_{5} a_{6}} \epsilon_{1}^{\mu_{1}} \epsilon_{2}^{\mu_{2}} \epsilon_{3}^{\mu_{3}} \epsilon_{4}^{\mu_{4}} \epsilon_{5}^{\mu_{5}} \epsilon_{6}^{\mu_{6}} \quad\left\{\frac{4 \text { th order polyn of p}{ }^{\prime} \mathrm{s}}{\mathrm{~s} 12 \mathrm{~s} 123 \mathrm{~s} 56}\right\} \\
\text { where } s_{i j \ldots n} \equiv\left(p_{i}+p_{j}+\cdots p_{n}\right)^{2}
\end{array}
$$

the Amplitude:

$\mathcal{M} \sim 220$ Feynman Diagrams times 6^{4} terms per diagram $\approx 3 \times 10^{5}$

the Amplitude:

$\mathcal{M} \sim 220$ Feynman Diagrams times 6^{4} terms per diagram $\approx 3 \times 10^{5}$

$\sum_{\text {colors }} \sum_{\text {polarizations }}|\mathcal{M}|^{2}$

the Amplitude:

$\mathcal{M} \sim 220$ Feynman Diagrams times 6^{4} terms per diagram $\approx 3 \times 10^{5}$ $\sum_{\text {colors }} \sum_{\text {polarizations }}|\mathcal{M}|^{2} \quad 10^{11}$ terms ! !
before you start using identities like:

$$
f_{a_{1} X Y} f_{a_{2} X Y}=N \delta a_{1} a_{2} \& \sum_{\text {helicities }} \epsilon_{i}^{\mu} \epsilon_{i}^{\nu^{*}}=-g^{\mu \nu}+\frac{p_{i}^{\mu} q^{\prime}+p_{i}^{\nu} q^{\prime}}{\left(p_{i} \cdot q\right)}
$$

the Amplitude:

$\mathcal{M} \sim 220$ Feynman Diagrams times 6^{4} terms per diagram $\approx 3 \times 10^{5}$
$\sum_{\text {colors }} \sum_{\text {polarizations }}|\mathcal{M}|^{2} \quad 10^{11}$ terms ! ! !
before you start using identities like:
$f_{a_{1} X Y} f_{a_{2} X Y}=N \delta a_{1} a_{2} \& \sum_{\text {helicities }} \epsilon_{i}^{\mu} \epsilon_{i}^{\nu^{*}}=-g^{\mu \nu}+\frac{p_{i}^{\mu} q^{\nu}+p_{i}^{\nu} q^{\prime}}{\left(p_{i} \cdot q\right)}$

- but the answer you say must permutation symmetric - true !!!
- you still have 10^{8} terms !
- but you have to identify which of the 6 ! of each term leads to simplifying the result.

a use for SUSY:

- Embedd Yang-Mills or QCD in a SuperSymmetric Theory, $\mathrm{N}=1,2$ or 4

a use for SUSY:

- Embedd Yang-Mills or QCD in a SuperSymmetric Theory, $\mathrm{N}=1,2$ or 4
- the tree-level, pure gluon amplitudes are identical in all these theories

a use for SUSY:

- Embedd Yang-Mills or QCD in a SuperSymmetric Theory, $\mathrm{N}=1,2$ or 4
- the tree-level, pure gluon amplitudes are identical in all these theories
- relationships between pure gluon amplitudes and amplitudes were some of gluons are replaced with gluinos

$$
\left|\mathcal{M}\left(g_{1+}, g_{2+} ; \lambda_{3-}, g_{4+}, \lambda_{5+}\right)\right|=\sqrt{\frac{(3 \cdot 4)}{(4 \cdot 5)}}\left|\mathcal{M}\left(g_{1+}, g_{2+} ; g_{3-}, g_{4+}, g_{5+}\right)\right|
$$

$$
\left|\mathcal{M}\left(g_{1-}, g_{2-}, g_{3-}, g_{4-}, g_{5+}, g_{6+}\right)\right|=\frac{s_{56}}{s_{23}}\left|\mathcal{M}\left(g_{1-}, \phi_{2-}, \phi_{3-}, g_{4-}, \phi_{5+}, \phi_{6+}\right)\right|
$$

- Embedd Yang-Mills or QCD in a SuperSymmetric Theory, $\mathrm{N}=1,2$ or 4
- the tree-level, pure gluon amplitudes are identical in all these theories
- relationships between pure gluon amplitudes and amplitudes were some of gluons are replaced with gluinos
$\left|\mathcal{M}\left(g_{1+}, g_{2+} ; \lambda_{3-}, g_{4+}, \lambda_{5+}\right)\right|=\sqrt{\frac{(3 \cdot 4)}{(4 \cdot 5)}}\left|\mathcal{M}\left(g_{1+}, g_{2+}, g_{3-}, g_{4+}, g_{5+}\right)\right|$
$\left|\mathcal{M}\left(g_{1-}, g_{2-}, g_{3-}, g_{4-}, g_{5+}, g_{6+}\right)\right|=\frac{s_{56}}{s_{23}}\left|\mathcal{M}\left(g_{1-}, \phi_{2-}, \phi_{3-}, g_{4-}, \phi_{5+}, \phi_{6+}\right)\right|$
- compact code for calculating 2 gluons to 4 gluons: wasn't a neat algebraic expression!

