

New Geometical Approaches to Amplitudes:

Stephen Parke Fermilab

http://www.simonsfoundation.org/quanta/20130917-a-jewel-at-the-heart-of-quantum-physics/

New Geometical Approaches to Amplitudes:

Stephen Parke Fermilab

http://www.simonsfoundation.org/quanta/20130917-a-jewel-at-the-heart-of-quantum-physics/

Amplitudes = on mass shell scattering amplitudes

massless external particles

all particles outgoing

Invisibles 2014

Outline:

- Motivations
- Some Amplitudes
- Twistor String Theory
- Amplituhedron
- Summary

I. Movitations

Why are Amplitudes Interesting?

- Phenomenology: LHC processes
- Structure of the Theory
- Principals

• Classical Mechanics:

6

• Classical Mechanics:

• Quantum Mechanics:

- Classical Mechanics:
- Quantum Mechanics:
- Quantum Field Theory:

Principal
Classical Mechanics:
Quantum Mechanics:
Quantum Field Theory:

Principal
Classical Mechanics:
Quantum Mechanics:
Quantum Field Theory:

• What is the correct way to incorporate Gravity ?

Principal
Classical
Quantum
Action:
Classical
Quantum

Classical Mechanics:

• Quantum Mechanics:

• Quantum Field Theory:

• What is the correct way to incorporate Gravity ?

????

???

????

6

Space-Time, Quantum Mechanics and Scattering Amplitudes

Nima Arkani-Hamed

Scattering amplitudes in gauge theories and gravity have extraordinary properties that are completely invisible in the textbook formulation of quantum field theory using Feynman diagrams. In the standard approach--going back to the birth of quantum field theory--space-time locality and quantum-mechanical unitarity are made manifest at the cost of introducing huge gauge redundancies in our description of physics. As a consequence, apart from the very simplest processes, Feynman diagram calculations are enormously complicated, while the final results turn out to be amazingly simple, exhibiting hidden infinite-dimensional symmetries. This strongly suggests the existence of a new formulation of quantum field theory where locality and unitarity are derived concepts, while other physical principles are made more manifest. Rapid advances have been made towards uncovering this new picture, especially for the maximally supersymmetric gauge theory in four dimensions. These developments have interwoven and exposed connections between a remarkable collection of ideas from string theory, twistor theory and integrable systems, as well as a number of new mathematical structures in algebraic geometry. In this talk I will review the current state of this subject and and describe a number of ongoing directions of research.

http://streamer.perimeterinstitute.ca/Flash/418223e8-4fae-4ebc-8de4-458f84364e3c/viewer.html

Quantum Mechanics and Gravity

"Space-Time is Doomed"

Nina Arkani-Hamed

Space-Time has to emerge from "the" fundamental description !

Sitting Under our Noses for 60 Jrs. Twister Theory Scattering without String Theory Spacetime - emergent locality + unitarity Integrab Algebraic Geometry systems

Summary: We are after a theory for MInk La, Ja, Jasti Without Unitary evolution through Spacetime Emergent Space-time, Emergent

II. Amplitudes in Feynman Perturbation Theory

Supercollider physics Rev. Mod. Phys. 56, 579 – Published 1 October 1984 E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg

Multijet Phenomena:

For multijet events containing more than three jets, the theoretical situation is considerably more primitive. A specific question of interest concerns the QCD four-jet background to the detection of W+W- pairs in their nonleptonic decays. The cross sections for the elementary two to four processes have not been calculated, and their complexity is such that they may not be evaluated in the foreseeable future. It is worthwhile to seek estimates of the four-jet cross sections, even if these are only reliable in restricted regions of phase space.

for each gluon: momentum p_i , polarization vector ϵ_i and color charge a_i

for each gluon: momentum p_i , polarization vector ϵ_i and color charge a_i

for each gluon: momentum p_i , polarization vector ϵ_i and color charge a_i

 $ig f_{a_1a_2a_3} \left[g_{\mu_1\mu_2}(p_1 - p_2)_{\mu_3} + g_{\mu_2\mu_3}(p_2 - p_3)_{\mu_1} + g_{\mu_3\mu_1}(p_3 - p_1)_{\mu_2} \right]$

for each gluon: momentum p_i , polarization vector ϵ_i and color charge a_i

 $ig f_{a_1a_2a_3} \left[g_{\mu_1\mu_2}(p_1 - p_2)_{\mu_3} + g_{\mu_2\mu_3}(p_2 - p_3)_{\mu_1} + g_{\mu_3\mu_1}(p_3 - p_1)_{\mu_2} \right]$

 $f_{a_1a_2X}f_{Xa_3Y}f_{Ya_4Z}f_{Za_5a_6} \epsilon_1^{\mu_1}\epsilon_2^{\mu_2}\epsilon_3^{\mu_3}\epsilon_4^{\mu_4}\epsilon_5^{\mu_5}\epsilon_6^{\mu_6}$

for each gluon: momentum p_i , polarization vector ϵ_i and color charge a_i

 $ig f_{a_1a_2a_3} \left[g_{\mu_1\mu_2}(p_1 - p_2)_{\mu_3} + g_{\mu_2\mu_3}(p_2 - p_3)_{\mu_1} + g_{\mu_3\mu_1}(p_3 - p_1)_{\mu_2} \right]$

$$f_{a_1a_2X}f_{Xa_3Y}f_{Ya_4Z}f_{Za_5a_6} \epsilon_1^{\mu_1}\epsilon_2^{\mu_2}\epsilon_3^{\mu_3}\epsilon_4^{\mu_4}\epsilon_5^{\mu_5}\epsilon_6^{\mu_6} \left\{ \frac{4\text{th order polyn of p's}}{s_{12} \ s_{123} \ s_{56}} \right\}$$

where
$$s_{ij...n} \equiv (p_i + p_j + \cdots + p_n)^2$$

 $\mathcal{M}\sim 220$ Feynman Diagrams times 6^4 terms per diagram $pprox 3 imes 10^5$

 $\mathcal{M}\sim 220$ Feynman Diagrams times 6^4 terms per diagram $pprox 3 imes 10^5$

