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Amplitudes  =  on mass shell scattering amplitudes
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Figure 8: Illustration of how Cauchy’s theorem leads to the BCFW recursion relation. The
magenta dot represents the residue at the origin; the blue dots the residues at zk. In the recursion
relation, the red lines carry complex, shifted momenta.

transverse (x, y) plane. This is only possible if vµ is a complex vector. It’s easy to see that

vµ = 1
2 〈1

+| γµ |n+〉 satisfies the required orthogonality relations.

The function An(z) depends meromorphically on z. If it behaves well enough at infinity,

then we can use Cauchy’s theorem to relate its behavior at z = 0 (the original amplitude)

to its residues at finite values of z (the factorization singularities). If An(z) → 0 as z → ∞,

then we have,

0 =
1

2πi

∮

C
dz

An(z)

z
= An(0) +

∑

k

Res

[

An(z)

z

]∣

∣

∣

∣

z=zk

, (5.5)

where C is the circle at infinity, and zk are the locations of the factorization singularities in

the z plane. (See fig. 8.) These poles occur when the amplitude factorizes into a subprocess

with momenta (k̂1, k2, . . . , kk,−K̂1,k), where K̂1,k(zk) = k̂1(zk) + k2 + · · · + kk must be on

shell. This information lets us write a simple equation for zk,

0 = K̂2
1,k(zk) = (k̂1(zk) + k2 + · · ·+ kk)

2 = (zkλnλ̃1 +K1,k)
2 = zk

〈

n−
∣

∣ &K1,k

∣

∣1−
〉

+K2
1,k ,

(5.6)

where K1,k = k1 + k2 + · · ·+ kk. The solution to eq. (5.6) is

zk = −
K2

1,k

〈n−| &K1,k |1−〉
. (5.7)

We also have to compute the residue of A(z)/z at z = zk. To do that we use eq. (4.16),

which also holds for three-point factorizations in complex kinematics. The singular factor

in the denominator that produces the residue is

zP 2(z) = zK̂2
1,k(z) ≈ zk

〈

n−
∣

∣ &K1,k

∣

∣1−
〉

(z − zk) ≈ −K2
1,k (z − zk). (5.8)

Thus after taking the residue it contributes a factor of the corresponding scalar propagator,

i/K2
1,k, evaluated for the original unshifted kinematics where it is nonsingular.
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I.  Movitations

Why are Amplitudes Interesting?
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•Phenomenology:   LHC processes
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•Principals
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Space-Time, Quantum Mechanics and Scattering Amplitudes
 

 Nima Arkani-Hamed 

Scattering amplitudes in gauge theories and gravity have extraordinary properties that are 
completely invisible in the textbook formulation of quantum field theory using Feynman diagrams. 
In the standard approach--going back to the birth of quantum field theory--space-time locality 
and quantum-mechanical unitarity are made manifest at the cost of introducing huge gauge 
redundancies in our description of physics. As a consequence, apart from the very simplest 
processes, Feynman diagram calculations are enormously complicated, while the final results 
turn out to be amazingly simple, exhibiting hidden infinite-dimensional symmetries. This strongly 
suggests the existence of a new formulation of quantum field theory where locality and unitarity 
are derived concepts, while other physical principles are made more manifest. Rapid advances 
have been made towards uncovering this new picture, especially for the maximally 
supersymmetric gauge theory in four dimensions. These developments have interwoven and 
exposed connections between a remarkable collection of ideas from string theory, twistor theory 
and integrable systems, as well as a number of new mathematical structures in algebraic 
geometry. In this talk I will review the current state of this subject and and describe a number of 
ongoing directions of research. 

http://streamer.perimeterinstitute.ca/Flash/418223e8-4fae-4ebc-8de4-458f84364e3c/viewer.html
http://streamer.perimeterinstitute.ca/Flash/418223e8-4fae-4ebc-8de4-458f84364e3c/viewer.html


Quantum Mechanics 
and 

Gravity

“Space-Time is Doomed”

Nina Arkani-Hamed

Space-Time has to emerge from “the” fundamental description !







Stephen Parke, Fermilab                                      Invisibles 2014                                                         7/12/2014                      

II.    Amplitudes in Feynman Perturbation Theory

11

Supercollider physics
Rev. Mod. Phys. 56, 579 – Published 1 October 1984

E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg

Multijet Phenomena:

For multijet events containing more than three jets, the theoretical situation is considerably 
more primitive. A specific question of interest concerns the QCD four-jet background to the 
detection of W+W- pairs in their nonleptonic decays. The cross sections for the 
elementary two to four processes have not been calculated, and their complexity is 
such that they may not be evaluated in the foreseeable future. It is worthwhile to seek 
estimates of the four-jet cross sections, even if these are only reliable in restricted regions of 
phase space.
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2 gluons to 4 gluons:
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ig fa1a2a3 [gµ1µ2(p1 � p2)µ3 + gµ2µ3(p2 � p3)µ1 + gµ3µ1(p3 � p1)µ2]

for each gluon: momentum pi, polarization vector ✏i and color charge ai
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Figure 3: The zero-slope limit of the six gluon string diagram in terms of
Feynman diagrams (tri-gluon couplings only).

ig fa1a2a3 [gµ1µ2(p1 � p2)µ3 + gµ2µ3(p2 � p3)µ1 + gµ3µ1(p3 � p1)µ2]

for each gluon: momentum pi, polarization vector ✏i and color charge ai

– Typeset by FoilTEX – 1



Stephen Parke, Fermilab                                      Invisibles 2014                                                         7/12/2014                      

2 gluons to 4 gluons:

12

��
�⌧@@

2

��
1

3

��
4

@@
5

6

t
t

t t
tt -

↵0 ! 0

�
��

1

A
AA

2

3

�
��

6

A
AA

5

4

+
1
2

A
AA

2

�
��

1

3

6

�
��

5

A
AA

4

+
1
2

A
AA

2

�
��

1

3

6

�
��

5

A
AA

4

+ cyclic perms

+
1
3

�� @@

��

4

@@

3

2

1

5

6

Figure 3: The zero-slope limit of the six gluon string diagram in terms of
Feynman diagrams (tri-gluon couplings only).

ig fa1a2a3 [gµ1µ2(p1 � p2)µ3 + gµ2µ3(p2 � p3)µ1 + gµ3µ1(p3 � p1)µ2]

for each gluon: momentum pi, polarization vector ✏i and color charge ai

– Typeset by FoilTEX – 1

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

t

123

s

56

}

220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

– Typeset by FoilTEX – 1



Stephen Parke, Fermilab                                      Invisibles 2014                                                         7/12/2014                      

2 gluons to 4 gluons:

12

��
�⌧@@

2

��
1

3

��
4

@@
5

6

t
t

t t
tt -

↵0 ! 0

�
��

1

A
AA

2

3

�
��

6

A
AA

5

4

+
1
2

A
AA

2

�
��

1

3

6

�
��

5

A
AA

4

+
1
2

A
AA

2

�
��

1

3

6

�
��

5

A
AA

4

+ cyclic perms

+
1
3

�� @@

��

4

@@

3

2

1

5

6

Figure 3: The zero-slope limit of the six gluon string diagram in terms of
Feynman diagrams (tri-gluon couplings only).

ig fa1a2a3 [gµ1µ2(p1 � p2)µ3 + gµ2µ3(p2 � p3)µ1 + gµ3µ1(p3 � p1)µ2]

for each gluon: momentum pi, polarization vector ✏i and color charge ai

– Typeset by FoilTEX – 1

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

t

123

s

56

}

220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

– Typeset by FoilTEX – 1

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

s

123

s

56

}

where s
ij...n

⌘ (p
i

+ p
j

+ · · · p
n

)2

M ⇠ 220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

1011

terms ! ! !

before you start using identities like:

f
a

1

XY

f
a

2

XY

= N�a
1

a
2

&

P
polarizations

✏µ

1

1

✏⇤µ

2

1

= gµ

1

µ

2 � p

µ

1

1

p

µ

2

1

(p

1

·n)

2

– Typeset by FoilTEX – 1



Stephen Parke, Fermilab                                      Invisibles 2014                                                         7/12/2014                      

2 gluons to 4 gluons:

12

��
�⌧@@

2

��
1

3

��
4

@@
5

6

t
t

t t
tt -

↵0 ! 0

�
��

1

A
AA

2

3

�
��

6

A
AA

5

4

+
1
2

A
AA

2

�
��

1

3

6

�
��

5

A
AA

4

+
1
2

A
AA

2

�
��

1

3

6

�
��

5

A
AA

4

+ cyclic perms

+
1
3

�� @@

��

4

@@

3

2

1

5

6

Figure 3: The zero-slope limit of the six gluon string diagram in terms of
Feynman diagrams (tri-gluon couplings only).

ig fa1a2a3 [gµ1µ2(p1 � p2)µ3 + gµ2µ3(p2 � p3)µ1 + gµ3µ1(p3 � p1)µ2]

for each gluon: momentum pi, polarization vector ✏i and color charge ai

– Typeset by FoilTEX – 1

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

t

123

s

56

}

220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

– Typeset by FoilTEX – 1

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

s

123

s

56

}

where s
ij...n

⌘ (p
i

+ p
j

+ · · · p
n

)2

M ⇠ 220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

1011

terms ! ! !

before you start using identities like:

f
a

1

XY

f
a

2

XY

= N�a
1

a
2

&

P
polarizations

✏µ

1

1

✏⇤µ

2

1

= gµ

1

µ

2 � p

µ

1

1

p

µ

2

1

(p

1

·n)

2

– Typeset by FoilTEX – 1

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

s

123

s

56

}

s
ij...n

⌘ (p
i

+ p
j

+ · · · p
n

)2

M ⇠ 220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

1011

terms ! ! !

before you start using identities like:

f
a

1

XY

f
a

2

XY

= N�a
1

a
2

&

P
polarizations

✏µ

1

1

✏⇤µ

2

1

= gµ

1

µ

2 � p

µ

1

1

p

µ

2

1

(p

1

·n)

2

– Typeset by FoilTEX – 1

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

s

123

s

56

}

where s
ij...n

⌘ (p
i

+ p
j

+ · · · p
n

)2

M ⇠ 220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

1011

terms ! ! !

before you start using identities like:

f
a

1

XY

f
a

2

XY

= N�a
1

a
2

&

P
polarizations

✏µ

1

1

✏⇤µ

2

1

= gµ

1

µ

2 � p

µ

1

1

p

µ

2

1

(p

1

·n)

2

– Typeset by FoilTEX – 1



Stephen Parke, Fermilab                                      Invisibles 2014                                                         7/12/2014                      

the Amplitude:

13

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

t

123

s

56

}

M ⇠ 220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

– Typeset by FoilTEX – 1



Stephen Parke, Fermilab                                      Invisibles 2014                                                         7/12/2014                      

the Amplitude:

13

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

t

123

s

56

}

220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

– Typeset by FoilTEX – 1

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

t

123

s

56

}

M ⇠ 220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

– Typeset by FoilTEX – 1



Stephen Parke, Fermilab                                      Invisibles 2014                                                         7/12/2014                      

the Amplitude:

13

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

t

123

s

56

}

220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

– Typeset by FoilTEX – 1

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

t

123

s

56

}

M ⇠ 220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

– Typeset by FoilTEX – 1

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

t

123

s

56

}

M ⇠ 220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

1011

terms ! ! !