PT Amplitudes:

- To leading order in N_{c}

$$
\begin{aligned}
& \sum_{\text {colors }}|\mathcal{M}(+++\cdots+)|^{2} \quad \sim 0 \\
& \sum_{\text {colors }}|\mathcal{M}(-++\cdots+)|^{2} \sim 0 \\
& \sum_{\text {colors }}|\mathcal{M}(--+\cdots+)|^{2} \sim(1 \cdot 2)^{4} \sum_{\text {perms }} \frac{1}{(1 \cdot 2)(2 \cdot 3) \cdots(n \cdot 1)}
\end{aligned}
$$

$$
\operatorname{using}(i \cdot j) \equiv 2 p_{i} \cdot p_{j}=s_{i j}
$$

PT Amplitudes:

- To leading order in N_{c}

$$
\begin{aligned}
& \sum_{\text {colors }}|\mathcal{M}(+++\cdots+)|^{2} \quad \sim 0 \\
& \sum_{\text {colors }}|\mathcal{M}(-++\cdots+)|^{2} \sim 0 \\
& \sum_{\text {colors }}|\mathcal{M}(--+\cdots+)|^{2} \sim(1 \cdot 2)^{4} \sum_{\text {perms }} \frac{1}{(1 \cdot 2)(2 \cdot 3) \cdots(n \cdot 1)} \\
& \quad \text { using }(i \cdot j) \equiv 2 p_{i} \cdot p_{j}=s_{i j}
\end{aligned}
$$

Analytic check for $\mathrm{n}=4$ and 5 , numerical for 6 and satisfies all the properties required !

PT Amplitudes:

- To leading order in N_{c}

$$
\begin{aligned}
& \sum_{\text {colors }}|\mathcal{M}(+++\cdots+)|^{2} \sim 0 \\
& \sum_{\text {colors }}|\mathcal{M}(-++\cdots+)|^{2} \sim 0 \\
& \sum_{\text {colors }}|\mathcal{M}(--+\cdots+)|^{2} \sim(1 \cdot 2)^{4} \sum_{\text {perms }} \frac{1}{(1 \cdot 2)(2 \cdot 3) \cdots(n \cdot 1)} \\
& \quad \text { using }(i \cdot j) \equiv 2 p_{i} \cdot p_{j}=s_{i j}
\end{aligned}
$$

Analytic check for $\mathrm{n}=4$ and 5 , numerical for 6 and satisfies all the properties required !
remember $\mathcal{M} \sim\left\{\frac{4 \text { th order polyn of } \mathrm{p}^{\prime} \mathrm{s}}{\mathrm{s}_{12} \mathrm{~s}_{123} \mathrm{~s}_{56}}\right\}$
\Rightarrow tremendous number of cancellations !!!

PT Amplitudes:

- To leading order in N_{c}

$$
\begin{aligned}
& \sum_{\text {colors }}|\mathcal{M}(+++\cdots+)|^{2} \sim 0 \\
& \sum_{\text {colors }}|\mathcal{M}(-++\cdots+)|^{2} \sim 0
\end{aligned}
$$

$$
\sum_{\text {colors }}|\mathcal{M}(--+\cdots+)|^{2} \sim(1 \cdot 2)^{4} \sum_{\text {perms }} \frac{1}{(1 \cdot 2)(2 \cdot 3) \cdots(n \cdot 1)}
$$

$$
\operatorname{using}(i \cdot j) \equiv 2 p_{i} \cdot p_{j}=s_{i j}
$$

Analytic check for $\mathrm{n}=4$ and 5 , numerical for 6 and satisfies all the properties required !

$$
\begin{aligned}
\text { remember } \mathcal{M} & \sim\left\{\frac{4 \text { th order polyn of } \mathrm{p}^{\prime} \mathrm{s}}{\mathrm{~s}_{12} \mathrm{~s}_{123} \mathrm{~s}_{56}}\right\} \\
& \Rightarrow \text { tremendous number of cancellations !!! }
\end{aligned}
$$

$$
--t++\ldots t
$$

$$
--t+t^{+}+
$$

$\boldsymbol{+ + \boldsymbol { + } + \boldsymbol { + }}$
- + + + + +
= = + + + +

- = + + + +
- + + + +
+ + + + + +

$$
--+t+\ldots t+
$$

No poles with more than 2 particles!!!i.e. s_{123}

Altarelli \& Parisi

$$
\begin{aligned}
& \left|\mathscr{M}_{n}(--+++\cdots)\right|^{2} \rightarrow 0, \\
& \left|\mathscr{M}_{n}(--+++\cdots)\right|^{2} \rightarrow 2{ }_{2 \| 3} 2 g^{2} N \frac{z^{4}}{z(1-z)} \frac{1}{s}\left|\mathscr{M}_{n-1}(--++\cdots)\right|^{2}, \\
& \left|\mathscr{M}_{n}(--+++\cdots)\right|^{2} \rightarrow 2 g^{2} N \frac{1}{z(1-z)} \frac{1}{s}\left|\mathscr{M}_{n-1}(--++\cdots)\right|^{2},
\end{aligned}
$$

also soft gluon conditions also satisfied.

"This could be a great discovery. Depending, of course, on how far down it goes."

Amplitude for n-Gluon Scattering:

Volume 56, Number 23
PHYSICAL REVIEW LETTERS

Amplitude for \boldsymbol{n}-Gluon Scattering

Stephen J. Parke and T. R. Taylor
 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
 (Received 17 March 1986)

A nontrivial squared helicity amplitude is given for the scatering of an arbitrary number of
gluons to lowest order in the coupling constant and to gluons to lowest order in the coupling constant and to leading order in the number of colors.
PACS numbers: 12.38.Bx