 $\sum_{colors} \sum_{polarizations} |\mathcal{M}|^2$

 $\mathcal{M} \sim 220$ Feynman Diagrams times 6^4 terms per diagram $\approx 3 \times 10^5$ $\sum_{colors} \sum_{polarizations} |\mathcal{M}|^2$ 10^{11} terms ! ! !

before you start using identities like:

$$f_{a_1XY}f_{a_2XY} = N\delta a_1 a_2 \& \sum_{helicities} \epsilon_i^{\mu} \epsilon_i^{\nu*} = -g^{\mu\nu} + \frac{p_i^{\mu} q^{\nu} + p_i^{\nu} q^{\nu}}{(p_i \cdot q)}$$

 $\mathcal{M} \sim 220$ Feynman Diagrams times 6^4 terms per diagram $\approx 3 \times 10^5$ $\sum_{colors} \sum_{polarizations} |\mathcal{M}|^2$ 10¹¹ terms !!!

before you start using identities like:

$$f_{a_1XY}f_{a_2XY} = N\delta a_1 a_2 \& \sum_{helicities} \epsilon_i^{\mu} \epsilon_i^{\nu*} = -g^{\mu\nu} + \frac{p_i^{\mu}q^{\nu} + p_i^{\nu}q^{\nu}}{(p_i \cdot q)}$$

but the answer you say must permutation symmetric — true ! ! !

- you still have 10^8 terms !
- but you have to identify which of the 6! of each term leads to simplifying the result.

a use for SUSY:

SP and T. Taylor • Embedd Yang-Mills or QCD in a SuperSymmetric Theory, N=1,2 or 4

a use for SUSY:

- SP and T. Taylor • Embedd Yang-Mills or QCD in a SuperSymmetric Theory, N=1,2 or 4
 - the tree-level, pure gluon amplitudes are identical in all these theories

TWO TO FOUR PROCESSES

his section I consider the two gluon to four gluon process. Here I define all cities as if all particles are incoming. Once again supersymmetry can be used how that to tree level

-6-

$$|\mathcal{M}(g_{1+},g_{2+};\lambda_{3-},g_{4+},\lambda_{5+})| = \sqrt{\frac{(3\cdot 4)}{(4\cdot 5)}} |\mathcal{M}(g_{1+},g_{2+};g_{3-},g_{4+},g_{5+})|$$

$$|\mathcal{M}(g_{1-},g_{2-},g_{3-},g_{4-},g_{5+},g_{6+})| = \frac{s_{56}}{s_{23}} |\mathcal{M}(g_{1-},\phi_{2-},\phi_{3-},g_{4-},\phi_{5+},\phi_{6+})|$$

$$|| (s_{12} + s_{23} + s_{13})^2 \mathcal{M}(g_{1-}, \phi_{2-}, \phi_{3-}, g_{4+}, \phi_{5+}, \phi_{6+}) - 2i\sqrt{-s_{14}}(s_{12} + s_{23} + s_{13})(p_5^x + p_6^x - ip_5^y - ip_6^y) \mathcal{M}(\lambda_{1-}, \phi_{2-}, \phi_{3-}, \lambda_{4+}, \phi_{5+}, \phi_{6+})$$

TWO TO FOUR PROCESSES

his section I consider the two gluon to four gluon process. Here I define all cities as if all particles are incoming. Once again supersymmetry can be used how that to tree level

-6-

$$|\mathcal{M}(g_{1+},g_{2+};\lambda_{3-},g_{4+},\lambda_{5+})| = \sqrt{\frac{(3\cdot 4)}{(4\cdot 5)}} |\mathcal{M}(g_{1+},g_{2+};g_{3-},g_{4+},g_{5+})|$$

$$|\mathcal{M}(g_{1-},g_{2-},g_{3-},g_{4-},g_{5+},g_{6+})| = \frac{s_{56}}{s_{23}} |\mathcal{M}(g_{1-},\phi_{2-},\phi_{3-},g_{4-},\phi_{5+},\phi_{6+})|$$

• compact code for calculating 2 gluons to 4 gluons: $g_{2-}, g_{3-}, g_{4+}, g_{5+}, g_{6+})| = \frac{1}{s_{23}s_{56}}|(s_{12}+s_{23}+s_{13})|(s_{12}+s_{23}+s_{13}+s_{13})|(s_{12}+s_{23}+s_{13}+s_$

• To leading order in N_c

$$\sum_{colors} |\mathcal{M}(+++\cdots+)|^2 \sim 0$$

$$\sum_{colors} |\mathcal{M}(-++\cdots+)|^2 \sim 0$$

$$\sum_{colors} |\mathcal{M}(--+\cdots+)|^2 \sim (1\cdot 2)^4 \sum_{perms} \frac{1}{(1\cdot 2)(2\cdot 3)\cdots(n\cdot 1)}$$

using
$$(i \cdot j) \equiv 2p_i \cdot p_j = s_{ij}$$

76

• To leading order in N_c

$$\sum_{colors} |\mathcal{M}(+++\cdots+)|^2 \sim 0$$

$$\sum_{colors} |\mathcal{M}(-++\cdots+)|^2 \sim 0$$

$$\sum_{colors} |\mathcal{M}(--+\cdots+)|^2 \sim (1\cdot 2)^4 \sum_{perms} \frac{1}{(1\cdot 2)(2\cdot 3)\cdots(n\cdot 1)}$$

$$\operatorname{using} (i \cdot j) \equiv 2p_i \cdot p_j = s_{ij}$$

Analytic check for n=4 and 5, numerical for 6 and satisfies all the properties required !

• To leading order in N_c

$$\sum_{colors} |\mathcal{M}(+++\cdots+)|^2 \sim 0$$

$$\sum_{colors} |\mathcal{M}(-++\cdots+)|^2 \sim 0$$

$$\sum_{colors} |\mathcal{M}(--+\cdots+)|^2 \sim (1\cdot 2)^4 \sum_{perms} \frac{1}{(1\cdot 2)(2\cdot 3)\cdots(n\cdot 1)}$$

$$\operatorname{using} (i\cdot j) \equiv 2p_i \cdot p_j = s_{ij}$$

Analytic check for n=4 and 5, numerical for 6 and satisfies all the properties required !

remember
$$\mathcal{M} \sim \left\{ \frac{4 \text{th order polyn of } p's}{s_{12} s_{123} s_{56}} \right\}$$

 \Rightarrow tremendous number of cancellations ! ! !