– Typeset by FoilTEX – 1

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

s

123

s

56

}

where s
ij...n

⌘ (p
i

+ p
j

+ · · · p
n

)2

M ⇠ 220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

1011

terms ! ! !

before you start using identities like:

f
a

1

XY

f
a

2

XY

= N�a
1

a
2

&

P
helicities

✏µ

i

✏⌫

i

⇤ = �gµ⌫ + p

µ

i

q

⌫

+p

⌫

i

q

µ

(p

i

·q)

– Typeset by FoilTEX – 1



Stephen Parke, Fermilab                                      Invisibles 2014                                                         7/12/2014                      

the Amplitude:

13

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

t

123

s

56

}

220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

– Typeset by FoilTEX – 1

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

t

123

s

56

}

M ⇠ 220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

– Typeset by FoilTEX – 1

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

t

123

s

56

}

M ⇠ 220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

1011

terms ! ! !

– Typeset by FoilTEX – 1

ig f
a

1

a

2

a

3

[g
µ

1

µ

2

(p
1

� p
2

)
µ

3

+ g
µ

2

µ

3

(p
2

� p
3

)
µ

1

+ g
µ

3

µ

1

(p
3

� p
1

)
µ

2

]

for each gluon: momentum p
i

, polarization vector ✏
i

and color charge a
i

f
a

1

a

2

X

f
Xa

3

Y

f
Y a

4

Z

f
Za

5

a

6

✏µ

1

1

✏µ

2

2

✏µ

3

3

✏µ

4

4

✏µ

5

5

✏µ

6

6

{4th order polyn of p

0
s

s

12

s

123

s

56

}

where s
ij...n

⌘ (p
i

+ p
j

+ · · · p
n

)2

M ⇠ 220 Feynman Diagrams times 64

terms per diagram ⇡ 3⇥ 105

P
colors

P
polarizations

|M|2

1011

terms ! ! !

before you start using identities like:

f
a

1

XY

f
a

2

XY

= N�a
1

a
2

&

P
helicities

✏µ

i

✏⌫

i

⇤ = �gµ⌫ + p

µ

i

q

⌫

+p

⌫

i

q

µ

(p

i

·q)

– Typeset by FoilTEX – 1

• but the answer you say must permutation symmetric — true ! ! !

• you still have 108

terms !

• but you have to identify which of the 6! of each term leads to simplifying

the result.
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-5- FERMILAB-Conf-86/44-T 

and eqn(17) can be used to get the purely gluonic matrix element. Note the simplic- 
ity of this expression! There are six independent color factors for this process and 
six terms in the final result. The linear independence of the color factors implies 
that each term is gauge independent and therefore each term can be evaluated with 
a different (convenient) reference momentum. 

The third and sixth terms in this expression are the only complications, a part 
from the color factors, caused by the non-abelian nature of the gluon. The rest is 
just scalar QED. Also, all denominators are, up to a phase factors, square roots of 
poles. Therefore the required cancellation of all double poles5 for the purely gluonic 
matrix element squared has been achieved at the matrix element level! 

The square of this expression is easy obtained and after summing over color 
indices gives 

lM(91+~92+~93+~g4+~95+)12 - (1.2)‘: (1.2)(2.3)(3t4)(4.5)(5, 1) (21) 

where CP is the sum over all permutations of 1 . . 5. After the appropriate sum 
and average of helicity and color, the final expression is 

IM m-ml = 240$?: 1@ -““IT (1.2)(2.3)(314)(4.5)(5.1)’ (22) 

Again the power of this method can be demonstrated by relating this result to 
that of the process of two gluons scattering into two massless gluinos and a gluon. 
The appropriate relationships can be obtained as before, 

IM(gl+,gz+;~3-,g4+.~5+)l = IM(g~+,gz+;g3-rgr+,g5+)I (23) 

lM(g~+,gz-;~3+,~4-,g~+)l = # IM(sl+,9*-;93frg4-rg5+)l. (24) 

The final result for this process is 

iMgpd2 = 20$y1) [ [ (1.4)71.5) f (1 H 2) + (1 H 3) ] + (4 @ 5) I 

&2)(2.3)(3:4)(4.5)(5+ (25) 

An interested reader can now enjoy calculating 1 MxA-~xA/~ in a similar manner. 

• Embedd Yang-Mills or QCD in a SuperSymmetric Theory, N=1,2 or 4

• the tree-level, pure gluon amplitudes are identical in all these theories

• relationships between pure gluon amplitudes and

amplitudes were some of gluons are replaced with gluinos

– Typeset by FoilTEX – 3
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V. TWOTOFOURPROCESSES 

In this section I consider the two gluon to four gluon process. Here I define all 
helicities as if all particles are incoming. Once again supersymmetry can be used 
to show that to tree level 

lM(91-,92-,93-,94-,Ss-,g6-)I = 0, (26) 

/~(91-~9~-~s3-,g4-,95-,9s*)l = 0, (27) 

IM(g~-,g~-rg3-.g4-rg~+,gs~)/ = z lM(g,-,dZ-,m3-,g4-,~5+,0s+)l, (28) 

and 

jM(g~-,gz-,g3-rg~+,gs+,g~+)l = SlZ + 323 + S13)2M(gl-,~2-,~3-,94+,~5+,~6+) 
- w=r4(~12 + s23 + s&J; + Psz - ;p: - ipi)M(X - 4 - 4 - x 1 , 2 t 3 9 4+r s+r 4 h+) 

- SM(P; +P; - ;P: - ;p~)‘M(~,-,~*-r~3-,~~+,~5+,~6+) I 

(29) 

where this last equation is given in the center of mass frame of particles 1 and 4. 
Unfortunately, a compact analytical result for this process has not yet been obtained 
but fast numerical program@ have been written which allow both experimentialists 
and theorists to study this process. It is worth noting that various checks can 
be applied to these programs especially permutation symmetry and the absence of 
double poles when two momenta are made parallel. 

Methods similar to that used in the two to three gluonic process might lead to a 
simple expression for the amplitude which can then be squared without producing 
an enormous number of terms. 

VI. DISCUSSIONS 

The use of supersymmetry is a powerful tool in reducing the complicated calcu- 
lations required when dealing with gluons in perturbative QCD. There are many 
areas one could extent the basic ideas of this paper. Can one include quarks into 

SP and T. Taylor
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wasn’t a neat algebraic expression !
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PT Amplitudes:

15

• To leading order in N
c

|M(+ + + · · ·+)|2 ⇠ 0 (1)

|M(�+ + · · ·+)|2 ⇠ 0 (2)

|M(��+ · · ·+)|2 ⇠ (1 · 2)4
X

perms

1
(1 · 2)(2 · 3) · · · (n · 1)

(3)

where (i · j) = p
i

· p
j
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) tremendous number of cancellations ! ! !
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“This could be a great discovery. Depending, 
of course, on how far down it goes.”
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The original paper was shorter but the 
editor insisted we add somethings ! ! !
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sub-amplitudes for four, five and six gluon scattering. The next section demonstrates the

remarkable factorization properties of the sub-amplitudes and finally the square of the full

amplitude summed over color and helicities is given.

2 Duality and Gauge Invariance

In perturbative QCD the calculation of multi-gluon scattering amplitudes, even at tree level,

is very challenging. Part of the reason for the di�culty is that up to now there has been

no systematic way to e�ciently identify the appropriate gauge invariant subsets of the full

amplitude. Here we propose that the appropriate way to make this division is to insure

that the gauge invariant subsets are invariant under cyclic permutations of the external

gluons. This results in tremendous cancellations occurring at the amplitude level and the

sub-amplitudes so defined have remarkable factorization properties.

Consider an SU(N) Yang-Mills theory, then at tree level in perturbation theory, any

vector particle scattering amplitude, with colors a1, a2 . . . a
n

, external momenta p1, p2 . . . p
n

and helicities ✏1, ✏2 . . . ✏
n

, can be written as

M
n

=
X

perm

0
tr (�a1�a2 . . . �an) m(p1, ✏1; p2, ✏2; · · · ; pn

, ✏
n

), (2.1)

where the sum, perm0, is over all (n� 1)! non-cyclic permutations of 1, 2, . . . , n and the �’s

are the matrices of the symmetry group in the fundamental representation. The proof of

this statement is very simple using the identities [�a, �b] = if
abc

�c and tr(�a�b) = 1
2�

ab . In

any tree level Feynman diagram, replace the color structure function at some vertex using

f
abc

= �2i tr(�a�b�c � �c�b�a). Now each leg attached to this vertex has a � matrix

associated with it. At the other end of each of these legs there is either another vertex or

this is an external leg. If there is another vertex, use the � associated with this internal leg

to write the structure function of this vertex f
cde

�c as �i [�d, �e]. Continue this processes

until all vertices have been treated in this manner. Then this Feynman diagram has been

placed in the form of eqn(2.1). Repeating this procedure for all Feynman diagrams for a

given process completes the proof.

The sub-amplitudes m(1, 2, . . . , n) ⌘ m(p1, ✏1; p2, ✏2; . . . pn

, ✏
n

) of eqn(2.1) satisfy a

number of important properties and relationships.

3

Chan-Paton factors n

1

2
3

nA =
h,k 1

n

h
1,kK

2

Ak+1

An−k+1

k

k
z

− 1n
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Figure 8: Illustration of how Cauchy’s theorem leads to the BCFW recursion relation. The
magenta dot represents the residue at the origin; the blue dots the residues at zk. In the recursion
relation, the red lines carry complex, shifted momenta.

transverse (x, y) plane. This is only possible if vµ is a complex vector. It’s easy to see that

vµ = 1
2 〈1

+| γµ |n+〉 satisfies the required orthogonality relations.

The function An(z) depends meromorphically on z. If it behaves well enough at infinity,

then we can use Cauchy’s theorem to relate its behavior at z = 0 (the original amplitude)

to its residues at finite values of z (the factorization singularities). If An(z) → 0 as z → ∞,

then we have,

0 =
1

2πi

∮

C
dz

An(z)

z
= An(0) +

∑

k

Res

[

An(z)

z

]∣

∣

∣

∣

z=zk

, (5.5)

where C is the circle at infinity, and zk are the locations of the factorization singularities in

the z plane. (See fig. 8.) These poles occur when the amplitude factorizes into a subprocess

with momenta (k̂1, k2, . . . , kk,−K̂1,k), where K̂1,k(zk) = k̂1(zk) + k2 + · · · + kk must be on

shell. This information lets us write a simple equation for zk,

0 = K̂2
1,k(zk) = (k̂1(zk) + k2 + · · ·+ kk)

2 = (zkλnλ̃1 +K1,k)
2 = zk

〈

n−
∣

∣ &K1,k

∣

∣1−
〉

+K2
1,k ,

(5.6)

where K1,k = k1 + k2 + · · ·+ kk. The solution to eq. (5.6) is

zk = −
K2

1,k

〈n−| &K1,k |1−〉
. (5.7)

We also have to compute the residue of A(z)/z at z = zk. To do that we use eq. (4.16),

which also holds for three-point factorizations in complex kinematics. The singular factor

in the denominator that produces the residue is

zP 2(z) = zK̂2
1,k(z) ≈ zk

〈

n−
∣

∣ &K1,k

∣

∣1−
〉

(z − zk) ≈ −K2
1,k (z − zk). (5.8)

Thus after taking the residue it contributes a factor of the corresponding scalar propagator,

i/K2
1,k, evaluated for the original unshifted kinematics where it is nonsingular.

– 24 –
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Figure 8: Illustration of how Cauchy’s theorem leads to the BCFW recursion relation. The
magenta dot represents the residue at the origin; the blue dots the residues at zk. In the recursion
relation, the red lines carry complex, shifted momenta.

transverse (x, y) plane. This is only possible if vµ is a complex vector. It’s easy to see that

vµ = 1
2 〈1

+| γµ |n+〉 satisfies the required orthogonality relations.