Computations of the scattering amplitudes for the vector gauge bosons of non-Abelian gauge theories, besides being interesting from a purely quantum-field-theoretical point of view (determination of the S matrix), have a wide range of important applications In particular, within the framework of quantum chrobosons (gluons) gives rise to experimentally gaberv able multijet production at high-energy hadron collid ers. The knowledge of cross sections for the gluon scattering is crucial for any reliable phenomenology of jet physics, which holds great promise for testing QCD as well as for the discovery of new physics at presen (CERN Spp S and Fermilab Tevatron) and future (Su perconducting Super Collider) hadron colliders. ${ }^{1}$
In this short Letter, we give a nontrivial squared helicity amplitude for the scattering of an arbitrary number of gluons to lowest order in the coupling con our knowledge this is the first time in a non-Abelian auge theory that a nontrivial, on-mass-shell, squared Green's function has been written down for an arbitrary number of external points. Our result can be
used to improve the existing numerical programs for the QCD jet production, and in particular for the studies of the four-jet production for which no analytic results have been available so far. Before presenting the helicity amplitude, let us make it clear that this tesult is an educated guess which we have compared to highly nontrivial and nonlinear consistency checks.
For the n-gluon scattering amplitude, there are For the n-gluon scattering amplitude, there are
$(n+2) / 2$ independent helicity amplitudes. At the tree level, the two helicity amplitudes which most violate the conservation of helicity are zero. This is easily seen by the embedding of the Yang-Mills theory in a supersymmetric theory. ${ }^{2,3}$ Here we give an expression for the next helicity amplitude, also at tree level, to leading order in the number of colors in SU(N) Yang-Mills theory.
If the helicity amplitude for gluons $1, \ldots, n$, of momenta p_{1}, \ldots, p_{n} and helicities $\lambda_{1}, \ldots, \lambda_{n}$, is
$\mathscr{M}_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, where the momenta and helicities are labeled as though all particles are outgoing then the three helicity amplitudes of interest, squared and summed over color, are

$$
\begin{align*}
& \left|\mathscr{M}_{n}(+++++\cdots)\right|^{2}=c_{n}(g, N)\left[0+O\left(g^{4}\right)\right], \tag{1}\\
& \left|\mathscr{M}_{n}(-++++\cdots)\right|^{2}=c_{n}(g, N)\left[0+O\left(g^{4}\right)\right], \tag{2}\\
& \left|\mathscr{M}_{n}(--+++\cdots)\right|^{2}=c_{n}(q, N)\left[\left(p_{1} \cdot p_{2}\right)^{4}\right.
\end{align*}
$$

where $c_{n}(g, N)=g^{2 n-4} N^{n-2}\left(N^{2}-1\right) / 2^{n-4} n$. The sum is over all permutations P of $1, \ldots, n$.
Equation (3) has the correct dimensions and symmetry properties for this n-particle scattering amplitude squared. Also it agrees with the known results ${ }^{4,5}$ for $n=4,5$, and 6 . The agreement for $n=6$ is numerical. ${ }^{5,6}$,
More importantly, this set of amplitudes is consistent with the Altarelli and Parisi ${ }^{7}$ relationshis More importantly, this set of amplitudes is consistent with the Altarelli and Parisi ${ }^{7}$ relationship for all n, when two of the gluons are made parallel. This is trivial for the first two helicity amplitudes but is a highly nontrivial state
ment for the last amplitude, as shown here:

$$
\begin{aligned}
& \left|\mathscr{M}_{n}(--+++\cdots)\right|_{112}^{\rightarrow} 0 \\
& \left|\mathscr{M}_{n}(--+++\cdots)\right|_{2 \mid 1]_{3}} 2 g^{2} N \frac{z^{4}}{z(1-z)} \frac{1}{s}\left|\mathscr{M}_{n-1}(--++\cdots)\right|^{2} \\
& \left|\mathscr{M}_{n}(--+++\cdots)\right|_{3 \| 4}^{\rightarrow} 2 g^{2} N \frac{1}{z(1-z)} \frac{1}{s}\left|\mathscr{M}_{n-1}(--++\cdots)\right|^{2}
\end{aligned}
$$(4)

where s is the corresponding pole and z is the momen
tum fraction. The result for particles 2 and 3 nea tum fraction. The result for particles 2 and 3 near ly parallel, Eq. (5), is only simple because $M_{n}-1$ is no interference term and therefore azimuthal averaging is not required
The surprise about this result is that all denomina ors are simple dot products of two external momenta. The Feynman diagrams for n-gluon $(n>5)$ scattering contain propagators $\left(p_{i}+p_{j}+p_{k}\right)^{2},\left(p_{i}+p_{j}\right.$ $\left.+p_{k}+p_{m}\right)^{2}, \ldots$ These propagators must cancel for
Eq. (3) to be correct; this occurs for $n=6$. Of course, Eq. (3) to be correct; this occurs for $n=6$. Of course, Altarelli and Parisi have taught us that many cancella ions are expected.
We do not expect such a simple expression for the ther helicity amplitudes. Also, we challenge the orously that Eq. (3) is correct

Association is operated by the Universities Research Association Inc. under contract with the United States

Department of Energy

IE. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Rev Mod. Phys. 56, 579 (1984).
${ }^{2}$ M. T. Grisaru, H. N. Pendleton, and P. van Nieu wenhuizen, Phys. Rev. D 15, 997 (1977); M. T. Grisaru and 81 (1977).
S. J. Parke and T. R. Taylor, Phys. Lett. 157B, 81 (1985) T. Gottschalk and D. Sivers, Phys. Rev. D 21, 102 (1980); F. A. Berends, R. Kleiss, P. de Causmacker R. Gastmans, and T. T. Wu, Phys. Lett. 103B, 124 (1981). 5S. J. Parke and T. R. Taylor, Fermilab Report No. Pub
$85 / 118-T .1985$ (to be published); Z Kunszt, CERN Repor No. TH-4319, 1985 (to be published). 6Another numerical fact worth
ing order in g but to all orders inning is that to lead $\left.\mathscr{M}_{n=6}(--++++)\right|^{2}$ is permutation symmetricitude from the factor $\left(p_{1} \cdot p_{2}\right)^{4}$. This allows all pymmetric apar this amplitude to be trivially calculated from one such permutation
${ }^{7}$ G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).