• To leading order in N_c

$$\sum_{colors} |\mathcal{M}(+++\cdots+)|^2 \sim 0$$

$$\sum_{colors} |\mathcal{M}(-++\cdots+)|^2 \sim 0$$

$$\sum_{colors} |\mathcal{M}(--+\cdots+)|^2 \sim (1\cdot 2)^4 \sum_{perms} \frac{1}{(1\cdot 2)(2\cdot 3)\cdots(n\cdot 1)}$$

using $(i\cdot j) \equiv 2p_i \cdot p_j = s_{ij}$

Analytic check for n=4 and 5, numerical for 6 and satisfies all the properties required !

remember
$$\mathcal{M} \sim \left\{ \frac{4 \text{th order polyn of } p's}{s_{12} s_{123} s_{56}} \right\}$$

 \Rightarrow tremendous number of cancellations ! ! !

No poles with more than 2 particles $! ! ! i.e. s_{123}$

Invisibles 2014

Altarelli & Parisi

 $|\mathcal{M}_{n}(--+++\cdots)|^{2} \xrightarrow{1}_{1 \parallel 2} 0,$ $|\mathcal{M}_{n}(--+++\cdots)|^{2} \xrightarrow{2}_{2 \parallel 3} 2g^{2}N \frac{z^{4}}{z(1-z)} \frac{1}{s} |\mathcal{M}_{n-1}(--++\cdots)|^{2},$ $|\mathcal{M}_{n}(--+++\cdots)|^{2} \xrightarrow{3}_{3 \parallel 4} 2g^{2}N \frac{1}{z(1-z)} \frac{1}{s} |\mathcal{M}_{n-1}(--++\cdots)|^{2},$

also soft gluon conditions also satisfied.

"This could be a great discovery. Depending, of course, on how far down it goes."

Amplitude for n-Gluon Scattering:

VOLUME 56, NUMBER 23

PHYSICAL REVIEW LETTERS

9 JUNE 1986

Amplitude for *n*-Gluon Scattering

Stephen J. Parke and T. R. Taylor Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (Received 17 March 1986)

A nontrivial squared helicity amplitude is given for the scattering of an arbitrary number of gluons to lowest order in the coupling constant and to leading order in the number of colors.

PACS numbers: 12.38.Bx

Computations of the scattering amplitudes for the vector gauge bosons of non-Abelian gauge theories, besides being interesting from a purely quantum-field-theoretical point of view (determination of the *S* matrix), have a wide range of important applications. In particular, within the framework of quantum chromodynamics (QCD), the scattering of vector gauge bosons (gluons) gives rise to experimentally observable multijet production at high-energy hadron colliders. The knowledge of cross sections for the gluon scattering is crucial for any reliable phenomenology of jet physics, which holds great promise for testing QCD as well as for the discovery of new physics at present (CERN Spp S and Fermilab Tevatron) and future (Superconducting Super Collider) hadron colliders.¹

In this short Letter, we give a nontrivial squared helicity amplitude for the scattering of an arbitrary number of gluons to lowest order in the coupling constant and to leading order in the number of colors. To our knowledge this is the first time in a non-Abelian gauge theory that a nontrivial, on-mass-shell, squared Green's function has been written down for an arbitrary number of external points. Our result can be used to improve the existing numerical programs for the QCD jet production, and in particular for the studies of the four-jet production for which no analytic results have been available so far. Before presenting the helicity amplitude, let us make it clear that this result is an educated guess which we have compared to the existing computations and verified by a series of highly nontrivial and nonlinear consistency checks.

For the *n*-gluon scattering amplitude, there are (n+2)/2 independent helicity amplitudes. At the tree level, the two helicity amplitudes which most violate the conservation of helicity are zero. This is easily seen by the embedding of the Yang-Mills theory in a supersymmetric theory.^{2,3} Here we give an expression for the next helicity amplitude, also at tree level, to leading order in the number of colors in SU(*N*) Yang-Mills theory.

If the helicity amplitude for gluons $1, \ldots, n$, of momenta p_1, \ldots, p_n and helicities $\lambda_1, \ldots, \lambda_n$, is $\mathcal{M}_n(\lambda_1, \ldots, \lambda_n)$, where the momenta and helicities are labeled as though all particles are outgoing, then the three helicity amplitudes of interest, squared and summed over color, are

$$|\mathcal{M}_{n}(+++++\cdots)|^{2} = c_{n}(g,N)[0+O(g^{4})],$$

$$|\mathcal{M}_{n}(-++++\cdots)|^{2} = c_{n}(g,N)[0+O(g^{4})],$$

$$|\mathcal{M}_{n}(--+++\cdots)|^{2} = c_{n}(q,N)[(p_{1} \cdot p_{2})^{4}$$
(1)
(2)

$$\times \sum_{p} [(p_1 \cdot p_2)(p_2 \cdot p_3)(p_3 \cdot p_4) \cdots (p_n \cdot p_1)]^{-1} + O(N^{-2}) + O(g^2)],$$
(3)

where $c_n(g,N) = g^{2n-4}N^{n-2}(N^2-1)/2^{n-4}n$. The sum is over all permutations P of 1, ..., n.

Equation (3) has the correct dimensions and symmetry properties for this *n*-particle scattering amplitude squared. Also it agrees with the known results^{4,5} for n = 4, 5, and 6. The agreement for n = 6 is numerical.^{5,6} More importantly, this set of amplitudes is consistent with the Altarelli and Parisi⁷ relationship for all *n*, when two of the gluons are made parallel. This is trivial for the first two helicity amplitudes but is a highly nontrivial statement for the last amplitude, as shown here:

$$|\mathcal{M}_{n}(--+++\cdots)|^{2} \xrightarrow[1]{2} 0, \qquad (4)$$

$$|\mathcal{M}_{n}(--+++\cdots)|^{2} \xrightarrow{2} 2g^{2}N \frac{z^{4}}{z(1-z)} \frac{1}{s} |\mathcal{M}_{n-1}(--++\cdots)|^{2},$$

$$|\mathcal{M}_{n}(--+++\cdots)|^{2} \xrightarrow{}_{3\parallel 4} 2g^{2}N \frac{1}{z(1-z)} \frac{1}{s} |\mathcal{M}_{n-1}(--++\cdots)|^{2},$$
(6)

© 1986 The American Physical Society

VOLUME 56, NUMBER 23

PHYSICAL REVIEW LETTERS

Department of Energy.

9 JUNE 1986

where s is the corresponding pole and z is the momentum fraction. The result for particles 2 and 3 nearly parallel, Eq. (5), is only simple because $\mathcal{M}_{n-1}(-+++\cdots)$ is zero to this order in g so that there is no interference term and therefore azimuthal averaging is not required.

The surprise about this result is that all denominators are simple dot products of two external momenta. The Feynman diagrams for *n*-gluon (n > 5)scattering contain propagators $(p_i + p_j + p_k)^2$, $(p_i + p_j + p_k + p_m)^2$, These propagators must cancel for Eq. (3) to be correct; this occurs for n = 6. Of course, Altarelli and Parisi have taught us that many cancellations are expected.

We do not expect such a simple expression for the other helicity amplitudes. Also, we challenge the string theorists to prove more rigorously that Eq. (3) is correct.

Fermilab is operated by the Universities Research Association Inc. under contract with the United States

¹E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Rev. Mod. Phys. 56, 579 (1984).

 2 M. T. Grisaru, H. N. Pendleton, and P. van Nieuwenhuizen, Phys. Rev. D **15**, 997 (1977); M. T. Grisaru and H. N. Pendleton, Nucl. Phys. **B124**, 81 (1977).

³S. J. Parke and T. R. Taylor, Phys. Lett. **157B**, 81 (1985). ⁴T. Gottschalk and D. Sivers, Phys. Rev. D **21**, 102 (1980); F. A. Berends, R. Kleiss, P. de Causmacker, R. Gastmans, and T. T. Wu, Phys. Lett. **103B**, 124 (1981).

⁵S. J. Parke and T. R. Taylor, Fermilab Report No. Pub-85/118-T, 1985 (to be published); Z. Kunszt, CERN Report No. TH-4319, 1985 (to be published).

⁶Another numerical fact worth mentioning is that to leading order in g but to all orders in N, the amplitude $|\mathcal{M}_{n}=_{6}(--++++)|^{2}$ is permutation symmetric apart from the factor $(p_{1} \cdot p_{2})^{4}$. This allows all permutations of this amplitude to be trivially calculated from one such permutation.

⁷G. Altarelli and G. Parisi, Nucl. Phys. **B126**, 298 (1977).

(5)

2459

2460

Amplitude for n-Gluon Scattering:

VOLUME 56, NUMBER 23

PHYSICAL REVIEW LETTERS

9 JUNE 1986

Amplitude for *n*-Gluon Scattering

Stephen J. Parke and T. R. Taylor Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (Received 17 March 1986)

A nontrivial squared helicity amplitude is given for the scattering of an arbitrary number of gluons to lowest order in the coupling constant and to leading order in the number of colors.

PACS numbers: 12.38.Bx

Computations of the scattering amplitudes for the vector gauge bosons of non-Abelian gauge theories, besides being interesting from a purely quantumfield-theoretical point of view (determination of the Smatrix), have a wide range of important applications. In particular, within the framework of quantum chromodynamics (QCD), the scattering of vector gauge bosons (gluons) gives rise to experimentally observable multijet production at high-energy hadron colliders. The knowledge of cross sections for the gluon scattering is crucial for any reliable phenomenology of jet physics, which holds great promise for testing QCD as well as for the discovery of new physics at present (CERN Spp S and Fermilab Tevatron) and future (Superconducting Super Collider) hadron colliders.¹

In this short Letter, we give a nontrivial squared helicity amplitude for the scattering of an arbitrary number of gluons to lowest order in the coupling constant and to leading order in the number of colors. To our knowledge this is the first time in a non-Abelian gauge theory that a nontrivial, on-mass-shell, squared Green's function has been written down for an arbitrary number of external points. Our result can be used to improve the existing numerical programs for the QCD jet production, and in particular for the studies of the four-jet production for which no analytic results have been available so far. Before presenting the helicity amplitude, let us make it clear that this result is an educated guess which we have compared to the existing computations and verified by a series of highly nontrivial and nonlinear consistency checks.

For the *n*-gluon scattering amplitude, there are (n+2)/2 independent helicity amplitudes. At the tree level, the two helicity amplitudes which most violate the conservation of helicity are zero. This is easily seen by the embedding of the Yang-Mills theory in a supersymmetric theory.^{2,3} Here we give an expression for the next helicity amplitude, also at tree level, to leading order in the number of colors in SU(N) Yang-Mills theory.

If the helicity amplitude for gluons 1, ..., n, of momenta p_1, \ldots, p_n and helicities $\lambda_1, \ldots, \lambda_n$, is $\mathcal{M}_n(\lambda_1,\ldots,\lambda_n)$, where the momenta and helicities are labeled as though all particles are outgoing, then the three helicity amplitudes of interest, squared and summed over color, are

$$|\mathcal{M}_{n}(+++++\cdots)|^{2} = c_{n}(g,N)[0+O(g^{4})],$$

$$|\mathcal{M}_{n}(-++++\cdots)|^{2} = c_{n}(g,N)[0+O(g^{4})],$$

$$|\mathcal{M}_{n}(--+++\cdots)|^{2} = c_{n}(q,N)[(p_{1}\cdot p_{2})^{4}$$

$$\times \sum_{n} [(p_{1}\cdot p_{n})(p_{2}\cdot p_{n})(p_{2}\cdot p_{n})\cdots(p_{n}\cdot p_{n})]^{-1} + O(N^{-2}) + O(g^{2})]$$
(3)

$$\sum_{P} [(p_1 \cdot p_2)(p_2 \cdot p_3)(p_3 \cdot p_4) \cdots (p_n \cdot p_1)]^{-1} + O(N^{-2}) + O(g^2)],$$
(3)

where $c_n(g,N) = g^{2n-4}N^{n-2}(N^2-1)/2^{n-4}n$. The sum is over all permutations P of 1, ..., n.

Equation (3) has the correct dimensions and symmetry properties for this *n*-particle scattering amplitude squared. Also it agrees with the known results^{4,5} for n = 4, 5, and 6. The agreement for n = 6 is numerical.^{5,6} More importantly, this set of amplitudes is consistent with the Altarelli and Parisi⁷ relationship for all n, when two of the gluons are made parallel. This is trivial for the first two helicity amplitudes but is a highly nontrivial statement for the last amplitude, as shown here:

$$|\mathcal{M}_{n}(--+++\cdots)|^{2} \xrightarrow[]{11} 0, \tag{4}$$

$$|\mathcal{M}_{n}(--+++\cdots)|^{2} \xrightarrow{z^{4}} 2g^{2}N \frac{z^{4}}{z(1-z)} \frac{1}{s} |\mathcal{M}_{n-1}(--++\cdots)|^{2},$$

$$|\mathcal{M}_{n}(--+++\cdots)|^{2} \xrightarrow{3}_{3} 2g^{2}N \frac{1}{z(1-z)} \frac{1}{s} |\mathcal{M}_{n-1}(--++\cdots)|^{2},$$

© 1986 The American Physical Society

VOLUME 56, NUMBER 23

PHYSICAL REVIEW LETTERS

Department of Energy.

where s is the corresponding pole and z is the momentum fraction. The result for particles 2 and 3 nearly parallel, Eq. (5), is only simple because $\mathcal{M}_{n-1}(-+++\cdots)$ is zero to this order in g so that there is no interference term and therefore azimuthal averaging is not required.

The surprise about this result is that all denominators are simple dot products of two external momenta. The Feynman diagrams for *n*-gluon (n > 5)scattering contain propagators $(p_i + p_i + p_k)^2$, $(p_i + p_i)^2$ $(p_k + p_m)^2$, These propagators must cancel for Eq. (3) to be correct; this occurs for n = 6. Of course, Altarelli and Parisi have taught us that many cancellations are expected.

We do not expect such a simple expression for the other helicity amplitudes. Also, we challenge the string theorists to prove more rigorously that Eq. (3) is correct.

Fermilab is operated by the Universities Research Association Inc. under contract with the United States

¹E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Rev. Mod. Phys. 56, 579 (1984).

9 JUNE 1986

²M. T. Grisaru, H. N. Pendleton, and P. van Nieuwenhuizen, Phys. Rev. D 15, 997 (1977); M. T. Grisaru and H. N. Pendleton, Nucl. Phys. B124, 81 (1977).

³S. J. Parke and T. R. Taylor, Phys. Lett. 157B, 81 (1985). ⁴T. Gottschalk and D. Sivers, Phys. Rev. D 21, 102 (1980); F. A. Berends, R. Kleiss, P. de Causmacker, R. Gastmans, and T. T. Wu, Phys. Lett. 103B, 124 (1981).

⁵S. J. Parke and T. R. Taylor, Fermilab Report No. Pub-85/118-T, 1985 (to be published); Z. Kunszt, CERN Report No. TH-4319, 1985 (to be published).

⁶Another numerical fact worth mentioning is that to leading order in g but to all orders in N, the amplitude $|\mathcal{M}_{n=6}(-++++)|^2$ is permutation symmetric apart from the factor $(p_1 \cdot p_2)^4$. This allows all permutations of this amplitude to be trivially calculated from one such permutation.

⁷G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).

The original paper was shorter but the editor insisted we add somethings !!!

2460

(5)

(6)

2459

How to Proceed?

• How to organize the color factors?

Can one organize the terms into gauge invariant sub-amplitudes?

• How to deal with the polarization vectors?

How to write ϵ 's that are explicitly Lorentz Invariant?

Mangano, Parke and Xu

How to Proceed?

• How to organize the color factors?

Can one organize the terms into gauge invariant sub-amplitudes?

STRING THEORY:

• How to deal with the polarization vectors?

How to write ϵ 's that are explicitly Lorentz Invariant?

Mangano, Parke and Xu

How to Proceed?

• How to organize the color factors?

Can one organize the terms into gauge invariant sub-amplitudes?

STRING THEORY:

• How to deal with the polarization vectors?

How to write ϵ 's that are explicitly Lorentz Invariant?

CHINESE MAGIC:

Mangano, Parke and Xu

COLOR: Color Ordered Sub-amplitudes: $\mathcal{M}_n = \sum tr(\lambda^{a_1}\lambda^{a_2}\dots\lambda^{a_n}) m(p_1,\epsilon_1;p_2,\epsilon_2;\cdots;p_n,\epsilon_n),$ perm' **Chan-Paton factors** *n* –1

$$\begin{aligned} & \mathcal{COLOR:} \ \ \textbf{Color Ordered Sub-amplitudes:} \\ \mathcal{M}_n &= \sum_{perm'} tr\left(\lambda^{a_1}\lambda^{a_2}\dots\lambda^{a_n}\right) m(p_1,\epsilon_1;p_2,\epsilon_2;\cdots;p_n,\epsilon_n), \\ & \text{Chan-Paton factors} \\ & \overbrace{\lambda^a,\lambda^b}^{n-1} \\ & \left[\lambda^a,\lambda^b\right] = if_{abc}\lambda^c \\ & f_{abc} = -2i \ tr(\lambda^a\lambda^b\lambda^c \ - \ \lambda^c\lambda^b\lambda^a) \end{aligned}$$

$tr(\lambda^a \lambda^b) = \frac{1}{2}\delta^{ab}$

$$\mathcal{C}OLOR: \ Color \ Ordered \ Sub-amplitudes:$$

$$\mathcal{M}_{n} = \sum_{perm'} tr\left(\lambda^{a_{1}}\lambda^{a_{2}}\dots\lambda^{a_{n}}\right) m(p_{1},\epsilon_{1};p_{2},\epsilon_{2};\cdots;p_{n},\epsilon_{n}),$$

$$Chan-Paton \ factors$$

$$\left[\lambda^{a},\lambda^{b}\right] = if_{abc}\lambda^{c}$$

$$f_{abc} = -2i \ tr(\lambda^{a}\lambda^{b}\lambda^{c} - \lambda^{c}\lambda^{b}\lambda^{a})$$

$$tr(\lambda^{a}\lambda^{b}) = \frac{1}{2}\delta^{ab}$$

$$\delta \ gluon \ example:$$

$$\frac{2}{1} \int_{1}^{3} \int_{0}^{4} + \frac{1}{2} \int_{1}^{3} \int_{0}^{4} + \frac{1}{3} \int_{1}^{4} \int_{0}^{4} \int_{0}^{4}$$

#

Color Ordered Sub-amplitudes:

$$\mathcal{M}_n = \sum_{perm'} tr\left(\lambda^{a_1}\lambda^{a_2}\dots\lambda^{a_n}\right) m(p_1,\epsilon_1;p_2,\epsilon_2;\cdots;p_n,\epsilon_n),$$

(1)
$$m(1, 2, ..., n)$$
 is gauge invariant.
(2) $m(1, 2, ..., n)$ is invariant under cyclic permutations of $1, 2, ..., n$
(3) $m(n, n - 1, ..., 1) = (-1)^n m(1, 2, ..., n)$
(4) The Ward Identity:
 $m(1, 2, 3, ..., n) + m(2, 1, 3, ..., n) + m(2, 3, 1, ..., n)$

$$+ \cdots + m(2, 3, \dots, 1, n) = 0$$

- (5) Factorization of $m(1, 2, \dots, n)$ on multi-gluon poles.
- (6) Incoherence to leading order in number of colors:

$$\sum_{colors} |\mathcal{M}_n|^2 = \frac{N^{n-2}(N^2-1)}{2^n} \sum_{perm'} \left\{ |m(1,2,\cdots,n)|^2 + \mathcal{O}(N^{-2}) \right\}.$$

Polarization Vectors: Spinor Dot Products:

notation:

if
$$\psi(p)$$
 is a Dirac spinor, for massless particle, $p^2=0$, then define

$$|p\pm\rangle = \psi_{\pm}(p) = \frac{1}{2}(1\pm\gamma_5)\psi(p) \qquad \langle p\pm| = \overline{\psi_{\pm}(p)}$$
$$\langle pq\rangle = \langle p-|q+\rangle \qquad [pq] = \langle p+|q-\rangle$$

$$\langle ij \rangle \equiv \sqrt{|S_{ij}|} \exp(i\phi_{ij}), \qquad \cos \phi_{ij} = \frac{(p_i^1 p_j^+ - p_j^1 p_i^+)}{\sqrt{p_i^+ p_j^+}}$$

$$[ij] \equiv \sqrt{|S_{ij}|} \exp(i\bar{\phi}_{ij}) \qquad \sin \phi_{ij} = \frac{(p_i^2 p_j^+ - p_j^2 p_i^+)}{\sqrt{p_i^+ p_j^+}}.$$

$$\text{iust complex numbers}$$

or complex numb

$$S_{ij} \equiv \langle ij \rangle \ [ji].$$

Spinor Algebra:

$$\langle pq \rangle = \langle p - |q+\rangle \qquad [pq] = \langle p + |q-\rangle$$

$$\langle p+|q+\rangle = \langle p-|q-\rangle = \langle pp \rangle = [pp] = 0$$

$$\langle pq \rangle = -\langle qp \rangle, \qquad [pq] = -[qp]$$

$$2 |p\pm\rangle\langle q\pm| = \frac{1}{2}(1\pm\gamma_5)\gamma^{\mu}\langle q\pm|\gamma_{\mu}|p\pm\rangle,$$

$$\langle pq \rangle^* = -sign(p\cdot q)[pq] = sign(p\cdot q)[qp]$$

$$|\langle pq \rangle|^2 = 2(p\cdot q),$$

$$\langle p\pm|\gamma_{\mu_1}\dots\gamma_{\mu_{2n+1}}|q\pm\rangle = \langle q\mp|\gamma_{\mu_{2n+1}}\dots\gamma_{\mu_1}|p\mp\rangle,$$

$$Tr(\hat{P}_1\hat{P}_2\hat{P}_3\dots\hat{P}_{2n}) = [12]\langle 23\rangle\dots\langle 2n1\rangle + \langle 12\rangle[23]\dots[2n1]$$

$$= 2\sqrt{S_{12}S_{23}\dots S_{2n1}} \cos(\phi_{12} - \phi_{32} + \phi_{34} - \dots - \phi_{1-2n}).$$

$$Tr(\hat{P}_1\hat{P}_2\hat{P}_3\dots\hat{P}_{2n}\gamma_5) = [12]\langle 23\rangle\dots\langle 2n1\rangle - \langle 12\rangle[23]\dots[2n1]$$

$$= -2i\sqrt{S_{12}S_{23}\dots S_{2n1}} \sin(\phi_{12} - \phi_{32} + \phi_{34} - \dots - \phi_{1-2n}).$$

#

Stephen Parke, Fermilab

Invisibles 2014

24

Polarization Vectors: Helicity

$$\epsilon^{\mu}_{+}(k,q) = \frac{\langle q - |\gamma^{\mu}|k - \rangle}{\sqrt{2}\langle q - |k + \rangle}, \qquad \epsilon^{\mu}_{-}(k,q) = \frac{-\langle q + |\gamma^{\mu}|k + \rangle}{\sqrt{2}\langle q + |k - \rangle}.$$

where k is the momentum of the gluon and q is a reference momentum $(q^2 = 0)$.

 [6] Z. Xu, Da-Hua Zhang and L. Chang, Tsinghua University Preprints, Beijing, The People's Republic of China, TUTP-84/4, TUTP-84/5, TUTP-84/6 and Nucl. Phys. B291 (1987) 392.

Polarization Vectors: Helicity

$$\epsilon^{\mu}_{+}(k,q) = \frac{\langle q - |\gamma^{\mu}|k - \rangle}{\sqrt{2}\langle q - |k + \rangle}, \qquad \epsilon^{\mu}_{-}(k,q) = \frac{-\langle q + |\gamma^{\mu}|k + \rangle}{\sqrt{2}\langle q + |k - \rangle}.$$

where k is the momentum of the gluon and q is a reference momentum $(q^2 = 0)$.

Color Ordered sub-amplitudes are independent of the q's

 [6] Z. Xu, Da-Hua Zhang and L. Chang, Tsinghua University Preprints, Beijing, The People's Republic of China, TUTP-84/4, TUTP-84/5, TUTP-84/6 and Nucl. Phys. B291 (1987) 392.

Polarization Vector Properties:

The polarizations for vectors with momentum p, as defined in the text:

$$\epsilon^{\pm}_{\mu}(p,k) = \pm \frac{\langle p \pm | \gamma_{\mu} | k \pm \rangle}{\sqrt{2} \langle k \mp | p \pm \rangle},$$

$$\epsilon^{\pm}(p,k)\cdot\gamma = \pm \frac{\sqrt{2}}{\langle k\mp |p\pm\rangle}(|p\mp\rangle\langle k\mp| + |k\pm\rangle\langle p\pm|),$$

enjoy the following properties:

 $\begin{aligned} \epsilon^{\pm}_{\mu}(p,k) &= (\epsilon^{\mp}_{\mu}(p,k))^{*}, \\ \epsilon^{\pm}(p,k) \cdot p &= \epsilon^{\pm}(p,k) \cdot k = 0, \\ \epsilon^{\pm}(p,k) \cdot \epsilon^{\pm}(p,k') &= 0, \\ \epsilon^{\pm}(p,k) \cdot \epsilon^{\mp}(p,k') &= -1, \\ \epsilon^{\pm}(p,k) \cdot \epsilon^{\pm}(p',k) &= 0, \\ \epsilon^{\pm}(p,k) \cdot \epsilon^{\mp}(k,k') &= 0, \\ \epsilon^{\pm}(p,k) \cdot \epsilon^{\mp}(k,k') &= 0, \\ \epsilon^{\pm}(p,k) \epsilon^{-}_{\nu}(p,k) + \epsilon^{-}_{\mu}(p,k) \epsilon^{+}_{\nu}(p,k) &= -g_{\mu\nu} + \frac{p_{\mu}k_{\nu} + p_{\nu}k_{\mu}}{p \cdot k}. \end{aligned}$

Exercise:

Calculate matrix element for 2 gluons to 2 gluons

Exercise:

Calculate matrix element for 2 gluons to 2 gluons

 M_{2-4+} and M_{3-3+} . The first ones are a trivial generalization of the five-parton amplitudes, and are given in the case of two quark-four gluon and six gluons, respectively, by:

$$14(-+--+++) + 4(00)3(10) \sum (13)4(5)8) 1$$

$$\mathcal{M}(g_1^-, g_2^-, g_3^+, g_4^+, \dots, g_6^+) = ig^4 \langle 12 \rangle^4 \sum_{\{1, 2, 3, 4, 5, 6\}'} tr(\lambda^{a_1} \lambda^{a_2} \dots \lambda^{a_6}) \frac{1}{\langle 12 \rangle \langle 23 \rangle \dots \langle 61 \rangle},$$

 $m_{3+3-}(g_1, g_2, \ldots, g_6) = ig^4 \left[\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\beta^2} \right]$ conngurations with helicities (- - + + + + +) and (+ + - - -), can be easily obtained using the properties of the λ matrices, giving:

$$|M(g_1,\ldots,g_6)|^2 = 2g_s^8 N^4 (N^2 - 1) \sum_{i>j} s_{ij}^4 \sum_{j=1}^{\infty} \frac{1}{s_{12}s_{23}\cdots s_{61}} + O(N^{-2}), \qquad (5.25)$$

$$M(q, \bar{q}, g_{1}, g_{$$

+++---

$$A_{6}(1^{+}, 2^{+}, 3^{+}, 4^{-}, 5^{-}, 6^{-}) = i \frac{\left([1\,2] \langle 4\,5 \rangle \langle 6^{-} | (1+2) | 3^{-} \rangle \right)^{2}}{s_{61}s_{12}s_{34}s_{45}s_{612}} + i \frac{\left([2\,3] \langle 5\,6 \rangle \langle 4^{-} | (2+3) | 1^{-} \rangle \right)^{2}}{s_{23}s_{34}s_{56}s_{61}s_{561}} + i \frac{s_{123} [1\,2] [2\,3] \langle 4\,5 \rangle \langle 5\,6 \rangle \langle 6^{-} | (1+2) | 3^{-} \rangle \langle 4^{-} | (2+3) | 1^{-} \rangle}{s_{12}s_{23}s_{34}s_{45}s_{56}s_{61}}$$

+++++-

$$A_{jn}^{\text{MHV}} \equiv A_n^{\text{tree}}(1^+, 2^+, \dots, j^-, \dots, (n-1)^+, n^-) = i \frac{\langle j n \rangle^4}{\langle 1 2 \rangle \cdots \langle n 1 \rangle}.$$

Factorization Properties:

Soft:

$$m(1^+, 2..., n) \xrightarrow{1^+ \text{ soft}} \left\{ \frac{g \langle n 2 \rangle}{\langle n 1 \rangle \langle 1 2 \rangle} \right\} m(2, 3..., n)$$
$$m(1^-, 2..., n) \xrightarrow{1^- \text{ soft}} \left\{ \frac{g [n 2]}{[n 1][1 2]} \right\} m(2, 3..., n).$$

collinear:

$$m(1^{+}, 2^{+}, 3, ...) \xrightarrow{1^{+} \parallel 2^{+}} \left\{ \frac{ig [12]}{\sqrt{z(1-z)}} \right\} \xrightarrow{-i}_{S_{12}} m(P^{+}, 3, ...)$$

$$m(1^{+}, 2^{-}, 3, ...) \xrightarrow{1^{+} \parallel 2^{-}} \left\{ \frac{ig z^{2} \langle 12 \rangle}{\sqrt{z(1-z)}} \right\} \xrightarrow{-i}_{S_{12}} m(P^{+}, 3, ...)$$

$$+ \left\{ \frac{ig (1-z)^{2} [12]}{\sqrt{z(1-z)}} \right\} \xrightarrow{-i}_{S_{12}} m(P^{-}, 3, ...)$$

$$m(1^{-}, 2^{-}, 3, ...) \xrightarrow{1^{-} \parallel 2^{-}} \left\{ \frac{ig \langle 12 \rangle}{\sqrt{z(1-z)}} \right\} \xrightarrow{-i}_{S_{12}} m(P^{-}, 3, ...)$$

Multi-particle:

$$m(1,2,3,4,5,6) \rightarrow m(1,2,3,-P) \frac{-i}{P^2} m(P,4,5,6)$$

Recursion Relations:

on mass shell

color ordered current

Berends and Giele

involving quarks instead of gluinos:

$$A_{q}(\bar{q}_{1}^{+}, q_{2}^{-}, g_{3}^{-}, g_{4}^{+}, \dots, g_{n}^{+}) = ig^{n-2} \langle 23 \rangle^{3} \langle 13 \rangle \sum_{\{3, \dots, n\}} (\lambda_{3} \lambda_{4} \cdots \lambda_{n})_{\hat{2}\hat{1}} \frac{1}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}.$$
(5.8)

This formula was guessed in Reference [5] by studying the behaviour of gluon amplitudes in the limit of collinear gluon emission.

Let us now take the amplitude $A(\Lambda_1^+, \Lambda_2^-, \Lambda_3^+, g_4^-, g_5^+, \ldots, g_n^+)$. By commuting with the supersymmetry operator and properly choosing the reference momentum k we obtain the following SWI:

$$A_{z}(\Lambda^{+}, \Lambda^{+}, \Lambda^{-}, \Lambda^{-}, a^{+}, \dots, a^{+}) = \frac{\langle 12 \rangle}{\langle 3, \dots, n \rangle} A_{z}(a^{+}, \Lambda^{+}, \Lambda^{-}, a^{-}, a^{+}, \lambda^{-}, a^{+}, \lambda^{+}, \lambda^{-}, a^{+}, \lambda^$$

symmetry operator and properly choosing the reference momentum k we obtain the following $S'_{A_{2}(\Lambda^{+},\Lambda^{+},\Lambda^{-},\Lambda^{-},a^{+},\ldots,a^{+})} = ia^{n-2}/(12)/(34)^{3} \sum tr(\lambda_{2}) \cdots \lambda_{n} = \frac{1}{1}$

$$A_{\tilde{g}}(\Lambda_1^+,\Lambda_2^+,\Lambda_3^-,\Lambda_4^-,g_5^+,\ldots,g_n^+) = ig^{n-2}\langle 12\rangle\langle 34\rangle^3 \sum_{perm'} tr(\lambda_1\lambda_2\cdots\lambda_n) \frac{1}{\langle 12\rangle\langle 23\rangle\cdots\langle n1\rangle}.$$
(5.9)

By using Equation (5.7) we get: gramo-rour graon sub-amplitudes given at the degrafining or ther belicity amplitudes:

It is not possible to directly relate the sub-amplitudes for a four-gluino process to subamplitudes for a four-quark process. This is clear for the scattering of two pairs of quarks of different flavour: some diagrams that are present in the gluino case are absent for the quarks because it is not possible to contract two different (past inpos) where if the two quark pairs have the same flavour, though, the gluino sub-amplitudes are different from the quarks ones. The reason for this being that diagrams containing a contraction between adjacent quarks have a different

Witten's Twistor String Theory

``Perturbative gauge theory as a string theory in twistor space"

hep-th/0312171

6 gluons

and are quite complicated. There are three essentially different cases, namely helicities +++---, ++--+-, or +-+--. These amplitudes can all be written

$$A = 8g^{4} \left[\frac{\alpha^{2}}{t_{123}s_{12}s_{23}s_{45}s_{56}} + \frac{\beta^{2}}{t_{234}s_{23}s_{34}s_{56}s_{61}} + \frac{\gamma^{2}}{t_{345}s_{34}s_{45}s_{61}s_{12}} + \frac{t_{123}\beta\gamma + t_{234}\gamma\alpha + t_{345}\alpha\beta}{s_{12}s_{23}s_{34}s_{45}s_{56}s_{61}} \right].$$

$$(3.31)$$

	$1^{+}2^{+}3^{+}4^{-}5^{-}6^{-}$	$1^{+}2^{+}3^{-}4^{+}5^{-}6^{-}$	$1^{+}2^{-}3^{+}4^{-}5^{+}6^{-}$
	X = 1 + 2 + 3	Y = 1 + 2 + 4	Z = 1 + 3 + 5
\overline{lpha}	0	$-[12]\langle 56 \rangle \langle 4 Y 3 \rangle$	$[13]\langle 46 \rangle \langle 5 Z 2 \rangle$
eta	$[23]\langle 56\rangle\langle 1 X 4\rangle$	$[24]\langle 56\rangle\langle 1 Y 3\rangle$	$[51]\langle 24\rangle\langle 3 Z 6\rangle$
γ	$[12]\langle 45\rangle\langle 3 X 6\rangle$	$[12]\langle 35\rangle\langle 4 Y 6\rangle$	$[35]\langle 62\rangle\langle 1 Z 4\rangle$

BCFW recursion:

On-mass shell recursion relations:

R. Britto, F. Cachazo, B. Feng and E. Witten, "Direct proof of tree-level recursion relation in Yang-Mills theory," Phys. Rev. Lett. **94**, 181602 (2005) [hep-th/0501052].

Scattering Amplitudes

Henriette Elvang, Yu-tin Huang

arXiv:1308.1697

A brief introduction to modern amplitude methods Lance Dixon arXiv:1310.5353

http://susy2013.ictp.it/video/05_Friday/2013_08_30_Arkani-Hamed_4-3.html

7 - point Anglituhedron in P3

Locality + Unitarity emerge

(N=4 planar SUSY Theory)

Stephen Parke, Fermilab

7/12/2014

38

Principals:

Principal of Least Action:

• Classical Mechanics:

- Quantum Mechanics:
- Quantum Field Theory:

• What is the correct way to incorporate Gravity ?

????

???

????

Principals:

Principal of Least Action:

• Classical Mechanics:

- Quantum Mechanics:
- Quantum Field Theory:

???? ????

????

• What is the correct way to incorporate Gravity ?

Principals:

Principal of Least Action:

Classical Mechanics:

- Quantum Mechanics:
- Quantum Field Theory:

s the correct way prporate Gravity ? ????

???

????