The function An(z) depends meromorphically on z. If it behaves well enough at infinity,

then we can use Cauchy’s theorem to relate its behavior at z = 0 (the original amplitude)

to its residues at finite values of z (the factorization singularities). If An(z) → 0 as z → ∞,

then we have,

0 =
1

2πi

∮
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An(z)
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= An(0) +
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k

Res
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An(z)

z
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where C is the circle at infinity, and zk are the locations of the factorization singularities in

the z plane. (See fig. 8.) These poles occur when the amplitude factorizes into a subprocess

with momenta (k̂1, k2, . . . , kk,−K̂1,k), where K̂1,k(zk) = k̂1(zk) + k2 + · · · + kk must be on

shell. This information lets us write a simple equation for zk,

0 = K̂2
1,k(zk) = (k̂1(zk) + k2 + · · ·+ kk)

2 = (zkλnλ̃1 +K1,k)
2 = zk

〈

n−
∣

∣ &K1,k

∣

∣1−
〉

+K2
1,k ,

(5.6)

where K1,k = k1 + k2 + · · ·+ kk. The solution to eq. (5.6) is

zk = −
K2

1,k

〈n−| &K1,k |1−〉
. (5.7)

We also have to compute the residue of A(z)/z at z = zk. To do that we use eq. (4.16),

which also holds for three-point factorizations in complex kinematics. The singular factor

in the denominator that produces the residue is

zP 2(z) = zK̂2
1,k(z) ≈ zk

〈

n−
∣

∣ &K1,k

∣

∣1−
〉

(z − zk) ≈ −K2
1,k (z − zk). (5.8)

Thus after taking the residue it contributes a factor of the corresponding scalar propagator,

i/K2
1,k, evaluated for the original unshifted kinematics where it is nonsingular.
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sub-amplitudes for four, five and six gluon scattering. The next section demonstrates the

remarkable factorization properties of the sub-amplitudes and finally the square of the full

amplitude summed over color and helicities is given.

2 Duality and Gauge Invariance

In perturbative QCD the calculation of multi-gluon scattering amplitudes, even at tree level,

is very challenging. Part of the reason for the di�culty is that up to now there has been

no systematic way to e�ciently identify the appropriate gauge invariant subsets of the full

amplitude. Here we propose that the appropriate way to make this division is to insure

that the gauge invariant subsets are invariant under cyclic permutations of the external

gluons. This results in tremendous cancellations occurring at the amplitude level and the

sub-amplitudes so defined have remarkable factorization properties.

Consider an SU(N) Yang-Mills theory, then at tree level in perturbation theory, any

vector particle scattering amplitude, with colors a1, a2 . . . a
n

, external momenta p1, p2 . . . p
n

and helicities ✏1, ✏2 . . . ✏
n

, can be written as
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, ✏
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), (2.1)

where the sum, perm0, is over all (n� 1)! non-cyclic permutations of 1, 2, . . . , n and the �’s

are the matrices of the symmetry group in the fundamental representation. The proof of

this statement is very simple using the identities [�a, �b] = if
abc

�c and tr(�a�b) = 1
2�

ab . In

any tree level Feynman diagram, replace the color structure function at some vertex using

f
abc

= �2i tr(�a�b�c � �c�b�a). Now each leg attached to this vertex has a � matrix

associated with it. At the other end of each of these legs there is either another vertex or

this is an external leg. If there is another vertex, use the � associated with this internal leg

to write the structure function of this vertex f
cde

�c as �i [�d, �e]. Continue this processes

until all vertices have been treated in this manner. Then this Feynman diagram has been

placed in the form of eqn(2.1). Repeating this procedure for all Feynman diagrams for a

given process completes the proof.
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number of important properties and relationships.
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3

5 The Six Gluon Process

For the six gluon process only those Feynman diagrams, or part there of, with the same color

structure as the diagrams of Fig. 3 contribute to the m(1, 2, 3, 4, 5, 6) sub-amplitude. To see

this, expand the Feynman diagram color factors in terms of the trace of the �’s using

fabXfXcY fY dZfZeg = 2 tr([[�a, �b], �c][�d, [�e, �g]])

or

fabXf cdY f egZfXY Z = 2 tr([�a, �b][�c, �d][�e, �g])� 2 tr([�e, �g][�c, �d][�a, �b]).

Then, by using the appropriate reference momenta for the polarization vectors it is easy

to see that the only non-zero sub-amplitudes are those with four positive - two negative,

two positive - four negative and three positive - three negative helicities. After a lengthy

calculation we have obtained the following expressions for the six gluon sub-amplitudes.
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Figure 3: The zero-slope limit of the six gluon string diagram in terms of Feynman dia-
grams (tri-gluon couplings only).

The sub-amplitudes for the four positive - two negative helicity processes are a straight

forward generalization of the four and five-gluon sub-amplitudes;

m4+2�(1, 2, 3, 4, 5, 6) = 8ig4 hIJi4
h12ih23ih34ih45ih56ih61i . (5.1)

Again, I and J represent the momenta of the negative helicity gluons. Di↵erent permutations

can be obtained as before by keeping fixed the numerator and permuting the momenta in

9
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Figure 8: Illustration of how Cauchy’s theorem leads to the BCFW recursion relation. The
magenta dot represents the residue at the origin; the blue dots the residues at zk. In the recursion
relation, the red lines carry complex, shifted momenta.

transverse (x, y) plane. This is only possible if vµ is a complex vector. It’s easy to see that

vµ = 1
2 〈1

+| γµ |n+〉 satisfies the required orthogonality relations.

The function An(z) depends meromorphically on z. If it behaves well enough at infinity,

then we can use Cauchy’s theorem to relate its behavior at z = 0 (the original amplitude)

to its residues at finite values of z (the factorization singularities). If An(z) → 0 as z → ∞,

then we have,

0 =
1

2πi

∮

C
dz

An(z)

z
= An(0) +

∑

k

Res

[

An(z)

z

]∣

∣

∣

∣

z=zk

, (5.5)

where C is the circle at infinity, and zk are the locations of the factorization singularities in

the z plane. (See fig. 8.) These poles occur when the amplitude factorizes into a subprocess

with momenta (k̂1, k2, . . . , kk,−K̂1,k), where K̂1,k(zk) = k̂1(zk) + k2 + · · · + kk must be on

shell. This information lets us write a simple equation for zk,

0 = K̂2
1,k(zk) = (k̂1(zk) + k2 + · · ·+ kk)

2 = (zkλnλ̃1 +K1,k)
2 = zk

〈

n−
∣

∣ &K1,k

∣

∣1−
〉

+K2
1,k ,

(5.6)

where K1,k = k1 + k2 + · · ·+ kk. The solution to eq. (5.6) is

zk = −
K2

1,k

〈n−| &K1,k |1−〉
. (5.7)

We also have to compute the residue of A(z)/z at z = zk. To do that we use eq. (4.16),

which also holds for three-point factorizations in complex kinematics. The singular factor

in the denominator that produces the residue is

zP 2(z) = zK̂2
1,k(z) ≈ zk

〈

n−
∣

∣ &K1,k

∣

∣1−
〉

(z − zk) ≈ −K2
1,k (z − zk). (5.8)

Thus after taking the residue it contributes a factor of the corresponding scalar propagator,

i/K2
1,k, evaluated for the original unshifted kinematics where it is nonsingular.
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sub-amplitudes for four, five and six gluon scattering. The next section demonstrates the

remarkable factorization properties of the sub-amplitudes and finally the square of the full

amplitude summed over color and helicities is given.

2 Duality and Gauge Invariance

In perturbative QCD the calculation of multi-gluon scattering amplitudes, even at tree level,

is very challenging. Part of the reason for the di�culty is that up to now there has been

no systematic way to e�ciently identify the appropriate gauge invariant subsets of the full

amplitude. Here we propose that the appropriate way to make this division is to insure

that the gauge invariant subsets are invariant under cyclic permutations of the external

gluons. This results in tremendous cancellations occurring at the amplitude level and the

sub-amplitudes so defined have remarkable factorization properties.
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where the sum, perm0, is over all (n� 1)! non-cyclic permutations of 1, 2, . . . , n and the �’s

are the matrices of the symmetry group in the fundamental representation. The proof of

this statement is very simple using the identities [�a, �b] = if
abc

�c and tr(�a�b) = 1
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ab . In

any tree level Feynman diagram, replace the color structure function at some vertex using

f
abc

= �2i tr(�a�b�c � �c�b�a). Now each leg attached to this vertex has a � matrix

associated with it. At the other end of each of these legs there is either another vertex or

this is an external leg. If there is another vertex, use the � associated with this internal leg

to write the structure function of this vertex f
cde

�c as �i [�d, �e]. Continue this processes

until all vertices have been treated in this manner. Then this Feynman diagram has been

placed in the form of eqn(2.1). Repeating this procedure for all Feynman diagrams for a

given process completes the proof.

The sub-amplitudes m(1, 2, . . . , n) ⌘ m(p1, ✏1; p2, ✏2; . . . pn

, ✏
n

) of eqn(2.1) satisfy a

number of important properties and relationships.

3

(1) m(1, 2, . . . , n) is gauge invariant.
(2) m(1, 2, . . . , n) is invariant under cyclic permutations of 1, 2, . . . , n
(3) m(n, n� 1, . . . , 1) = (�1)n m(1, 2, . . . , n)
(4) The Ward Identity:

m(1, 2, 3, . . . , n) + m(2, 1, 3, . . . , n) + m(2, 3, 1, . . . , n) (2.2)

+ · · · + m(2, 3, . . . , 1, n) = 0

(5) Factorization of m(1, 2, · · · , n) on multi-gluon poles.
(6) Incoherence to leading order in number of colors:

X

colors

|M
n

|2 =
Nn�2(N2 � 1)

2n

X

perm

0

n

|m(1, 2, · · · , n)|2 +O(N�2)
o

. (2.3)

This set of properties for the sub-amplitudes, we will refer to as duality and the expansion

in terms of these dual sub-amplitudes the dual expansion. Properties (1) and (2) can be seen

directly from the properties of linear independence, for arbitrary N, and invariance under

cyclic permutations of tr (�1�2 . . . �n). Whereas (3) and (4) follow by studying the sum of

Feynman diagrams which contribute to each sub-amplitude. The sum of Feynman diagrams

which make the Ward Identity is such that each diagram is paired with another with opposite

sign so that the combination contained in eqn(2.2) trivially vanishes. Property (5) will be

discussed in great detail in section 6 and the incoherence to leading order in the number of

colors (6) follows from the color algebra of the SU(N) gauge group.

To the string theorist this expansion and the duality properties (1) to (6), see [5], are

quite familar since the string amplitude, in the zero slope limit, reproduces the Yang-Mills

amplitude on mass shell [6]. Each sub-amplitude is then represented by the zero slope

limit of a string diagram, and the sub-amplitude could be obtained by using the usual

Koba-Nielsen formula [7]. The traces of � matrices are just the Chan-Paton factors. For

the string amplitude the properties (1) through (6) are satisfied even before the zero slope

limit is taken. Also from the string diagrams it is simple to see which Feynman diagrams

contribute to a given sub-amplitude, e.g. Fig. 1. The coe�cients for the contributing

diagrams are obtained by the procedure developed earlier in this section for re-writing the

color factors. The relationship between the string diagram and our dual sub-amplitudes

suggests that a Yang-Mills amplitude expressed in terms of these dual sub-amplitudes will

assume a particularly simple form.

The gauge invariance and properties under cyclic and reverse permutations allows the

calculation of far fewer than the (n�1)! sub-amplitudes that appear in the dual expansion. In
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A Appendix: Polarization Vectors and Spinor Properties

We will use notations and conventions as in [92], and will summarize them here for ease of reference.
Let ψ(p) be a massless Dirac spinor. We will denote its chiral projections as follows:

|p±〉 = ψ±(p) =
1

2
(1 ± γ5)ψ(p) 〈p ±| = ψ±(p) (A.1)

By convention, we will choose the spinor phases so as to satisfy the following identities:

|p±〉 = |p∓〉c 〈p ±| = c〈p ∓| , (A.2)

where the suffix c stands for the charge conjugation operation:

| 〉c = C | 〉∗, c〈 | = −∗〈 |C−1 (A.3)

Cγ∗µC
−1 = γµ, (A.4)

C = C† = C−1 = C∗ = CT . (A.5)

We will also introduce the following notation:

〈pq〉 = 〈p −|q+〉 [pq] = 〈p +|q−〉 (A.6)

The spinors are normalized as follows:

〈p|γµ|p〉 = 2pµ (A.7)

From the properties of the Dirac algebra, it is straightforward to prove the following useful identities:

〈p +|q+〉 = 〈p −|q−〉 = 〈pp〉 = [pp] = 0 (A.8)

〈pq〉 = −〈qp〉, [pq] = −[qp] (A.9)

2 |p±〉〈q ±| =
1

2
(1 ± γ5)γ

µ〈q ±| γµ |p±〉, (A.10)

〈pq〉∗ = −sign(p · q)[pq] = sign(p · q)[qp] (A.11)

|〈pq〉|2 = 2(p · q), (A.12)

〈p ±| γµ1
. . . γµ2n+1

|q±〉 = 〈q ∓| γµ2n+1
. . . γµ1

|p∓〉, (A.13)
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just complex numbers

Polarization Vectors:   Spinor Dot Products:

conservation of tree level Yang-Mills and others are simply related to one another 
through the properties (2) through (4). 

3 Spinor Products 

To evaluate the sub-amplitudes we have used the helicity basis for the polariza- 
tion vectors which was introduced by Xu, Zhang and Chang[G]. This technique 
requires the introduction of the concept of a spinor product of two light-like mo- 
mentum vectors. We define the following symbols for the chiral spinors associated 
with the light-like momenta, p;, and their spinor products: 

Ii*) E a(1 f 7S)+i) 9 (i f I = a(&1 r 7s) 

(ij) = (i - lj+) , [ij] = (i + lj-) = sign(ppp:)(ji)*. (3.2) 

The important properties of these spinor products that will be needed in this 
paper are that both (ij) and [ij] are odd under interchange of i and j and are 
complex square roots of the Lorentz invariant Sij G’ (pi + pj)‘; 

(ii) E Jlsijl eXP(+ij), (3.3) 

[ij] Z &j exp(i&j) (3.4) 

If both momenta having positive energy, the phase factor ~~j is defined, in a 
popular representation of the gamma matrices, by 

COS&j = (PiP,t - P,!PT) 

l/im 

sin&j = (PfPj’ - Pj’P,t 1 
&zT’ 

Where p* = (pa f p’) and since all pf = 0 the spinor product for this repre- 
sentation of gamma matrices is undefined for a momentum vector in the minus 
3 direction. If one or more of the momenta in (ij) have negative energy, 4ij 
is calculated with minus the momenta with negative energy and then n?r/2 is 
added to ~;j where n is the number of negative momenta in the spinor product. 
The associated phase factor, &j , for [ij] can be found using equation (3.2) or 
calculated from S;j using the identity Sij c (ij) bi]. 

4 

conservation of tree level Yang-Mills and others are simply related to one another 
through the properties (2) through (4). 

3 Spinor Products 

To evaluate the sub-amplitudes we have used the helicity basis for the polariza- 
tion vectors which was introduced by Xu, Zhang and Chang[G]. This technique 
requires the introduction of the concept of a spinor product of two light-like mo- 
mentum vectors. We define the following symbols for the chiral spinors associated 
with the light-like momenta, p;, and their spinor products: 

Ii*) E a(1 f 7S)+i) 9 (i f I = a(&1 r 7s) 

(ij) = (i - lj+) , [ij] = (i + lj-) = sign(ppp:)(ji)*. (3.2) 

The important properties of these spinor products that will be needed in this 
paper are that both (ij) and [ij] are odd under interchange of i and j and are 
complex square roots of the Lorentz invariant Sij G’ (pi + pj)‘; 

(ii) E Jlsijl eXP(+ij), (3.3) 

[ij] Z &j exp(i&j) (3.4) 

If both momenta having positive energy, the phase factor ~~j is defined, in a 
popular representation of the gamma matrices, by 

COS&j = (PiP,t - P,!PT) 

l/im 

sin&j = (PfPj’ - Pj’P,t 1 
&zT’ 

Where p* = (pa f p’) and since all pf = 0 the spinor product for this repre- 
sentation of gamma matrices is undefined for a momentum vector in the minus 
3 direction. If one or more of the momenta in (ij) have negative energy, 4ij 
is calculated with minus the momenta with negative energy and then n?r/2 is 
added to ~;j where n is the number of negative momenta in the spinor product. 
The associated phase factor, &j , for [ij] can be found using equation (3.2) or 
calculated from S;j using the identity Sij c (ij) bi]. 

4 

conservation of tree level Yang-Mills and others are simply related to one another 
through the properties (2) through (4). 

3 Spinor Products 

To evaluate the sub-amplitudes we have used the helicity basis for the polariza- 
tion vectors which was introduced by Xu, Zhang and Chang[G]. This technique 
requires the introduction of the concept of a spinor product of two light-like mo- 
mentum vectors. We define the following symbols for the chiral spinors associated 
with the light-like momenta, p;, and their spinor products: 

Ii*) E a(1 f 7S)+i) 9 (i f I = a(&1 r 7s) 

(ij) = (i - lj+) , [ij] = (i + lj-) = sign(ppp:)(ji)*. (3.2) 

The important properties of these spinor products that will be needed in this 
paper are that both (ij) and [ij] are odd under interchange of i and j and are 
complex square roots of the Lorentz invariant Sij G’ (pi + pj)‘; 

(ii) E Jlsijl eXP(+ij), (3.3) 

[ij] Z &j exp(i&j) (3.4) 

If both momenta having positive energy, the phase factor ~~j is defined, in a 
popular representation of the gamma matrices, by 

COS&j = (PiP,t - P,!PT) 

l/im 

sin&j = (PfPj’ - Pj’P,t 1 
&zT’ 

Where p* = (pa f p’) and since all pf = 0 the spinor product for this repre- 
sentation of gamma matrices is undefined for a momentum vector in the minus 
3 direction. If one or more of the momenta in (ij) have negative energy, 4ij 
is calculated with minus the momenta with negative energy and then n?r/2 is 
added to ~;j where n is the number of negative momenta in the spinor product. 
The associated phase factor, &j , for [ij] can be found using equation (3.2) or 
calculated from S;j using the identity Sij c (ij) bi]. 

4 



Stephen Parke, Fermilab                                      Invisibles 2014                                                         7/12/2014                      

Spinor Algebra:

24

A Appendix: Polarization Vectors and Spinor Properties

We will use notations and conventions as in [92], and will summarize them here for ease of reference.
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sin �ij =
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+
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j Sij
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Where p± = (p0 ± p3) and since p2
i = 0, the spinor product for this representation of gamma

matrices are undefined for a momentum vector in the minus 3 direction. If one or more of the
momenta in hiji have negative energy, �ij is calculated with minus the momenta with negative
energy and then n⇡/2 is added to �ij where n is the number of negative momenta in the spinor
product. The associated phase factor, �̃ij , for [ij] can be calculated from Sij using the identity
Sij ⌘ hiji [ji]. The above identities can be used to evaluate the spinor products with approximately

the same amount of computational e↵ort as the evaluation of
q

Sij.

Similarly, the matrix element squared can usually be written simply as a sum of traces of
momentum vectors, see [66]. If these traces are expanded, the resulting expressions are extremely
cumbersome. However, the phase factors defined above can be used to evaluate these traces in an
e�cient manner. Consider the trace of a large string of light-like momentum vectors with all vectors
having positive energy, then

Tr(P̂1P̂2P̂3 · · · P̂2n) = [12]h23i · · · h2n1i + h12i[23] · · · [2n1]

= 2
q

S12S23 . . . S2n1 cos(�12 � �32 + �34 � . . .� �1 2n). (E.4)

Where the identity for positive energy spinor products, �̃ij = ��ji, has been used. For traces
involving �5, the corresponding identity is

Tr(P̂1P̂2P̂3 · · · P̂2n�5) = [12]h23i · · · h2n1i � h12i[23] · · · [2n1]

= �2i
q

S12S23 . . . S2n1 sin(�12 � �32 + �34 � . . .� �1 2n). (E.5)

If m of the vectors in the string have negative energy, multiple these vectors by (�1) and use all
the resulting positive energy vectors to calculate the above trace. The original trace is obtained by
multiplying this answer by (�1)m. Traces involving vectors which are massive can be also treated
by writing the massive vector as a sum of two light-like vectors (usually the decay products [54, 45]).
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if  (p) is a Dirac spinor, for massless particle, p2 = 0, then define

hpqi =
p

2p · qei�

p,q and [pq] =
p

2p · qei�

0
p,q

where k is the momentum of the gluon
and q is a reference momentum (q2 = 0).
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hp + |�µ|q+ihp0 � |�
µ

|q0�i = 2 hp + |q0�i hp0 � |q+i, (3.5)

hp� |q+ihp0 � |q0+i = hp� |q0+ihp0 � |q+i + hp� |p0+ihq � |q0+i. (3.6)

By using these massless spinors, the two helicity eigenstates of a gluon with momentum

k are given by:

✏µ

+(k, q) =
hq�|�µ|k�ip

2hq � |k+i , ✏µ

�(k, q) =
� hq+|�µ|k+ip

2hq + |k�i . (3.7)

The momentum q is arbitrary, provided it satisfies q2 = 0 and q · k 6= 0. This freedom

in choosing the reference momentum, q, stems from gauge invariance of the theory. These

polarization vectors satisfy a number of identities which are extremely helpful in simplifying

the calculations.
(1) k · ✏±(k, q) = 0,

✏±(k, q) · ✏⇤⌥(k, q) = 0 and ✏±(k, q) · ✏⇤±(k, q) = � 1.
(2) ✏µ(k, q0) = ✏µ(k, q) + �(k, q0, q) kµ.
(3) q · ✏±(k, q) = 0.
(4) ✏±(k1, q) · ✏±(k2, q) = 0.
(5) ✏±(k1, k2) · ✏⌥(k2, q) = 0.

The properties in (1) are the standard properties of polarization vectors. Whereas (2)

together with the gauge invariance of the sub-amplitudes, i.e. m(1, 2, · · · , n)|
✏

i=p

i = 0,

implies that � is irrelevant and hence we can choose di↵erent reference momenta for each

of the gluons and di↵erent reference momenta for a given gluon in di↵erent sub-amplitudes.

Property (3) eliminates many terms if the reference momenta are chosen to be other light-

like momentum vectors in the calculation. Whereas, (4) and (5) suggest that for a given

sub-amplitude calculation all gluons with the same helicity should have the same reference

momentum and that this reference momentum should be the momentum of a gluon with

opposite helicity. Of course for a given sub-amplitude it is an art to choosing the reference

momenta of the gluons so as to minimize the complexity of the resulting expression, but in

general minimizing the number of nonzero ✏
i

· ✏
j

’s is the most useful choice.

4 Four and Five Gluon Scattering

In the rest of this paper we will use the shorthand notation for the spinor products, hiji = hp
i

�
|p

j

+i and [ij] = hp
i

+ |p
j

�i ; then using the techniques of the last section it is easy to derive

the following results. For the four gluon process, expand the color factors for the Feynman

diagrams in terms of the trace of four �’s using

fabXfXcd = �2 tr([�a, �b][�c, �d]).

6

Deser, M. Grisaru and H. Pendleton eds., MIT Press and reference contained 
in these lectures. 

[3] For a comprehensive review see: J. Schwarz, Phys. Rep. 89 (1982), 224. 

[4] Z. Koba and H. B. Nielsen, Nucl. Phys. BlO (1969), 633; B12 (1969), 517: 
Evaluation of the integrals and taking the zero slope limit is extremely te- 
dious for more than five external particles so the sub-amplitudes were evaI- 
uated using Feynman perturbation theory. 

[S] J. Paton and Chan Hong-MO, Nucl. Phys. BlO (1969) 519. 

[6] Z. Xu, Da-Hua Zhang and L. Chang, Tsinghua University Preprints, Beijing, 
The People’s Republic of China, TUTP-84/4, TUTP-84/5, TUTP-84/6 and 
Nucl. Phys. B291 (1987) 392. 

[7] A. Bassetto, M. Ciafaloni and P. Marchesini, Phys. Rep. 100 (1983), 201. 

[8] G. Altareih and G. Parisi, Nucl. Phys. B126 (1977), 298. 

[9] T. Gottschalk and D. Sivers, Phys. Rev. D21 (1980), 102; 
F. A. Berends, R. Kleiss, P. De Causmaeker, R. Gastmans and T.T. Wu, 
Phys. Lett. 103B (1981), 124. 

[lo] S. Parke and T. Taylor, Phys. Rev. Lett. 56 (1986) 2459. 

[ll] S. Parke and T. Taylor, Nucl. Phys. B269 (1986), 410; 
J. Gunion and J. Kalinowski, Phys. Rev. D34 (1986), 2119. 

[12] Z. Kunszt, Nucl. Phys. B271 (1986), 333. 

[13] M. Mangano and S. Parke, Proc. of the ‘International Europhysics Con- 
ference on High Energy Physics’, Uppsala, Sweden, (1987), ed. 0. Botner, 
p.201. 

[14] M. Mangano and S. Parke, Nucl. Phys. B299 (1988) 673. 

[15] M. Mangano, Nucl. Phys. B315 (1989) 391. 

[16] Z. Kunszt and W. J. Stirling, Phys. Rev. D30 (1988),2439; 
C. J. Maxwell, Phys. Lett. 192B (1987), 190; 
M. Mangano and S. Parke, Phys. Rev. D39 (1989), 758; 
C. J. Maxwell, Nucl. Phys. B316, (1989), 312. 

14 



Stephen Parke, Fermilab                                      Invisibles 2014                                                         7/12/2014                      

Polarization Vectors: Helicity

25

if  (p) is a Dirac spinor, for massless particle, p2 = 0, then define

hpqi =
p

2p · qei�

p,q and [pq] =
p

2p · qei�

0
p,q

where k is the momentum of the gluon
and q is a reference momentum (q2 = 0).

– Typeset by FoilTEX – 7

hp + |�µ|q+ihp0 � |�
µ

|q0�i = 2 hp + |q0�i hp0 � |q+i, (3.5)

hp� |q+ihp0 � |q0+i = hp� |q0+ihp0 � |q+i + hp� |p0+ihq � |q0+i. (3.6)

By using these massless spinors, the two helicity eigenstates of a gluon with momentum

k are given by:

✏µ

+(k, q) =
hq�|�µ|k�ip

2hq � |k+i , ✏µ

�(k, q) =
� hq+|�µ|k+ip

2hq + |k�i . (3.7)

The momentum q is arbitrary, provided it satisfies q2 = 0 and q · k 6= 0. This freedom

in choosing the reference momentum, q, stems from gauge invariance of the theory. These

polarization vectors satisfy a number of identities which are extremely helpful in simplifying

the calculations.
(1) k · ✏±(k, q) = 0,

✏±(k, q) · ✏⇤⌥(k, q) = 0 and ✏±(k, q) · ✏⇤±(k, q) = � 1.
(2) ✏µ(k, q0) = ✏µ(k, q) + �(k, q0, q) kµ.
(3) q · ✏±(k, q) = 0.
(4) ✏±(k1, q) · ✏±(k2, q) = 0.
(5) ✏±(k1, k2) · ✏⌥(k2, q) = 0.

The properties in (1) are the standard properties of polarization vectors. Whereas (2)

together with the gauge invariance of the sub-amplitudes, i.e. m(1, 2, · · · , n)|
✏

i=p

i = 0,

implies that � is irrelevant and hence we can choose di↵erent reference momenta for each

of the gluons and di↵erent reference momenta for a given gluon in di↵erent sub-amplitudes.

Property (3) eliminates many terms if the reference momenta are chosen to be other light-

like momentum vectors in the calculation. Whereas, (4) and (5) suggest that for a given

sub-amplitude calculation all gluons with the same helicity should have the same reference

momentum and that this reference momentum should be the momentum of a gluon with

opposite helicity. Of course for a given sub-amplitude it is an art to choosing the reference

momenta of the gluons so as to minimize the complexity of the resulting expression, but in

general minimizing the number of nonzero ✏
i

· ✏
j

’s is the most useful choice.

4 Four and Five Gluon Scattering

In the rest of this paper we will use the shorthand notation for the spinor products, hiji = hp
i

�
|p

j

+i and [ij] = hp
i

+ |p
j

�i ; then using the techniques of the last section it is easy to derive

the following results. For the four gluon process, expand the color factors for the Feynman

diagrams in terms of the trace of four �’s using

fabXfXcd = �2 tr([�a, �b][�c, �d]).

6
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hp ±| �µ1 . . . �µ2n

|q⌥i = �hq ±| �µ2n

. . . �µ1 |p⌥i, (A.14)

hABihCDi = hADihCBi+ hACihBDi (A.15)

hA +| �µ |B+ihC �| �µ |D�i = 2[AD]hCBi. (A.16)

In the identity Eq.(A.11) the possibility of having spinors with energies of di↵erent sign is considered.
This will be important in the following, since for simplicity we will always carry out the calcula-
tions of the matrix elements assuming all of the particles as being outgoing. Energy-momentum
conservation will then force the energy of some of the particles to be negative.

Notice that the following equations hold for generic chiral spinors (not necessarily solutions of
a Dirac equation) which satisfy Eq.(A.2): (A.9), (A.10), (A.13), (A.14), (A.15), (A.16).

The polarizations for vectors with momentum p, as defined in the text:

✏±µ (p, k) = ±hp ±| �µ |k±ip
2hk ⌥|p±i , (A.17)

✏±(p, k) · � = ±
p

2

hk ⌥|p±i( |p⌥ihk ⌥| + |k±ihp ±| ), (A.18)

enjoy the following properties:

✏±µ (p, k) = (✏⌥µ (p, k))⇤, (A.19)

✏±(p, k) · p = ✏±(p, k) · k = 0, (A.20)

✏±(p, k) · ✏±(p, k0) = 0, (A.21)

✏±(p, k) · ✏⌥(p, k0) = �1, (A.22)

✏±(p, k) · ✏±(p0, k) = 0, (A.23)

✏±(p, k) · ✏⌥(k, k0) = 0, (A.24)

✏+
µ (p, k) ✏�⌫ (p, k) + ✏�µ (p, k) ✏+

⌫ (p, k) = �gµ⌫ +
pµk⌫ + p⌫kµ

p · k . (A.25)
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•Calculate matrix element for 2 gluons to 2 gluons

This set of properties for the sub-amplitudes, we will refer to as duality and the 
expansion in terms of these dual sub-amplitudes the dual expansion. Properties 
(1) and (2) can be seen directly from the properties of linear independence, for 
arbitrary N, and invariance under cyclic permutations of tr (AlA’ . . .A”). Whereas 
(3) and (4) follow by studying the sum of Feynman diagrams which contribute to 
each sub-amplitude. The sum of Feynman diagrams which make the Dual Ward 
Identity is such that each diagram is paired with another with opposite sign so 
that the combination contained in eqn(2.3) trivially vanishes. Property (5) will 
be discussed in great detail in section IV and the incoherence to leading order 
in the number of colors (6) follows from the color algebra of the SU(N) gauge 
group. 

To the string theorist this expansion and the duality properties (1) to (6), see 
[2], are quite familar since the string amplitude, in the zero slope limit, repro- 
duces the Yang-Mills amplitude on mass shell [3]. Each sub-amplitude is then 
represented by the zero slope limit of a string diagram, and the sub-amplitude 
could be obtained by using the usual Koba-Nielsen formula [4]. The traces of X 
matrices are just the Chart-Paton factors Is]. For the string amplitude the prop- 
erties (1) through (6) are satisfied even before the zero slope limit is taken. Also 
from the string diagrams it is simple to see which Feynman diagrams contribute 
to a given sub-amplitude, e.g. Fig. 1. The coefficients for the contributing 
diagrams are obtained by the procedure developed earlier in this section for re- 
writing the color factors. The relationship between the string diagram and our 
dual sub-amplitudes suggests that a Yang-Mills amplitude expressed in terms of 
these dual sub-amplitudes will assume a particularly simple form. 

Figure 1: The zero-slope limit of the four gluon string diagram in terms of Feyn- 
man diagrams (tri-gluon couplings only). 

The gauge invariance and properties under cyclic and reverse permutations 
allows the calculation of far fewer than the (n - l)! sub-amplitudes that appear 
in the dual expansion. In fact the number of sub-amplitudes that are needed is 
just the number of different orderings of positive and negative helicities around a 
circle. Of course some of the sub-amplitudes vanish because of the partial helicity 

3 

1 2

3 4
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Notice that contrarily to the 4- and 5-gluon case, here the 6-gluon amplitude squared has a non- 
vanishing contribution at the sub-leading order in IV. Its precise form is given in Appendix D. 
Using the factorization properties of the amplitude, however, it is easy to check that this sub- 
leading terms do not have collinear divergencies [65]. The absence of these enhancement factors 
makes the numerical value of these sub-leading terms even smaller than what one would naively 
expect from the simple l/N2 suppression. This fact will be discussed in more detail in Section 10 , 
where we will illustrate some techniques to approximate the multi-parton matrix elements. 

The six-parton helicity amplitudes M _ s s+ is described by three distinct sub-amplitudes, char- 
acterised by three inequivalent helicity orderings: (+ + + - --), (+ + - + - -) and (t - + - +-). 
Because of duality, as explained in Ref.(50], all of these sub-amplitudes can be written in the fol- 
lowing form: 

m(l,2,...,6) = ig4 Pl + 
p2 

h23~11~23.%5%3 t234~13~34&.3.%31 

+ p3 t p. 
t346~34~46~Sl~12 313.93353434636tl9l31 

(5.27) 

where tijk e (p; t pj t nk)’ = aij + sjk + sy. The coefficients Pi will depend on the particular 
helicity configuration and on the process (6-gluons or 2-quark plus four-gluons). For the purely 
gluonic case, a further relation can be found between the P’s that wilI reduce Eq(5.27) to 1661: 

m3+3-&71,gz,. . . ,&I) = $7’ 
1 

(22 
t113812823.%.%3 

+ P 
t234.%3~34.%3% 

+ T2 
t345S34S45~51.w 

+ h33Br t t234-P t t34sap 

313323534546.966361 11 (5.28) 

For reference. we give the coefficients Pi’s and a,/3,-r in Table 5.3-5.3 and Table 5.3, respectively, 
without derivation. Here we will just show how to relate the two sets of coefficients, for the purely 
gluonic and the qq plus gluons case, using the various identities introduced in the previous Sections. 
For simplicity we will just work with the (- - - + ++) helicity ordering, but the same construction 
can be repeated for the other orderings as well. 

Suppose we have calculated the fermionic amplitudes; then it is easy to prove the following 
identity, using a proper SWI: 

[36lm(g;,g;,g,-,g:,g,f,g,+) = -[31lm(A,f,,2;,g;,g,-,ga,g:) 

-132!m(A~,s;,~~;,g;,s:,g:). (5.29) 

Here by A we refer to a generic fermion, q or Q. Helicity conservation has been used to cancel the 
two amplitudes with two negative-helicity fermions, and the Grassmannian nature of I?* was used 
when moving it through 112. The amplitude with the non-adjacent fermions can be extracted by 
using the Dual Ward Identity obtained by moving the gluon 1 : 

m(A:,s;>&,s- g+ g+) = II sr B 

29 

where now I is the index of the only gluon with negative helicity. Similarly, the sub-amplitude for 
the helicity configuration with one negative helicity gluon and a negative helicity antiquark is given 
by: 

~(q+,Lh,mh,F-) = id _ WHe 
(nn)(ql)(l2)(23)(3~)’ 

(5.20) 

All of the sub-amplitudes for the processes with opposite helicities (i.e. (+ + - - -)) can be 
obtained from the previous expressions by replacing ( ) products with [ ] products. 

Squaring the full amplitude and summing over colors and helicity configurations, we then obtain: 

IM(!71,...,gsllz = 2g,BN3(N’ - 1) C d~j C ’ 
i>j 511~13.934~46561’ 

I”(q,~,gt,g~,g3)la = 2g~Na(Na - l)C(s~ia~ + 3,id~i, i 

c {1 a 3) I , 3qpsqls:a6a383q + o(N-a) 
For the details of the squaring of the color part, see Appendix D. 

(5.21) 

(5.22) 

5.3 Six Partons 

The six-parton processes are more complex: two independent sets of helicity amplitudes are needed: 
Mz-4+ and Ms-s+. The first ones are a trivial generalization of the five-parton amplitudes. and 
are given in the case of two quark-four gluon and six gluons, respectively, by: 

MC? q- g- g+ 1, a, J, 4 ,..., 9,‘) = ig4(23)3(13) C (X3A4XsXs)ii 
(12)(23;+1)’ 

(5.23) 
{3,4&3) 

M(g;,g;,g,f,g,+, . . . ,d-) = ig4(12)’ c tr(A”‘Y . . . P) 
(12)(23;. . . (61) ’ 

(5.24) 
~1,2.3.4,W’ 

These sub-amplitudes can be shown to satisfy all of the required properties, such as the SWI, 
the Dual Ward Identity and the proper soft and collinear factorization (see Section 6 ). At the 
leading order in N the sum of these matrix elements squared, summed over colors and over the 
configurations with helicities (- - t + ++) and (+ + - - --), can be easily obtained using the 
properties of the X matrices, giving: 

lM(gl,...,gs)(’ = 2gfN4(NZ - l)cs;: c ’ A O(N-‘), 
z>j S11~23.. 381 

l~(q,~,gl,Szr93r9411a = 2gfN3(N2 - 1) ci(s& + s&) 

(S.25) 

&,2.3,4) ~qP#~I~I:~.Jw*~ L O(NY (5.26) 
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1+2+3+4-5-V 1+2+3-4+5-6- 1+2-3+4-5+6- 

x = Pl + pz + p3 Y = p1 + pa + pr 2 = Pl + p3 + ps 

a 0 -[121(56)(41Yt3) [131(46)(5lW 

P [231(56)WW [WW(W’1~) [5~~(24)(31~16) 

-Y WI (45) WW [WWW’l~~ [351(62)(1lW) 

Table 4: Coefficients for the ms+s-(gl,gl,g3,g4,gs,gs) sub-amplitudes. We define (Illr’(J) E (I + 
IK.dJ+) 

6 Factorization Properties of Dual Amplitudes 

One of the most important properties of the dual amplitudes, which partly accounts for the relative 
simplicity of their explicit expressions, is their facto&ability on multi-particle poles. The residues 
at these poles are determined by unitarity, and can be expressed in terms of dual amplitudes for 
processes with a smaller number of external particles. The possibility of factorizing these ampli- 
tudes into products of amplitudes and near-the-pole propagators, puts such severe constraints on 
the amplitudes themselves that often it is possible to deduce their explicit form by just imposing 
unitarity and Lorentz invariance. Subtle cancellations which usually are made explicit only at the 
matrix element square level for the full amplitude, here are made manifest at the matrix element 
level for each single dual amplitude. From the technical point of view, the constraints imposed by 
factorizability provide furthermore a powerful check all along the way while performing complex 
calculations. 

A very simple and instructive way to prove these factorization properties 1671 is by using the 
Koba-Nielsen representation for the amplitudes [55, 851. While this representation may not be 
too helpful in carrying out explicit calculations ‘, this compact symbolic representation provides 
a powerful tool for deriving general properties of the amplitudes. It was used independently by 
Lipatov in Ref. (621 to study the emission of soft gluons and gravitons, in Ref. [63] to study 
the production of gluons in tachyon-tachyon scattering and by Fadin and Lipatov in Ref. [34] to 
describe muiti-gluon production in a quasi-multi-Regge kinematics, in which all the pairs of final 
state paticles except one have large invariant mass and fixed transverse momentum. 

The following factorization properties can also be proved in a simple and effective way [121 

7The calculation of the five gluon amplitudes has however been carried out explicitly using the Koba-Nielsen 
representation 166, 581. 
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It’s worth comparing the analytic form of this result to that found in the 1980’s [22],

A6(1
+, 2+, 3+, 4−, 5−, 6−) = i

([1 2] 〈4 5〉 〈6−| (1 + 2) |3−〉)2
s61s12s34s45s612

(5.29)

+ i
([2 3] 〈5 6〉 〈4−| (2 + 3) |1−〉)2

s23s34s56s61s561

+ i
s123 [1 2] [2 3] 〈4 5〉 〈5 6〉 〈6−| (1 + 2) |3−〉 〈4−| (2 + 3) |1−〉

s12s23s34s45s56s61
.

Although the new form has only one fewer term, it represents the physical singularities

in a cleaner fashion. For example, in the collinear limit 3 ‖ 4, eq. (5.28) makes manifest

the 1/ 〈3 4〉 and 1/ [3 4] singularities, which correspond to the two different intermediate

gluon helicities that contribute in this collinear channel, as the six-point NMHV amplitude

factorizes on both the MHV and MHV five-point amplitudes, A5(1+, 2+, P±, 5−, 6−). On

the other hand, each term of eq. (5.29) behaves like the product of these two singularities,

since 1/s3,4 = −1/(〈3 4〉 [3 4]). Hence there are large cancellations between the three terms

in this channel. Such cancellations can lead to large losses in numerical precision due to

round-off errors, especially in NLO calculations which typically evaluate tree amplitudes

repeatedly close to the collinear poles.

On the other hand, eq. (5.28) contains a spurious singularity that eq. (5.29) does not,

as 〈2−| (6 + 1) |5−〉 → 0. This can happen, for example, whenever k6 + k1 is a linear

combination of k2 and k5. (In the collision 2 + 5 → 6 + 1 + 3 + 4, such a configuration

is reached if the vectors k6 + k1 and k3 + k4 have no component transverse to the beam

axis defined by k2 and k5; that is, if k6 + k1 is a linear combintation of k2 and k5.) It’s

called a spurious singularity because the amplitude should evaluate to a finite number

there, but individual terms blow up. However, these singularities tend to have milder

consequences, as long as they appear only to the first power, as they do here. That’s

because the amplitude is not particularly large in this region, so in the evaluation of

an integral containing it by importance-sampling, it is rare to come close enough to the

surface where 〈2−| (6 + 1) |5−〉 vanishes that round-off error is a problem. Different choices

of BCFW shifts lead to different spurious singularities, so one can always check the value

of 〈2−| (6 + 1) |5−〉 and use a different shift if it is too small.

In general, the BCFW recursion relation leads to very compact analytic representations

for tree amplitudes. The relative simplicity with respect to previous analytic approaches

becomes much more striking for seven or more external legs. A closely related set of re-

cursion relations for N = 4 super-Yang-Mills theory [27] have been solved in closed form

for an arbitrary number of external legs [28]. These solutions can also be used to compute

efficiently a wide variety of QCD tree amplitudes [29]. There are other ways to compute

tree amplitudes, in particular, off-shell recursion relations based on the Dyson-Schwinger

equations, such as the Berends-Giele recursion relations [6]. At very high multiplicities,

these can be numerically even more efficient than the BCFW recursion relations. Neverthe-

less, the idea behind the BCFW recursion relations, that amplitudes can be reconstructed

from their analytic behavior, carries over to the loop level, as we’ll now discuss.

– 29 –

scale like,

!ε−n (q) ∝
λnλ̃q

[n q]
∝ 1

z
, !ε+1 (q) ∝

λ̃1λq

〈1 q〉 ∝ 1

z
. (5.11)

The two factors of 1/z, combined with the factor of z from the internal part of the diagram,

mean that every Feynman diagram falls off like 1/z, so An(∞) = 0 for the [−,+〉 shift.
It is easy to see that flipping either helicity in eq. (5.11) results in a polarization vector

that scales like z instead of 1/z, invalidating the argument based on Feynman diagrams.

However, it is possible to show [26] using the background field method that the [+,+〉 and
[−,−〉 cases are actually just as well behaved as the [−,+〉 case, also falling off like 1/z.

In contrast, the [+,−〉 case does diverge like z3, as suggested by the above diagrammatic

argument.

5.2 Application to MHV

Next we apply the BCFW recursion relation to prove the form of the Parke-Taylor ampli-

tudes (4.15), inductively in the number of legs n. For convenience, we will use cyclicity to

put one of the two negative helicities in the nth position,

AMHV
jn ≡ Atree

n (1+, 2+, . . . , j−, . . . , (n− 1)+, n−) = i
〈j n〉4

〈1 2〉 · · · 〈n 1〉
. (5.12)

First we note that the middle terms in the sum over k in eq. (5.9), with 3 ≤ k ≤ n− 3 all

vanish. That’s because they correspond to the multi-particle pole factorizations considered

in eq. (4.16), with at least a four-point amplitude on each side of the factorization pole,

and vanish according to the discussion below eq. (4.16), by counting negative helicities.

The case k = n − 2 also vanishes. If j = n − 1, then it vanishes because Ak+1 can

have at most one negative helicity. If j < n − 1, then we must have h = + so that Ak+1

is non-vanishing, and then the three-point amplitude An−k+1 is of type (+,+,−). This

amplitude, given in eq. (4.22), can be nonvanishing when the three right-handed spinors λi

(i = K,n − 1, n) are proportional (the second choice of three-point kinematics). However,

we have shifted the left-handed spinor λ̃n, not the right-handed one, and it is easy to check

that the three-point configuration we arrived at is the one for which three left-handed

spinors λ̃i are proportional. For this choice An−k+1 vanishes.

The only nonvanishing contribution is from k = 2. We assume j > 2 for simplic-

ity. Since we have shifted λ1, the three right-handed spinors λi (i = K, 1, 2) must be

proportional, which allows the following three-point amplitude to be non-vanishing:

A3(1̂
+, 2+,−K̂−) = −i

[

1̂ 2
]4

[1̂ 2][2 (−K̂)][(−K̂) 1̂]
= +i

[1 2]3

[2 K̂][K̂ 1]
, (5.13)

where K̂ = K̂1,2. We removed the hats on 1 in the second step, since λ̃1 is not shifted.

There are also two factors of i from reversing the sign of K̂ in the spinor products.

– 26 –
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4 Factorization Properties 

The most important and remarkable properties of the Yang-Mills dual sub- 
amplitudes are their factorization properties, whose origin can be traced back 
to the string picture. In this section we give the factorization properties of the 
gluon sub-amplitudes in 

(1) the soft gluon limit, 
(2) when two gluons become collinear and 
(3) when three gluons add to form an on mass-shell gluon 

i.e. on the three gluon pole. 

For arbitrary n-gluon scattering these factorization properties of the sub-amplitudes 
will extend up to factorization on the [n/2]-gluon poles. 

First, we consider the soft gluon limit. Consider the sub-amplitudes when 
gluon 1 has an energy which is small compared to all the other energies in the 
process. Then the gluon sub-amplitudes must satisfy 

n(1+,2.. . ,n) i+9 (,,$;)2)} m(2,3...,n) (4.1) 

m(l-,2...,n) i-Zft { ,$$} 42,3-..,n). (4.2) 

The factors in braces are square roots of the eikonal factor 

2 (P* . Pa) 
(Pm .Pl) (PI .Pl)’ 

This soft gluon factorization and the incoherence of these sub-amplitudes to lead- 
ing order in the number of colors, N, leads to the soft gluon factorization of the 
full matrix element squared as proposed by Bassetto, Ciafaloni and Marchesini 

171, 

&J, IJWJ I=‘: T ( (pi<p,‘~[p~.‘,) I-%(2,. . . a n)I’. (4.3) 

In the limit when two gluons become collinear, Altarelli and Parisi [8] demon- 
strated that the double poles associated with this collinear pair do not appear 
in the full amplitude squared i.e. there is a cancellation of one power of the 
propagator of the sum of the two collinear gluons. This cancellation occurs at 
the amplitude level rather than the square of the amplitude in this dual formula- 
tion. Therefore the squared sub-amplitudes diverge no more rapidly than a single 
power of the propagator for the collinear gluons, this is the Altarelli and Parisi 

5 

observation. The origin of this behaviour of the dual sub-amplitudes stems from 
the factorization properties of string amplitudes. 

To demonstrate this square root divergence of the sub-amplitudes in the 
collinear limit, consider the case when the momenta of particles 1 and 2 be- 
come parallel. Let 1 + z F’ and 2 + (1 - z) P with P’ = 0, and z is the 
momentum fraction of particle 1. Then the sub-amplitudes become 

m(1 ,...) +,2+,3 “4’ 

m(1+,2-,3 ,... 

+ {i!zJ$y) 5jm(P-,3,...) 

m(l-,2-,3,. . .) r-x- m(P-,3,...). 

(4.4) 

(4.5) 

Note that either (12) or [12] app ears in the numerator of each term. Also, it 
is useful to interpret the factor in braces as the “three gluon sub-amplitude” 
in the limit when two gluons become collinear. This three gluon sub-amplitude 
has the square root suppression of the pole as well as having the square root 
of the appropriate Altarelli-Parisi &on-fusion function. From this result and 
the incoherence of the sub-amplitudes in the square of the matrix element the 
standard results of Altarelli and Parisi are obtained in a simple manner. 

The sub-amplitudes also factorize in the three particle channel; here let P = 
1+ 2 + 3, then as P’ + 0 it is easy to see that 

+,‘43,4,5,6) -* +2,3,-P) g m(P,4,5,6) (4.7) 

for the helicity structure three positive and three negative. Since helicity is 
conserved in the four gluon process, the helicity of the intermediate gluon is 
determined for this helicity structure and the four positive - two negative helicity 
sub-amplitude has no three particle poles. 

Of course the full matrix element must also factorize. This is trivial in Feyn- 
man diagram language but here it is not so obvious because of the way we have 
added diagrams together. The color factors almost factorizes for an SU(N) gauge 
g*oup, 

h(X’P...A”) = c tr (A’ . . PX=)tT (X=/P+1 . . A”) (4.6) 0 

+ it, (Xl.. . X”)h (Am+1 . ..A”). 

6 

Soft:

collinear:

Multi-particle:

observation. The origin of this behaviour of the dual sub-amplitudes stems from 
the factorization properties of string amplitudes. 

To demonstrate this square root divergence of the sub-amplitudes in the 
collinear limit, consider the case when the momenta of particles 1 and 2 be- 
come parallel. Let 1 + z F’ and 2 + (1 - z) P with P’ = 0, and z is the 
momentum fraction of particle 1. Then the sub-amplitudes become 

m(1 ,...) +,2+,3 “4’ 

m(1+,2-,3 ,... 

+ {i!zJ$y) 5jm(P-,3,...) 

m(l-,2-,3,. . .) r-x- m(P-,3,...). 

(4.4) 

(4.5) 

Note that either (12) or [12] app ears in the numerator of each term. Also, it 
is useful to interpret the factor in braces as the “three gluon sub-amplitude” 
in the limit when two gluons become collinear. This three gluon sub-amplitude 
has the square root suppression of the pole as well as having the square root 
of the appropriate Altarelli-Parisi &on-fusion function. From this result and 
the incoherence of the sub-amplitudes in the square of the matrix element the 
standard results of Altarelli and Parisi are obtained in a simple manner. 

The sub-amplitudes also factorize in the three particle channel; here let P = 
1+ 2 + 3, then as P’ + 0 it is easy to see that 

+,‘43,4,5,6) -* +2,3,-P) g m(P,4,5,6) (4.7) 

for the helicity structure three positive and three negative. Since helicity is 
conserved in the four gluon process, the helicity of the intermediate gluon is 
determined for this helicity structure and the four positive - two negative helicity 
sub-amplitude has no three particle poles. 

Of course the full matrix element must also factorize. This is trivial in Feyn- 
man diagram language but here it is not so obvious because of the way we have 
added diagrams together. The color factors almost factorizes for an SU(N) gauge 
g*oup, 

h(X’P...A”) = c tr (A’ . . PX=)tT (X=/P+1 . . A”) (4.6) 0 

+ it, (Xl.. . X”)h (Am+1 . ..A”). 

6 



Stephen Parke, Fermilab                                      Invisibles 2014                                                         7/12/2014                      

Recursion Relations:

31

i. +-z n-1 
__-- 

CL 
r,: =c 

n 1 =, 

f>* 

J z p _____---- 3 

G 

: 

” 

Figure 8: The cobr ordered gluonic current. 

I I 

. . . 

v 
f-b 

n-1 ----A +.c J=l+l 

, 1 

. . . 

+tf 3 

___-- - ; ----- 

;< 
J I 

I +I 

i 

Figure 9: A graphical representation for the Berends-Giek gluonic recursion relation. 

i9 

i. +-z n-1 
__-- 

CL 
r,: =c 

n 1 =, 

f>* 

J z p _____---- 3 

G 

: 

” 

Figure 8: The cobr ordered gluonic current. 

I I 

. . . 

v 
f-b 

n-1 ----A +.c J=l+l 

, 1 

. . . 

+tf 3 

___-- - ; ----- 

;< 
J I 

I +I 

i 

Figure 9: A graphical representation for the Berends-Giek gluonic recursion relation. 

i9 

on mass shelloff mass shell

color ordered current

Berends and Giele



Stephen Parke, Fermilab                                      Invisibles 2014                                                         7/12/2014                      

What about Quarks, Squarks & Gluinos ?

32

Next we derive exact expressions for some sets of helicity amplitudes. One of these expressions 

was already given in Equation (2.8), namely the form of the helicity amplitude 

A(A.:,G,g;,g;,..., gnf), describing the most helicity-violating scattering’ of two gluinos and 

(n - 2) gluons: 

Al(A~,‘~;,g;,gh,...,g,+) = $-*(23)3(13) C tr(Xlhz...X.)(12)(23: .f n 
. i l). (5.7) 

perm~ 

If we now use Equation (3.9) we can directly obtain the amplitude for an equivalent process, 

involving quarks instead of gluinos: 

AP(a:,q;,g3,g:,...,g,f) =~~“-*(23)~(13) C (hh~..h)~i 1 

{12)(23)...jnl)’ (53) 
t3,..+) 

This formula was guessed in Reference 153 by studying the behaviour of gluon amplitudes in the 

limit of collinear gluon emission. 

Let us now take the amplitude A(A:, A;, h:,g;, g;, . , g,f). By commuting with the super- 

symmetry operator and properly choosing the reference momentum k we obtain the following 

SWI: 

-%(A:>A:,A;,A;,g: ,..., g,t) = ~a,(g~,A:,A;,g;,g: ,..., 9;). (5.9) 

By using Equation (5.7) we get: 

A,(A:,.~:,,~;,A;,g:,...,g,+) =$-‘(12)(34j3 2 tr(r,b:...X.);12:!z3~,.,inl). (5.10) 
pm’ 

For n = 6 the missing helicity amplitudes can be easily obtained by use of the SWI’s and the two 

gluino-four gluon sub-amplitudes given at the beginning of this Section. 

It is not possible to directly relate the sub-amplitudes for a four-gluino process to sub- 

amplitudes for a four-quark process. This is clear for the scattering of two pairs of quarks of 

different flavour: some diagrams that are present in the gluino case are absent for the quarks 

because it is not possible to contract two different-quark lines. Even if the two quark pairs have 

the same flavour, though, the gluino sub-amplitudes are different from the quark ones. The reason 

for this being that diagrams containing a contraction between adjacent quarks have a different 

color factor from diagrams with a contraction between non-adjacent quarks. As an example of 

this fact, take for instance the gluino sub-amplitude ml(A:,n;,A:,A~,g5,gs) , where for our 

purposes now the gluon helicities are irrelevant. This sub-amplitude is generated by the sum over 

*We refer to the non-zero h&city-violating processes. The amplitudes (+ + + +) and (- + + +) vanish 
identically. 
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cyclic permutations of the diagram Dj(i,i,i,&5,6) pl us diagrams with four-gluon couplings. 

Let us concentrate on two of these diagrams, namely D,(i,i. i,4:5,6) and D,(i,5,6, i,2,3), and 

let us label them as Db and Di’. Dd has fermion 1 contracted with fermion 2: and fermion 3 

contracted with fermion 4. Dj’ has fermion 1 contracted with fermion 4 and fermion 2 contracted 

with fermion 3. If the two quark pairs (a, g2) and (q3, q4) are of different flavour, it clearly follows 

that Di’ = 0. If the two quark pairs are identical, then (D,‘)’ = (0;)” and (Di’) = (Dir)“. 

However, the color factors for the two diagrams are given by rhe following expressions: 

L-4 --) &[A”, X’]ii - $6i2/X5, X612;, (5.11) 

(5.12) 

Since the two diagrams do not have a common color factor, it is not clear how to define a quark 

sub-amplitude for this process. We do not think that this is a serious drawback of the technique. 

The color structure of a four quark-two gluon process is simple and the number of diagrams is 

relatively small. A direct calculation of the matrix element is then possible, and was performed 

by Gunion and Kunszt1151 and by Z. Xu et al.1111, who found a very compact analytic expression. 

To conclude we give the most helicity-violating amplitude for the scattering of gluons and a 

pair of massless scalar-quarks, obtained from the SW1 and the supersymmetry transformations 

of a chiral superfieldllOl: 

(5.13) 
(3....,4 

$* are the supersymmetry partners of the two helicity states of the quark. The two combinations 

4+ 5 $- transform respectively as a scalar and a pseudoscalar under the Lorentz group. For 

n = 4,s these are the only independent non-vanishing helicity amplitudes for this process. 

6 Conclusions 

In this paper we have generalized the dual-ezpanaion technique to processes involving particles 

other than gluons. The extension to gluinos is straightforward, and with minor modifications 

it is possible to treat the quark-antiquark multi-gluon amplitudes, The use of supersymmetry 

Ward identities allows us to relate sub-amplitudes with particles of different spin, thus reducing 

substantially the amount of calculations. 

We have explicitly recalculated the full matrix element for the (qggggg) process in this for- 

malism, and we have found a significant simplification compared to the result already known in 
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the same flavour, though, the gluino sub-amplitudes are different from the quark ones. The reason 

for this being that diagrams containing a contraction between adjacent quarks have a different 

color factor from diagrams with a contraction between non-adjacent quarks. As an example of 
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12 

also for the other helicity amplitudes:

Mangano and Parke:  Phys.Rept 200:301-367,1991
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``Perturbative gauge theory as a string theory in twistor space’’ 

hep-th/0312171
throwing away, for example, the set λ1 = 0 in RP3, we can describe the rest of RP3 by the

affine coordinates x = λ2/λ1, y = µ1/λ1, z = µ2/λ2. x, y, and z parameterize a copy of

R3 and the curve C is simply a straight line in R3. Thus (figure 2), the MHV amplitude

with these helicities is supported for points Pi that are collinear in R3. The conformal

symmetry group (in + + −− signature) is the SL(4, R) symmetry of RP3; it does not

preserve a metric on R3, but it maps straight lines to straight lines.

_
+

+

_
+
+

Fig. 2: The MHV amplitude for gluon scattering is associated with a collinear

arrangement of points in R3.

Supersymmetric Extension

Here, by Fourier-tranforming the supersymmetric MHV amplitude (2.42), we will

obtain the supersymmetric extension of the above result. This is the only example where

we will study the twistor transform of a manifestly supersymmetric amplitude.

We write the fermionic delta function in (2.42) as

δ8(Θ) =

∫
d8θA

a exp

(

iθA
a

∑

i

ηiAλ
a
i

)

. (3.8)

Using this and the familiar representation of the bosonic delta function in (2.42), the

supersymmetric MHV amplitude becomes

Â = ign−2

∫
d4x d8θ exp

(

ixaȧ

∑

i

λa
i λ̃

ȧ
i

)

exp

(

iθA
a

∑

i

ηiAλ
a
i

)
n∏

i=1

1

〈λi,λi+1〉
. (3.9)

25

3.5. −−− + + and −− + − + Amplitudes Revisited

By now, we have obtained what may seem like a tidy story for the five and six gluon

amplitudes with three negative helicities. However, further examination, motivated by

the string theory proposal in section 4 as well as the preliminary examination of one-loop

amplitudes that we present in section 3.6, has shown that the full picture is more elaborate

and involves disconnected instantons. Here we will re-examine the −−−++ and −−+−+

tree level amplitudes to consider such contributions. (It would be desireable to similarly

re-examine the six gluon amplitudes, but this will not be done here.)

We so far interpreted these five gluon amplitudes in terms of genus zero curves of

degree two. In string theory, these curves will be interpreted as instantons. The action

of an instanton of degree two is precisely twice the action of a degree one instanton. It

therefore has precisely the same action as a pair of separated degree one instantons. Might

the −−−+++ and −−+−+ amplitudes receive contributions from configurations with

two separated instantons of degree one?

+_ __ +

(b)

_ +

_

_

+

+

+

_

_

(a)

Fig. 3: In part (a), we depict two different straight lines in R3, representing two

disjoint curves of genus zero and degree one. A twistor field, represented by a
curved dotted line which we call the internal line, is exchanged between them.

Various points on the two lines, including the endpoints of the internal line, are
labeled by + or − helicity. There are two − helicities on each line. (b) Here we

give a complex version of the same picture. The lines of part (a) are replaced by

two-spheres, and the internal line becomes a thin tube connecting them. The whole
configuration is topologically a two-sphere.

In figure 3, we sketch two different pictures of a configuration with two widely sepa-

rated instantons of degree one. Figure 3a contains a view of this situation in real twistor

36
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Verification

We will now verify by the above procedure that (for example) K1234Â = 0. Upon

setting P1 = (1, 0, 0, 0) and P2 = (0, 1, 0, 0), K1234 reduces to

K34 = εȧḃ ∂2

∂λ̃ȧ
3∂λ̃

ḃ
4

. (3.27)

Since λ̃1 and λ̃2 have been eliminated, the reduced momentum space amplitude A′ is a

function only of the λ̃i with i ≥ 3 (as well as the λ’s). Because of SL(2, R) symmetry

acting on the λ̃’s, the dependence on the λ̃’s is only via a = [λ̃3, λ̃4], b = [λ̃3, λ̃5], and

c = [λ̃4, λ̃5]. Moreover, A′ is homogeneous in a, b, and c of degree −1:
(

a
∂

∂a
+ b

∂

∂b
+ c

∂

∂c

)
A′ = −A′. (3.28)

This follows directly from the homogeneity of the full momentum space amplitude Â in

(3.13) as well as the fact that the equations used to solve for λ̃1 and λ̃2 are homogeneous.

A short computation using the chain rule shows that acting on any function F (a, b, c),

K34F = −2
∂F

∂a
− a

∂2F

∂a2
− b

∂2F

∂a∂b
− c

∂2F

∂a∂c
. (3.29)

The right hand side can be written

− ∂

∂a

(
a
∂F

∂a
+ b

∂F

∂b
+ c

∂F

∂c
+ F

)
, (3.30)

and so vanishes for any function that obeys (3.28).

Thus, we have demonstrated that K1234Â = 0. Nothing essentially new is needed

to show that KijklÂ = 0 for all i, j, k, l; one just uses conformal invariance to set (for

example) Pi = (1, 0, 0, 0) and Pj = (0, 1, 0, 0), and then proceeds as above.

3.4. The Six Gluon Amplitude With Three Positive And Three Negative Helicities

Continuing our study of tree amplitudes associated with curves of degree two, the

next case is the six gluon amplitudes with three positive and three negative helicities.

These were first computed by Mangano, Parke, and Xu [38] and by Berends and Giele [22]

and are quite complicated. There are three essentially different cases, namely helicities

+ + + − −−, + + −− +−, or + − + − +−. These amplitudes can all be written

A = 8g4

[
α2

t123s12s23s45s56
+

β2

t234s23s34s56s61

+
γ2

t345s34s45s61s12
+

t123βγ + t234γα+ t345αβ

s12s23s34s45s56s61

]
.

(3.31)
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with sij = (pi + pj)2, tijk = (pi + pj + pk)2. The functions α, β, and γ are different for the

different helicity orderings. They are presented in the table.

Table 1. Coefficients for six gluon amplitudes with three helicities of each

type (table from [38]). The symbol 〈I|T |J〉 is here short for [IT ]〈TJ〉; for

T = T1 + T2 + T3, a sum over the Ti is understood. The notation 〈i j〉 is

used for 〈λi,λj〉, and [i j] for [λ̃i, λ̃j ].

1+2+3+4−5−6− 1+2+3−4+5−6− 1+2−3+4−5+6−

X = 1 + 2 + 3 Y = 1 + 2 + 4 Z = 1 + 3 + 5

α 0 −[12]〈56〉〈4|Y |3〉 [13]〈46〉〈5|Z|2〉
β [23]〈56〉〈1|X |4〉 [24]〈56〉〈1|Y |3〉 [51]〈24〉〈3|Z|6〉
γ [12]〈45〉〈3|X |6〉 [12]〈35〉〈4|Y |6〉 [35]〈62〉〈1|Z|4〉

Our conjecture says again that these amplitudes should be supported on configurations

in which all six points Pi labeling the external particles lie on a common genus zero degree

two curve or conic in RP3. First of all, to show that the six points are contained in an

RP2 subspace, we must establish that the amplitudes are annihilated by the differential

operator K defined in (3.19), where the Qσ, σ = 1, . . . , 4, may be any of the six points

Pi. This was verified with some computer assistance, after simplifying the problem as in

section 3.3 by using conformal symmetry to set P1 = (1, 0, 0, 0) and P2 = (0, 1, 0, 0).

Next, we need to show that the six points are contained not just in an RP2 but in a

conic section therein. This means that it must be possible to pick the coefficients cIJ in

(3.15) so that the equations

3∑

I,J=1

cIJZI
i ZJ

i = 0, i = 1, . . . , 6 (3.32)

are obeyed. In contrast to the five gluon case that we considered in section 3.3, here we

have six homogeneous equations for six unknowns, so for a generic set of points Pi, a

nonzero solution for the cIJ does not exist. Existence of a nonzero solution is equivalent

34
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n

1

2
3

nA =
h,k 1

n

h
1,kK

2

Ak+1

An−k+1

k

k
z

− 1n
− 1n

− 1

Figure 8: Illustration of how Cauchy’s theorem leads to the BCFW recursion relation. The
magenta dot represents the residue at the origin; the blue dots the residues at zk. In the recursion
relation, the red lines carry complex, shifted momenta.

transverse (x, y) plane. This is only possible if vµ is a complex vector. It’s easy to see that

vµ = 1
2 〈1

+| γµ |n+〉 satisfies the required orthogonality relations.

The function An(z) depends meromorphically on z. If it behaves well enough at infinity,

then we can use Cauchy’s theorem to relate its behavior at z = 0 (the original amplitude)

to its residues at finite values of z (the factorization singularities). If An(z) → 0 as z → ∞,

then we have,

0 =
1

2πi

∮

C
dz

An(z)

z
= An(0) +

∑

k

Res

[

An(z)

z

]∣

∣

∣

∣

z=zk

, (5.5)

where C is the circle at infinity, and zk are the locations of the factorization singularities in

the z plane. (See fig. 8.) These poles occur when the amplitude factorizes into a subprocess

with momenta (k̂1, k2, . . . , kk,−K̂1,k), where K̂1,k(zk) = k̂1(zk) + k2 + · · · + kk must be on

shell. This information lets us write a simple equation for zk,

0 = K̂2
1,k(zk) = (k̂1(zk) + k2 + · · ·+ kk)

2 = (zkλnλ̃1 +K1,k)
2 = zk

〈

n−
∣

∣ &K1,k

∣

∣1−
〉

+K2
1,k ,

(5.6)

where K1,k = k1 + k2 + · · ·+ kk. The solution to eq. (5.6) is

zk = −
K2

1,k

〈n−| &K1,k |1−〉
. (5.7)

We also have to compute the residue of A(z)/z at z = zk. To do that we use eq. (4.16),

which also holds for three-point factorizations in complex kinematics. The singular factor

in the denominator that produces the residue is

zP 2(z) = zK̂2
1,k(z) ≈ zk

〈

n−
∣

∣ &K1,k

∣

∣1−
〉

(z − zk) ≈ −K2
1,k (z − zk). (5.8)

Thus after taking the residue it contributes a factor of the corresponding scalar propagator,

i/K2
1,k, evaluated for the original unshifted kinematics where it is nonsingular.
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