$$
\begin{equation*}
\left.\times \Sigma_{P}\left[\left(p_{1} \cdot p_{2}\right)\left(p_{2} \cdot p_{3}\right)\left(p_{3} \cdot p_{4}\right) \cdots\left(p_{n} \cdot p_{1}\right)\right]^{-1}+O\left(N^{-2}\right)+O\left(g^{2}\right)\right] \tag{3}
\end{equation*}
$$

Amplitude for n-Gluon Scattering:

Amplitude for \boldsymbol{n}-Gluon Scattering

Stephen J. Parke and T. R. Taylor
 Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (Received 17 March 1986)

A nontrivial squared helicity amplitude is given for the scatering of an arbitrary number of
gluons to lowest order in the coupling constant and to gluons to lowest order in the coupling constant and to leading order in the number of colors.
PACS numbers: 12.38.Bx

Computations of the scattering amplitudes for the vector gauge bosons of non-Abelian gauge theories, besides being interesting from a purely quantum-field-theoretical point of view (determination of the S matrix), have a wide range of important applications. In particular, within the framework of quantum chrobosons (gluons) gives rise to experimentally gaberv able multijet production at high-energy hadron collid ers. The knowledge of cross sections for the gluon scattering is crucial for any reliable phenomenology of jet physics, which holds great promise for testing QCD as well as for the discovery of new physics at presen (CERN Spp S and Fermilab Tevatron) and future (Su perconducting Super Collider) hadron colliders. ${ }^{1}$
In this short Letter, we give a nontrivial squared helicity amplitude for the scattering of an arbitrary number of gluons to lowest order in the coupling conour knowledge this is the first time in a non-Abelian gauge theory that a nontrivial, on-mass-shell, squared Green's function has been written down for an arbitrary number of external points. Our result can be
used to improve the existing numerical programs for the QCD jet production, and in particular for the studies of the four-jet production for which no analytic results have been available so far. Before presenting the helicity amplitude, let us make it clear that this the existing computations and verified by a series of highly nontrivial and nonlinear consistency checks.
For the n-gluon scattering amplitude there are $(n+2) / 2$ independent helicity amplitudes. At the tree level, the two helicity amplitudes which most violate the conservation of helicity are zero. This is easily seen by the embedding of the Yang-Mills theory in a supersymmetric theory ${ }^{2,3}$ Here we give an expression for the next helicity amplitude, also at tree level, to leading order in the number of colors in SU(N) Yang-Mills theory.
If the helicity amplitude for gluons $1, \ldots, n$, of momenta p_{1}, \ldots, p_{n} and helicities $\lambda_{1}, \ldots, \lambda_{n}$, is
$\mathscr{M}_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, where the momenta and helicities are labeled as though all particles are outgoing then the three helicity amplitudes of interest, squared and summed over color, are

$$
\begin{align*}
\left|\mathscr{M}_{n}(+++++\cdots)\right|^{2}= & c_{n}(g, N)\left[0+O\left(g^{4}\right)\right], \tag{1}\\
\left|\mathscr{M}_{n}(-++++\cdots)\right|^{2}= & c_{n}(g, N)\left[0+O\left(g^{4}\right)\right], \tag{2}\\
\left|\mathscr{M}_{n}(--+++\cdots)\right|^{2}= & c_{n}(q, N)\left[\left(p_{1} \cdot p_{2}\right)^{4}\right. \\
& \left.\times \sum_{P}\left[\left(p_{1} \cdot p_{2}\right)\left(p_{2} \cdot p_{3}\right)\left(p_{3} \cdot p_{4}\right) \cdots\left(p_{n} \cdot p_{1}\right)\right]^{-1}+O\left(N^{-2}\right)+O\left(g^{2}\right)\right], \tag{3}
\end{align*}
$$

where $c_{n}(g, N)=g^{2 n-4} N^{n-2}\left(N^{2}-1\right) / 2^{n-4} n$. The sum is over all permutations P of $1, \ldots, n$.
Equation (3) has the correct dimensions and symmetry properties for this n-particle scattering amplitude squared. Also it agrees with the known results ${ }^{4,5}$ for $n=4,5$, and 6 . The agreement for $n=6$ is numerical. ${ }^{\text {s }}$,
More importantly, this set of amplitudes is consistent with More importantly, this set of amplitudes is consistent with the Altarelli and Parisi ${ }^{7}$ relationship for all n, when two of the gluons are made parallel. This is trivial for the first two helicity amplitudes but is a highly nontrivial state
ment for the last amplitude, as shown here:

$$
\begin{aligned}
& \left|\mathscr{M}_{n}(--+++\cdots)\right|^{2} \rightarrow 2 \\
& \left|\mathscr{M}_{n}(--+++\cdots)\right|^{2} \underset{2 \| 3}{ } 2 g^{2} N \frac{z^{4}}{z(1-z)} \frac{1}{s}\left|\mathscr{M}_{n-1}(--++\cdots)\right|^{2} \\
& \left|\mathscr{M}_{n}(--+++\cdots)\right|_{3 \| 4}^{2} 2 g^{2} N \frac{1}{z(1-z)} \frac{1}{s}\left|\mathscr{M}_{n-1}(--++\cdots)\right|^{2}
\end{aligned}
$$(4)

where s is the corresponding pole and z is the momen-
tum fraction. The result for particles 2 and 3 near-
ly parallel, Eq. (5), is only simple because ly parallel, Eq. (5), is only simple because there is no interference term and therefore azimuthal averaging is not required
The surprise about this result is that all denomina tors are simple dot products of two external momen ta. The Feynman diagrams for n-gluon $(n>5)$ scattering contain propagators $\left(p_{i}+p_{j}+p_{k}\right)^{2},\left(p_{i}+p_{j}\right.$ $\left.+p_{k}+p_{m}\right)^{2}, \ldots$. These propagators must cancel for
Eq. (3) to be correct; this occurs for $n=6$. Of course, Eq. (3) to be correct; this occurs for $n=6$. Of course, Altarelli and Parisi have taught us that many cancellaions are expected.
We do not expect such a simple expression for the other helicity amplitudes. Also, we challenge the correct. orrect
Association is operated by the Universities Research

Department of Energy

${ }^{1}$ E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Rev Mod. Phys. 56, 579 (1984).
${ }^{2}$ M. T. Grisaru, H. N. Pendleton, and P. van Nieu H. N Pendleton, Nucl Phys B124 81 (1977). Trisaru an ${ }^{3}$ S. J. Parke and T. R. Taylor, Phys. Lett. 157B, 81 (1985), ${ }^{4}$ T. Gottschalk and D. Sivers, Phys. Rev. D 21, 102 (1980); F. A. Berends, R. Kleiss, P. de Causmacker R. Gastmans, and T. T. Wu, Phys. Lett. 103B, 124 (1981). SS. J. Parke and T. R. Taylor, Fermilab Report No. PubNo. TH-4319, 1985 (to be published).
${ }^{6}$ Another numerical fact worth mentioning is that to lead ing order in g but to all orders in N, the amplitud $l_{\mu} \mu_{n}=\left.6(--++++)\right|^{2}$ is permutation symmetric apart
from the factor $\left(p_{1} \cdot p_{2}\right)^{4}$. This allows all permutations of from the factor $\left(p_{1} \cdot p_{2}\right)^{4}$. This allows all permutations o mutation.

$$
\text { 7G. Altarelli and G. Parisi, Nucl. Phys. B126, } 298 \text { (1977). }
$$

The original paper was shorter but the editor insisted we add somethings !!!

How to Proceed?

- How to organize the color factors?

Can one organize the terms into gauge invariant sub-amplitudes?

- How to deal with the polarization vectors?

How to write ϵ 's that are explicitly Lorentz Invariant?

Mangano, Parke and Xu

How to Proceed?

- How to organize the color factors?

Can one organize the terms into gauge invariant sub-amplitudes?

STRING THEORY:

- How to deal with the polarization vectors?

How to write ϵ 's that are explicitly Lorentz Invariant?

Mangano, Parke and Xu

How to Proceed?

- How to organize the color factors?

Can one organize the terms into gauge invariant sub-amplitudes?

STRING THEORY:

- How to deal with the polarization vectors?

How to write ϵ 's that are explicitly Lorentz Invariant?
CHINESE MAGIC:

Mangano, Parke and Xu

COLOR: Color Ordered Sub-amplitudes:

$$
\mathcal{M}_{n}=\sum_{p_{\text {perm' }}} \operatorname{tr}\left(\lambda^{a_{1}} \lambda^{a_{2}} \ldots \lambda^{a_{n}}\right) m\left(p_{1}, \epsilon_{1} ; p_{2}, \epsilon_{2} ; \ldots ; p_{n}, \epsilon_{n}\right)
$$

COLOR: Color Ordered Sub-amplitudes:

$$
\mathcal{M}_{n}=\sum_{\text {perm}} \operatorname{tr}\left(\lambda^{a_{1}} \lambda^{a_{2}} \ldots \lambda^{a_{n}}\right) m\left(p_{1}, \epsilon_{1} ; p_{2}, \epsilon_{2} ; \cdots ; p_{n}, \epsilon_{n}\right)
$$

$\left[\lambda^{a}, \lambda^{b}\right]=i f_{a b c} \lambda^{c}$

$$
f_{a b c}=-2 i \operatorname{tr}\left(\lambda^{a} \lambda^{b} \lambda^{c}-\lambda^{c} \lambda^{b} \lambda^{a}\right)
$$

$$
\operatorname{tr}\left(\lambda^{a} \lambda^{b}\right)=\frac{1}{2} \delta^{a b}
$$

COLOR: Color Ordered Sub-amplitudes:

$$
\mathcal{M}_{n}=\sum_{\text {perm}}=\operatorname{tr}\left(\lambda^{a_{1}} \lambda^{a_{2}} \ldots \lambda^{a_{n}}\right) m\left(p_{1}, \epsilon_{1} ; p_{2}, \epsilon_{2} ; \cdots ; p_{n}, \epsilon_{n}\right)
$$

$\left[\lambda^{a}, \lambda^{b}\right]=i f_{a b c} \lambda^{c}$

$$
f_{a b c}=-2 i \operatorname{tr}\left(\lambda^{a} \lambda^{b} \lambda^{c}-\lambda^{c} \lambda^{b} \lambda^{a}\right)
$$

$\operatorname{tr}\left(\lambda^{a} \lambda^{b}\right)=\frac{1}{2} \delta^{a b}$

6 gluon example:

Color Ordered Sub-amplitudes:

$$
\mathcal{M}_{n}=\sum_{\text {perm}}{ }^{\prime} \operatorname{tr}\left(\lambda^{a_{1}} \lambda^{a_{2}} \ldots \lambda^{a_{n}}\right) m\left(p_{1}, \epsilon_{1} ; p_{2}, \epsilon_{2} ; \cdots ; p_{n}, \epsilon_{n}\right)
$$

(1) $m(1,2, \ldots, n)$ is gauge invariant.
(2) $m(1,2, \ldots, n)$ is invariant under cyclic permutations of $1,2, \ldots, n$
(3) $m(n, n-1, \ldots, 1)=(-1)^{n} m(1,2, \ldots, n)$
(4) The Ward Identity:

$$
\begin{array}{r}
m(1,2,3, \ldots, n)+m(2,1,3, \ldots, n)+m(2,3,1, \ldots, n) \\
+\cdots+m(2,3, \ldots, 1, n)=0
\end{array}
$$

(5) Factorization of $m(1,2, \cdots, n)$ on multi-gluon poles.
(6) Incoherence to leading order in number of colors:

$$
\sum_{\text {colors }}\left|\mathcal{M}_{n}\right|^{2}=\frac{N^{n-2}\left(N^{2}-1\right)}{2^{n}} \sum_{\text {perm }}\left\{|m(1,2, \cdots, n)|^{2}+\mathcal{O}\left(N^{-2}\right)\right\}
$$

Polarization Vectors: Spinor Dot Products:

notation: if $\psi(p)$ is a Dirac spinor, for massless particle, $p^{2}=0$, then define

$$
\begin{gathered}
|p \pm\rangle=\psi_{ \pm}(p)=\frac{1}{2}\left(1 \pm \gamma_{5}\right) \psi(p) \quad\langle p \pm|=\overline{\psi_{ \pm}(p)} \\
\langle p q\rangle=\langle p-\mid q+\rangle \quad[p q]=\langle p+\mid q-\rangle \\
\langle i j\rangle \equiv \sqrt{\left|S_{i j}\right|} \exp \left(i \phi_{i j}\right), \quad \cos \phi_{i j}=\frac{\left(p_{i}^{1} p_{j}^{+}-p_{p}^{i} p_{i}^{+}\right)}{\sqrt{p_{p}^{+} p_{j}^{2}}} \\
{[i \boldsymbol{i j}] \equiv \sqrt{\left|S_{i j}\right|} \exp \left(i \bar{\phi}_{i j}\right) \quad \sin \phi_{i j}=\frac{\left(p_{i}^{2} p_{j}^{ \pm}-p_{p}^{2} p_{i}^{+}\right)}{\sqrt{\bar{p}_{i}^{+} p_{j}^{+}}} .} \\
\text {just complex numbers } \\
\boldsymbol{S}_{\mathbf{i j}} \equiv\langle\boldsymbol{i j}\rangle[\boldsymbol{j i}] .
\end{gathered}
$$

Spinor Algebra:

$$
\begin{gathered}
\langle p q\rangle=\langle p-\mid q+\rangle \quad[p q]=\langle p+\mid q-\rangle \\
\langle p+\mid q+\rangle=\langle p-\mid q-\rangle=\langle p p\rangle=[p p]=0 \\
\langle p q\rangle=-\langle q p\rangle, \quad[p q]=-[q p] \\
2|p \pm\rangle\langle q \pm|=\frac{1}{2}\left(1 \pm \gamma_{5}\right) \gamma^{\mu}\langle q \pm| \gamma_{\mu}|p \pm\rangle, \\
\langle p q\rangle^{*}=-\operatorname{sign}(p \cdot q)[p q]=\operatorname{sign}(p \cdot q)[q p] \\
|\langle p q\rangle|^{2}=2(p \cdot q), \\
\langle p \pm| \gamma_{\mu_{1}} \ldots \gamma_{\mu_{2 n+1}}|q \pm\rangle=\langle q \mp| \gamma_{\mu_{2 n+1}} \ldots \gamma_{\mu_{1}}|p \mp\rangle, \\
\operatorname{Tr}\left(\hat{P}_{1} \hat{P}_{2} \hat{P}_{3} \ldots \hat{P}_{2 n}\right)= \\
\\
=[12]\langle 23\rangle \cdots\langle 2 n 1\rangle+\langle 12\rangle[23] \ldots[2 n 1] \\
\operatorname{Tr}\left(\hat{P}_{1} \hat{P}_{2} \hat{P}_{3} \ldots \hat{P}_{2 n} \gamma_{5}\right) \\
=[12]\langle 23\rangle \cdots\langle 2 n 1\rangle-\langle 12\rangle[23] \ldots[2 n 1] \\
\\
=
\end{gathered}
$$

Polarization Vectors: Helicity

$$
\epsilon_{+}^{\mu}(k, q)=\frac{\langle q-| \gamma^{\mu}|k-\rangle}{\sqrt{2}\langle q-\mid k+\rangle}, \quad \epsilon_{-}^{\mu}(k, q)=\frac{-\langle q+| \gamma^{\mu}|k+\rangle}{\sqrt{2}\langle q+\mid k-\rangle} .
$$

where k is the momentum of the gluon and q is a reference momentum ($q^{2}=0$).
[6] Z. Xu, Da-Hua Zhang and L. Chang, Tsinghua University Preprints, Beijing, The People's Republic of China, TUTP-84/4, TUTP-84/5, TUTP-84/6 and Nucl. Phys. B291 (1987) 392.

Polarization Vectors: Helicity

$$
\epsilon_{+}^{\mu}(k, q)=\frac{\langle q-| \gamma^{\mu}|k-\rangle}{\sqrt{2}\langle q-\mid k+\rangle}, \quad \epsilon_{-}^{\mu}(k, q)=\frac{-\langle q+| \gamma^{\mu}|k+\rangle}{\sqrt{2}\langle q+\mid k-\rangle} .
$$

where k is the momentum of the gluon and q is a reference momentum ($q^{2}=0$).

Color Ordered sub-amplitudes are independent of the q's
[6] Z. Xu, Da-Hua Zhang and L. Chang, Tsinghua University Preprints, Beijing, The People's Republic of China, TUTP-84/4, TUTP-84/5, TUTP-84/6 and Nucl. Phys. B291 (1987) 392.

Polarization Vector Properties:

The polarizations for vectors with momentum p, as defined in the text:

$$
\begin{aligned}
\epsilon_{\mu}^{ \pm}(p, k) & = \pm \frac{\langle p \pm| \gamma_{\mu}|k \pm\rangle}{\sqrt{2}\langle k \mp \mid p \pm\rangle}, \\
\epsilon^{ \pm}(p, k) \cdot \gamma & = \pm \frac{\sqrt{2}}{\langle k \mp \mid p \pm\rangle}(|p \mp\rangle\langle k \mp|+|k \pm\rangle\langle p \pm|),
\end{aligned}
$$

enjoy the following properties:

$$
\begin{aligned}
& \epsilon_{\mu}^{ \pm}(p, k)=\left(\epsilon_{\mu}^{\mp}(p, k)\right)^{*}, \\
& \epsilon^{ \pm}(p, k) \cdot p=\epsilon^{ \pm}(p, k) \cdot k=0, \\
& \epsilon^{ \pm}(p, k) \cdot \epsilon^{ \pm}\left(p, k^{\prime}\right)=0, \\
& \epsilon^{ \pm}(p, k) \cdot \epsilon^{\mp}\left(p, k^{\prime}\right)=-1, \\
& \epsilon^{ \pm}(p, k) \cdot \epsilon^{ \pm}\left(p^{\prime}, k\right)=0, \\
& \epsilon^{ \pm}(p, k) \cdot \epsilon^{\mp}\left(k, k^{\prime}\right)=0, \\
& \epsilon_{\mu}^{+}(p, k) \epsilon_{\nu}^{-}(p, k)+\epsilon_{\mu}^{-}(p, k) \epsilon_{\nu}^{+}(p, k)=-g_{\mu \nu}+\frac{p_{\mu} k_{\nu}+p_{\nu} k_{\mu}}{p \cdot k} .
\end{aligned}
$$

Exercise:

- Calculate matrix element for 2 gluons to 2 gluons

Exercise:

- Calculate matrix element for 2 gluons to 2 gluons

6 gluon result:

$$
\begin{gathered}
\mathcal{M}\left(g_{1}^{-}, g_{2}^{-}, g_{3}^{+}, g_{4}^{+}, \ldots, g_{6}^{+}\right)=i g^{4}(12\rangle^{4} \sum_{\{1,2,3,4,5,6\}^{\prime}} \operatorname{tr}\left(\lambda^{a_{1}} \lambda^{a_{2}} \ldots \lambda^{a_{6}}\right) \frac{1}{(12)(23\rangle \cdots\langle 61\rangle}, \\
m_{3+3-}\left(g_{1}, g_{2}, \ldots, g_{6}\right)=i g^{4}\left[\frac{\alpha^{2}}{t_{123} s_{12} s_{23} s_{45} s_{58}}+\frac{\beta^{2}}{t_{234} s_{23} s_{34} s_{58} s_{61}}\right. \\
\left.+\frac{\gamma^{2}}{t_{345} s_{34} s_{45} s_{61} s_{12}}+\frac{t_{123} \beta \gamma+t_{234} \gamma \alpha+t_{345} \alpha \beta}{s_{12} s_{23} s_{34} s_{45} s_{56} s_{61}}\right],
\end{gathered}
$$

	$1^{+} 2^{+} 3^{+} 4^{-} 5^{-} 6^{-}$	$1^{+} 2^{+} 3^{-} 4^{+} 5^{-} 6^{-}$	$1^{+} 2^{-} 3^{+} 4^{-} 5^{+} 6^{-}$
$\alpha=p_{1}+p_{2}+p_{3}$	$Y=p_{1}+p_{2}+p_{4}$	$Z=p_{1}+p_{3}+p_{5}$	
β	0	$-[12]\langle 56\rangle\langle 4\| Y\|3\rangle$	$[13]\langle 46\rangle\langle 5\| Z\|2\rangle$
γ	$[23]\langle 56\rangle\langle 1\| X\|4\rangle$	$[24]\langle 56\rangle\langle 1\| Y\|3\rangle$	$[51]\langle 24\rangle\langle 3\| Z\|6\rangle$

$$
\begin{aligned}
A_{6}\left(1^{+}, 2^{+}, 3^{+}, 4^{-}, 5^{-}, 6^{-}\right)= & i \frac{\left([12]\langle 45\rangle\left\langle 6^{-}\right|(1+2)\left|3^{-}\right\rangle\right)^{2}}{s_{61} s_{12} s_{34} s_{45} s_{612}} \\
& +i \frac{\left([23]\langle 56\rangle\left\langle 4^{-}\right|(2+3)\left|1^{-}\right\rangle\right)^{2}}{s_{23} s_{34} s_{56} s_{61} s_{561}} \\
& +i \frac{s_{123}[12][23]\langle 45\rangle\langle 56\rangle\left\langle 6^{-}\right|(1+2)\left|3^{-}\right\rangle\left\langle 4^{-}\right|(2+3)\left|1^{-}\right\rangle}{s_{12} s_{23} s_{34} s_{45} s_{56} s_{61}} .
\end{aligned}
$$

++++++-+++++++-

$$
A_{j n}^{\mathrm{MHV}} \equiv A_{n}^{\mathrm{tree}}\left(1^{+}, 2^{+}, \ldots, j^{-}, \ldots,(n-1)^{+}, n^{-}\right)=i \frac{\langle j n\rangle^{4}}{\langle 12\rangle \cdots\langle n 1\rangle}
$$

Factorization Properties:

Soft:

$$
\begin{aligned}
& m\left(1^{+}, 2 \ldots, n\right) \xrightarrow{1+\text { soft }}\left\{\frac{g\langle n 2\rangle}{\langle n 1\rangle\langle 12\rangle}\right\} m(2,3 \ldots, n) \\
& m\left(1^{-}, 2 \ldots, n\right) \xrightarrow{1-\ldots \text { oft }}\left\{\frac{g[n 2]}{[n 1][12]}\right\} m(2,3 \ldots, n) .
\end{aligned}
$$

collinear:

$$
\begin{aligned}
& m\left(1^{+}, 2^{+}, 3, \ldots\right) \xrightarrow{\mathbf{1}^{+} \|^{2+}}\left\{\frac{i g[12]}{\sqrt{z(1-z)}}\right\} \frac{-i}{S_{12}} m\left(P^{+}, 3, \ldots\right) \\
& m\left(1^{+}, 2^{-}, 3, \ldots\right) \xrightarrow{1^{+} 川^{2-}}\left\{\frac{i g z^{2}(12\rangle}{\sqrt{z(1-z)}}\right\} \frac{-i}{S_{12}} m\left(P^{+}, 3, \ldots\right) \\
& +\left\{\frac{i g(1-z)^{2}[12]}{\sqrt{z(1-z)}}\right\} \frac{-i}{S_{12}} m\left(P^{-}, 3, \ldots\right) \\
& m\left(1^{-}, 2^{-}, 3, \ldots\right) \xrightarrow{1^{-} \underline{1 H}^{-}}\left\{\frac{i g\langle 12\rangle}{\sqrt{z(1-z)}}\right\} \frac{-i}{S_{12}} m\left(P^{-}, 3, \ldots\right) .
\end{aligned}
$$

Multi-particle:

$$
m(1,2,3,4,5,6) \rightarrow m(1,2,3,-P) \frac{-i}{P^{2}} m(P, 4,5,6)
$$

Recursion Relations:

off mass shell
 on mass shell
color ordered current

Berends and Giele

What about Quarks, Squarks \& Gluinos ?

$$
\begin{aligned}
& A_{q}\left(\bar{q}_{1}^{+}, q_{2}^{-}, g_{3}^{-}, g_{4}^{+}, \ldots, g_{n}^{+}\right)=i g^{n-2}\langle 23\rangle^{3}\langle 13\rangle \sum_{\{3, \ldots, n\}}\left(\lambda_{3} \lambda_{4} \cdots \lambda_{n}\right)_{\hat{2} 1} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} . \\
& A\left(\bar{\phi}_{1}^{+}, \phi_{2}^{-}, g_{3}^{-}, g_{4}^{+}, \ldots, g_{n}^{+}\right)=i g^{n-2}\langle 23\rangle^{2}\langle 13\rangle^{2} \sum_{\{3, \ldots, n\}}\left(\lambda_{3} \lambda_{4} \cdots \lambda_{n}\right)_{\hat{2} \frac{1}{}} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n \mid\rangle} . \\
& A_{\dot{g}}\left(\Lambda_{1}^{+}, \Lambda_{2}^{+}, A_{3}^{-}, \Lambda_{4}^{-}, g_{5}^{+}, \ldots, g_{n}^{+}\right)=i g^{n-2}\langle 12\rangle\langle 34\rangle^{3} \sum_{\text {perm' }} t r\left(\lambda_{1} \lambda_{2} \cdots \lambda_{n}\right) \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} .
\end{aligned}
$$

also for the other helicity amplitudes:

Mangano and Parke: Phys.Rept 200:301-367,1991

Witten's Twistor String Theory

"Perturbative gauge theory as a string theory in twistor space"

hep-th/0312171

 arrangement of points in \mathbb{R}^{3}.

6 gluons

and are quite complicated. There are three essentially different cases, namely helicities ,+++---++--+- , or +-+-+- . These amplitudes can all be written

$$
\begin{align*}
A=8 g^{4} & {\left[\frac{\alpha^{2}}{t_{123} s_{12} s_{23} s_{45} s_{56}}+\frac{\beta^{2}}{t_{234} s_{23} s_{34} s_{56} s_{61}}\right.} \tag{3.31}\\
& \left.+\frac{\gamma^{2}}{t_{345} s_{34} s_{45} s_{61} s_{12}}+\frac{t_{123} \beta \gamma+t_{234} \gamma \alpha+t_{345} \alpha \beta}{s_{12} s_{23} s_{34} s_{45} s_{56} s_{61}}\right] .
\end{align*}
$$

	$1^{+} 2^{+} 3^{+} 4^{-} 5^{-} 6^{-}$	$1^{+} 2^{+} 3^{-} 4^{+} 5^{-} 6^{-}$	$1^{+} 2^{-} 3^{+} 4^{-} 5^{+} 6^{-}$
	$X=1+2+3$	$Y=1+2+4$	$Z=1+3+5$
α	0	$-[12]\langle 56\rangle\langle 4\| Y\|3\rangle$	$[13]\langle 46\rangle\langle 5\| Z\|2\rangle$
β	$[23]\langle 56\rangle\langle 1\| X\|4\rangle$	$[24]\langle 56\rangle\langle 1\| Y\|3\rangle$	$[51]\langle 24\rangle\langle 3\| Z\|6\rangle$
γ	$[12]\langle 45\rangle\langle 3\| X\|6\rangle$	$[12]\langle 35\rangle\langle 4\| Y\|6\rangle$	$[35]\langle 62\rangle\langle 1\| Z\|4\rangle$

BCFW recursion:

On-mass shell recursion relations:

R. Britto, F. Cachazo, B. Feng and E. Witten, "Direct proof of tree-level recursion relation in Yang-Mills theory," Phys. Rev. Lett. 94, 181602 (2005) [hep-th/0501052].

Scattering Amplitudes

Henriette Elvang, Yu-tin Huang

arXiv:1308.1697

A brief introduction to modern amplitude methods
Lance Dixon
arXiv:1310.5353

http://susy2013.ictp.it/video/05 Friday/2013 08 30_Arkani-Hamed_4-3.html

Principals:

Principal
 - Classical Mechanics:
 of Least Action:
 - Quantum Mechanics:
 - Quantum Field Theory:

- What is the correct way to incorporate Gravity?

Principals:

Principal of Least Action:

- Classical Mechanics:
- Quantum Mechanics:
- Quantum Field Theory:
????
???
????
- What is the correct way to incorporate Gravity?

Principals:

Principal •Classical Mechanics:
of Least •Quantum Mechanics: Action:

