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The "Invisibles School 2014" is organised in the context of the FP7 funded INVISIBLES ITN (FP7-
PEOPLE-2011-ITN, PITN-GA-2011-289442-INVISIBLES). The School will take place in the beautiful
"Château de Button", in Gif-Sur-Yvette (30 kms from Paris). 
This year's edition of the Invisibles School will focus on several aspects of neutrino physics.

Lecture Topics include:
• Basics of neutrino physics - Renata Zukanovich-Funchal
• Neutrino theory (BSM and phenomenological implications) - Ferrucio Feruglio
• Neutrino experiments (long baseline, solar, atmospheric, reactor and neutrinoless double beta

decay) - Debbie Harris
• Neutrino data analysis - Thomas Schwetz
• Effective theories (with applications for Higgs physics, dark matter and neutrino physics) -

Howard Georgi
• LHC physics - Gilad Perez
• Dark matter and cosmology - Joe Silk
• Neutrinos in cosmology - Julien Lesgourgues
• Statistical methods and data analysis - Glen Cowan
• New geometrical approaches to amplitudes - Stephen Parke

During the School there will also be a series of tutorials and workshops to introduce participants to
research in the field.
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Outline

• Some motivation.	


• Calculating LHC cross sections (Xsection).	


• Parton distribution functions, parton luminosities.

Lecture I:

• Example, top-pair Xsection calculation.	


• Kinematics & jets.	


Lecture II:
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Lecture I: 	


!

Some motivation (SM problems, naturalness); 	


How to calculate Xsections @ the LHC;	


Parton distribution functions (PDFs) parton 
luminosities.  	


!
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Why the LHC? What are the problems of the 
Standard Model* (SM), before the LHC started?

WW/unitarity, 
masses

fine tuning,	

naturalness

neutrino masses flavor puzzle 

dark matter (strong CP)

baryogenesis 
unification, 

charge 
quantisation

* Let’s set quantum gravity aside for simplicity …
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data driven,	

clear scale

conceptual
vague scale

data driven,	

no clear 

reachable scale
conceptual

WW/unitarity, 
masses

fine tuning,	

naturalness

neutrino masses flavor puzzle 

dark matter (strong CP)

baryogenesis 
unification, 

charge 
quantisation

Why the LHC? What are the problems of the 
Standard Model* (SM), before the LHC started?

* Let’s set quantum gravity aside for simplicity …
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Why the LHC? (2 subjective reasons)

• Higgs & unitarity, suggests physics < TeV.	


• Given the Higgs, the  fine tuning problem 
requires new physics at a scale, generically, 
within the reach of the LHC.
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The SM Higgsless Unitarity Problem
LSM = L0 + Lmass
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The physics discovered so far  can be powerfully classified according to a 

gauge principle, except for the terms responsible for the particles’ masses

Mass terms are not invariant under the local SU(2)LxU(1)Y symmetry

Mass terms are responsible for the inconsistency of the theory at high energies:

The scattering of longitudinal W’s and 
Z’s violates unitarity at high energy 

�

The optical theorem
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The SM Higgsless Unitarity Problem

The amplitude for scattering of longitudinal W’s and Z’s grows 
with the energy and eventually violates the unitarity bound:

WL WL

+ +
Z,γ

Z,γ

WL WL

Ex: A(W+
L W�
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L W�
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g2
2
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gives a factor 
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Unitarity is restored by adding diagrams with intermediate Higgs in them as long as mh <. 800 GeV . 

Mandelstam variables
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Higgs as a solution to the unitarity problem

We can resolve theW+W− → W+W− cross section divergence with two

additional diagrams

but only ifmH < 1 TeV

There is also a theoretical lower limit; if the mass is too small then the weak vacuum

become unstable, however, experiment gives the current best lower limit.
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The Higgs & the fine tuning/naturalness problem

’t Hooft definition of technical naturalness: 	

a parameter is natural if when it’s set to 0 there’s an enhanced symmetry.	


Additive renormaliztion (unnatural parameters):  	

Multiplicative renormalization (natural parameters):  

d�/dlnµ / �g(µ) + f(µ)
d�/dlnµ / �g(µ)

ֿ
The Higgs mass parameter is subject to additive renormalisation. 	

Thus, it is sensitive to microscopic new physics dynamics.
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Figure 2: Dependence of the asymmetries for the LHC on the lepton pt for three di↵erent scale

choices, calculated by POWHEG. The left and right panel show Ac and Al respectively and

middle one shows the ratio Al/Ac. These plots show the ideal SM scenario where no cuts have

been applied.
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Naturalness might give a hint: Higgs mass is additive, sensitive to microscopic 
scales. Within the SM it translates to UV sensitivity:                                        .

See: Giudice (13)

Igor Stravinsky used, when he said “Silence will save me from being wrong, but it
will also deprive me of the possibility of being right.”

The basic observation is that quadratic divergences are fully related to UV physics.
This means that, if the matching condition of the Higgs bilinear at an arbitrary scale
⇤ in the far UV is mH(⇤) ⇡ 0, then mH remains small at all scales below ⇤, as long
as there are no massive thresholds at intermediate energies. This is evident once we
consider the one-loop renormalisation-group equation for mH in the SM

dm2
H

d lnµ
=

3m2
H

8⇡2

 

2�+ y2t �
3g22
4

� 3g21
20

!

. (6)

The Higgs parameterm2
H is onlymultiplicatively renormalised and so SM infrared (IR)

contributions do not bring back the naturalness problem, once it has been eradicated
from the UV. These considerations suggest a possible solution to the naturalness of
the Higgs, which I will call here UV Naturalness. It is based on two assumptions:
(i) a miracle occurs in quantum gravity, which sets m2

H(MPl) to be approximately
zero (i.e. about 34 orders of magnitude smaller than the naive expectation); (ii) if
there are new particles with mass between MPl and mh, then they must be su�ciently
decoupled from the Higgs field.

In his Summa contra gentiles, St. Thomas Aquinas classifies miracles in three
categories. A miracle of the third degree is when God does something that nature
can do, but without intervention of a natural agent (e.g. a storm that suddenly
stops just before the ship sinks). A miracle of the second degree is when God does
something that nature can do, but without respecting the natural temporal order
(e.g. a man regains sight after being blinded or comes back to life after death). The
highest degree of miracle is when God does something that nature can never do (e.g.
parting the waters of the Red Sea or causing the sun to stand still at Gibeon).

We can get inspiration from ancient wisdom and, in a modern Summa contra natu-
ralitatem, classify the degree of quantum-gravity miracles required by the assumption
(i) above. A miracle of the third degree occurs if graviton loops do not a↵ect the Higgs
mass and do not modify the evolution of the SM couplings in the far UV (i.e. in the
transplanckian region). In this case gravity does not introduce a naturalness problem,
but one may need to introduce new physics to avoid the non-asymptotic freedom of
the hypercharge coupling or other possible Landau poles. A miracle of the second
degree corresponds to a situation in which both gravity and the SM are well-behaved:
the Higgs mass is not a↵ected by any large corrections and all couplings reach UV
fixed points. Finally, a first degree miracle would happen if quantum-gravity e↵ects
magically erase any large quantum correction to the Higgs mass generated at any
scale, larger or smaller than MPl. The latter possibility seems utterly implausible
and I will disregard it, since it requires an exact correlation between contributions
occurring at completely di↵erent energy scales. So, resorting to a quantum-gravity
miracle (say of the second or third degree), we can conceive the possibility of a special
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Beyond the SM: any scale that couples to the Higgs (or even to tops, gauge ...)	

will induce a large shift to the Higgs mass,                   .

ducing the problem of tachyonic sleptons [20]. Moreover, it gives a prediction for the
Higgs mass which is comfortably in the right range [27], unlike most natural versions
of supersymmetric models. Finally, it o↵ers a chance for discovery at the high-energy
phase of the LHC through gluino pair production, although it is not guaranteed that
gluinos are kinematically accessible.

UV Naturalness

As I have already mentioned, whenever we encounter a threshold with particles of
mass M , coupled to the Higgs field, we expect that quantum corrections give a con-
tribution

�m2
H ⇡ ↵

4⇡
M2 . (5)

This introduces a naturalness problem.
So let us suppose that no heavy particles coupled to the Higgs exist at all. For the

moment I disregard all indications in favour of new heavy thresholds based on dark
matter, strong CP, baryogenesis, inflation, unification, etc. Nonetheless, there is one
mass scale I cannot dispense with: the Planck mass MPl associated with quantum
gravity. This leads me to consider the following question: Does gravity introduce a
Higgs naturalness problem? In practice, one would like to compute loop diagrams
with two external Higgs lines, involving virtual gravitons and SM particles. Do these
diagrams give a contribution �m2

H / M2
Pl or not? In classical general relativity, the

Planck mass enters only through the combination GN = M
�1/2
Pl , as a coupling with

inverse powers of MPl. Does quantum gravity introduce positive powers of MPl in the
result? One generally expects that the answer is in the a�rmative. Pure gravity loop
diagrams do not contribute to the Higgs mass, because of the Higgs shift symme-
try. But there is no obvious reason why two-loop diagrams involving gravity and top
Yukawa (or Higgs quartic) couplings should vanish. For instance, we can interpret
microscopic black holes as virtual quantum states that contribute at the loop level
to gravitational corrections �m2

H / M2
Pl. However, since we cannot solve quantum

gravity, it is di�cult to make a firm statement. Some authors have considered (either
implicitly or explicitly) [28–38] the hypothesis that quantum gravity may not nec-
essarily introduce any ‘Planckian particles’ and quantum-gravity corrections to the
Higgs mass may be free from positive powers of MPl. Some (still unspecified) miracle
is expected to cure the UV behaviour of gravity and the presence of GN would not
significantly a↵ect the Higgs mass.

Although it goes against e↵ective field-theory intuition, one can conceive the pe-
culiar possibility that quantum-gravity corrections �m2

H / M2
Pl vanish. It has never

been proven to be true, but the opposite hasn’t been proven either. This may not
seem such a scientifically cogent reason, but it follows the same successful logic that

6

Farina, Pappadopulo & Strumia (13)
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Tunning vs. fine tuning/naturalness problem

Flavor puzzle: the parameters’ are small and hierarchical.	

Is the flavor sector fine tuned? mu/mt ~ 10-5 .	


L
fermions

2  ̄L@µ�µ L +  ̄R@µ�µ RMassless fermions theory:

Two separate U(1)’s:  L,R ! e✓L,R L,R

Mass term breaks it to a single U(1):  ̄Lm R

Only invariant under transformation with ✓L = ✓R = ✓

Sym’ is indeed!
enhanced when!
the mass vanishes.!
(modulo anomalies)
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Flavor (including neutrinos) parameters are natural

Flavor parameters are natural, subject to tuning & then radiatively stable, no UV	

sensitivity.	

!
Within the SM the only exception is the Higgs mass. (& the QCD angle & the cosmological constant)	

!!
(A simple way to understand this is to realise that a massless fermion requires 2 
degrees of freedom (dof) while a massive 4.	

A massless vector boson requires 2 and a massive 3.	

Thus, there is discontinuity in the massless to massive limit.	

This does not happen for a massive scalar.)	

!
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LHC physics
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Need more E!
Sync’ radiation,

                            problem for circular e-collider:

LEP (1989-2000)

dW
dt |e ⇤

�
e
r

⇥2
⇤

E
me

⌅4
⇥ 104 GeV s�1 ⌅ �1012e ⇥ MWs radiation!

1013 improvement when e <=> proton

Tevatron (1985-...) pp̄

E~2TeV (2000GeV) 

Why LHC?
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Nothing’s free - QCD dust

• Expect                           ,  who needs 2TeV?

• Proton anti-proton are composite:

mt = 130-200GeV

E2
event = x1x2E2

pp̄

• We don’t know what is ECM .

• We don’t know which particles interacted.

• And ...

• Typical E’s much smaller:
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Calculating Xsections at the LHC:                     
Parton Distribution Functions (PDFs)

Let’s explore this formally

! 
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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At higher orders, gluon-quark scattering may also contribute,

dσhh′→Q2(s, Q2)

dQ2
=

∑

i,j=f,f̄,G

∫ 1

0
dξdξ′ φi/h(ξ, µ

2)Hij

(

Q2

ξξ′s
,
Q2

µ2
, αs(µ

2)

)

φj/h′(ξ′, µ2) . (122)

As in DIS, the hard-scattering function is a power series in αs(µ2). H depends on the scheme

chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme

[41],

Hff̄ =
dσ(Born)

ff̄

dQ2

(

δ(1 − z) +
αs

π

{

CF [(1 + z2)(

[

ln(1 − z)

1 − z

]

+

+ 3
[

1

1 − z

]

+

−6 − 4z − ln z) +

(

4π2

3
+ 1

)

δ(1 − z)]
}

)

, (123)

where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is

ωC
dσhh′→C(pC)(p, p′, pc)

d3pC
=

∑

i,j,k=f,f,G

∫ 1

0
dξdξ′

dz

z2
Hijk

(

µ2

ξξ′s
,
pC · ξp
zµ2

,
pC · ξ′p′

zµ2
, αs(µ

2)

)

×φi/h(ξ, µ
2)φj/h′(ξ′, µ2) dC/k(z, µ

2) . (125)
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algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 

Physically only pairs of PDF are important
(assuming no p-rapidity or pt cuts)
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�̂(ŝ) Corresponds to the Born/hard/local/short distance Xsection that we 	

would like to calculate/measure. 

For instance gg ! t¯t

ŝ = (pt + pt̄)
2 = (pg + pg0)2

15



16

PDFs
[14] S. Weinberg, Phys. Rev. Lett. 31, 494 (1973).

[15] J.D. Bjorken, Phys. Rev. 179, 1547 (1969).

[16] R.A. Brandt and G. Preparata, Nucl. Phys. B27, 541 (1971);
Y. Frishman, Phys. Rev. Lett. 25, 966 (1970).

[17] N. Christ B. Hasslacher and A.H. Mueller, Phys. Rev. D6, 3543 (1972).

[18] B. Edwards et al., Phil. Mag. 3, 237 (1957).

[19] S.D. Drell, D.J. Levy and T.M. Yan, Phys. Rev. D1, 1617 (1969).

[20] G. Hanson et al., Phys. Rev. Lett. 35, 1609 (1975).

[21] G. Sterman and S. Weinberg, Phys. Rev. Lett. 39, 1436 (1977).

[22] H.D. Politzer, Phys. Lett. B70, 430 (1977);
A. De Rujula, John R. Ellis, E.G. Floratos and M.K. Gaillard, Nucl. Phys. B138, 387 (1978).

[23] F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937);
D.R. Yennie, S.C. Frautschi and H. Suura, Annals Phys. 13, 379 (1961).

[24] T. Kinoshita, J. Math. Phys. 3, 650 (1962);
T.D. Lee and M. Nauenberg, Phys. Rev. 133, B1549 (1964).

[25] G. ’t Hooft and M.J.G. Veltman, Nucl. Phys. B44, 189 (1972); and in Louvain 1973, Particle
Interactions At Very High Energies, Part B, New York 1973, 177 and CERN report - CERN
73-9;
J.F. Ashmore, Lettere al Nuovo Cim. 4, 289 (1972);
C.G. Bollini and J.J. Giambiagi, Nuovo Cim. Ser, 1112B, 20 (1972).

[26] S. Coleman and R.E. Norton, Nuorvo Cim. Ser. 10 38, 438 (1965).

[27] G. Sterman, Phys. Rev. D17, 2773; 2789 (1978).

[28] L.D. Landau, Nucl. Phys. 13, 181 (1959).

[29] J.M.F. Labastida and G. Sterman, Nucl. Phys. B254, 425 (1985).

[30] J.C. Collins, D.E. Soper and G. Sterman, in Perturbative quantum chromodynamics, ed.
A.H. Mueller (World Scientific, Singapore, 1989), p. 1, hep-ph/0409313.

[31] C.W. Bauer, S. Fleming and M.E. Luke, Phys. Rev. D63, 014006 (2001) hep-ph/0005275;
C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, light Phys. Rev. D63, 114020 (2001)
hep-ph/0011336;
C.W. Bauer and I.W. Stewart, Phys. Lett. B516, 134 (2001) hep-ph/0107001;
C.W. Bauer, D. Pirjol and I.W. Stewart, Phys. Rev. D65, 054022 (2002) hep-ph/0109045.

63

At higher orders, gluon-quark scattering may also contribute,

dσhh′→Q2(s, Q2)

dQ2
=

∑

i,j=f,f̄,G

∫ 1

0
dξdξ′ φi/h(ξ, µ

2)Hij

(

Q2

ξξ′s
,
Q2

µ2
, αs(µ

2)

)

φj/h′(ξ′, µ2) . (122)

As in DIS, the hard-scattering function is a power series in αs(µ2). H depends on the scheme

chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme

[41],

Hff̄ =
dσ(Born)

ff̄

dQ2

(

δ(1 − z) +
αs

π

{

CF [(1 + z2)(

[

ln(1 − z)

1 − z

]

+

+ 3
[

1

1 − z

]

+

−6 − 4z − ln z) +

(

4π2

3
+ 1

)

δ(1 − z)]
}

)

, (123)

where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is

ωC
dσhh′→C(pC)(p, p′, pc)

d3pC
=

∑

i,j,k=f,f,G

∫ 1

0
dξdξ′

dz

z2
Hijk

(

µ2

ξξ′s
,
pC · ξp
zµ2

,
pC · ξ′p′

zµ2
, αs(µ

2)

)

×φi/h(ξ, µ
2)φj/h′(ξ′, µ2) dC/k(z, µ

2) . (125)
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What are pdf’s (switching notation)

Gluons dominate at low x .

To set the scale, x = 0.14 at LHC is 0.14 * 7TeV = 1TeV

=> The LHC is a gluon collider !!!

Sea dominates at low x

Proton

Sea violates 

isospin at large x?

1e-2 * 7TeV =70GeV 

A 14TeV collider

can be pp instead

of ppbar !!!

Gluons dominate at low x .
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=> The LHC is a gluon collider !!!
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(What are they?)

Probability of finding a constituent f with

a longitudinal momentum fraction of x ) ff (x)dx

PDFs are non-perturbative objects.
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At higher orders, gluon-quark scattering may also contribute,
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As in DIS, the hard-scattering function is a power series in αs(µ2). H depends on the scheme

chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme
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where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is
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Some motivation (SM problems, naturalness); 	


How to calculate Xsections @ the LHC;	


Parton distribution functions (PDFs) parton 
luminosities.  	
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Beginning of 2nd Lecture
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!

• Parton Luminosities (cont’).	


• Example, top-pair Xsection calculation.	


• Kinematics & jets.	




Calculating Xsections at the LHC:                     
Parton Distribution Functions (PDFs)

Let’s explore this formally

! 
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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As in DIS, the hard-scattering function is a power series in αs(µ2). H depends on the scheme

chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme
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where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.
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particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but
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The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 
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Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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At higher orders, gluon-quark scattering may also contribute,

dσhh′→Q2(s, Q2)

dQ2
=

∑

i,j=f,f̄,G

∫ 1

0
dξdξ′ φi/h(ξ, µ

2)Hij

(

Q2

ξξ′s
,
Q2

µ2
, αs(µ

2)

)

φj/h′(ξ′, µ2) . (122)

As in DIS, the hard-scattering function is a power series in αs(µ2). H depends on the scheme

chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme

[41],

Hff̄ =
dσ(Born)

ff̄

dQ2

(

δ(1 − z) +
αs

π

{

CF [(1 + z2)(

[

ln(1 − z)

1 − z

]

+

+ 3
[

1

1 − z

]

+

−6 − 4z − ln z) +

(

4π2

3
+ 1

)

δ(1 − z)]
}

)

, (123)

where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is

ωC
dσhh′→C(pC)(p, p′, pc)

d3pC
=

∑

i,j,k=f,f,G

∫ 1

0
dξdξ′

dz

z2
Hijk

(

µ2

ξξ′s
,
pC · ξp
zµ2

,
pC · ξ′p′

zµ2
, αs(µ

2)

)

×φi/h(ξ, µ
2)φj/h′(ξ′, µ2) dC/k(z, µ

2) . (125)
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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At higher orders, gluon-quark scattering may also contribute,

dσhh′→Q2(s, Q2)
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=
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)

φj/h′(ξ′, µ2) . (122)

As in DIS, the hard-scattering function is a power series in αs(µ2). H depends on the scheme

chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme

[41],

Hff̄ =
dσ(Born)
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, (123)

where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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At higher orders, gluon-quark scattering may also contribute,
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chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme

[41],

Hff̄ =
dσ(Born)

ff̄

dQ2

(

δ(1 − z) +
αs

π

{

CF [(1 + z2)(

[

ln(1 − z)

1 − z

]

+

+ 3
[

1

1 − z

]

+

−6 − 4z − ln z) +

(

4π2

3
+ 1

)

δ(1 − z)]
}

)

, (123)

where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 

1 &CD AND E+E- ANNIHILATION 

.2 - 

0 I I I I I I / I I 
0 .2 .4 .6 .8 1 

21 
Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 

Parton-parton luminositiesZooming-in on the < 1 TeV region

gg luminosity @ LHC
qq luminosity @ LHC
gg luminosity @ Tevatron

qq luminosity @ Tevatron

W/Z ttbar

H160
SUSY “LM1”

Thursday, February 4, 2010

24



PDFs, luminosity functions
[14] S. Weinberg, Phys. Rev. Lett. 31, 494 (1973).

[15] J.D. Bjorken, Phys. Rev. 179, 1547 (1969).

[16] R.A. Brandt and G. Preparata, Nucl. Phys. B27, 541 (1971);
Y. Frishman, Phys. Rev. Lett. 25, 966 (1970).

[17] N. Christ B. Hasslacher and A.H. Mueller, Phys. Rev. D6, 3543 (1972).

[18] B. Edwards et al., Phil. Mag. 3, 237 (1957).

[19] S.D. Drell, D.J. Levy and T.M. Yan, Phys. Rev. D1, 1617 (1969).

[20] G. Hanson et al., Phys. Rev. Lett. 35, 1609 (1975).

[21] G. Sterman and S. Weinberg, Phys. Rev. Lett. 39, 1436 (1977).

[22] H.D. Politzer, Phys. Lett. B70, 430 (1977);
A. De Rujula, John R. Ellis, E.G. Floratos and M.K. Gaillard, Nucl. Phys. B138, 387 (1978).

[23] F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937);
D.R. Yennie, S.C. Frautschi and H. Suura, Annals Phys. 13, 379 (1961).

[24] T. Kinoshita, J. Math. Phys. 3, 650 (1962);
T.D. Lee and M. Nauenberg, Phys. Rev. 133, B1549 (1964).

[25] G. ’t Hooft and M.J.G. Veltman, Nucl. Phys. B44, 189 (1972); and in Louvain 1973, Particle
Interactions At Very High Energies, Part B, New York 1973, 177 and CERN report - CERN
73-9;
J.F. Ashmore, Lettere al Nuovo Cim. 4, 289 (1972);
C.G. Bollini and J.J. Giambiagi, Nuovo Cim. Ser, 1112B, 20 (1972).

[26] S. Coleman and R.E. Norton, Nuorvo Cim. Ser. 10 38, 438 (1965).

[27] G. Sterman, Phys. Rev. D17, 2773; 2789 (1978).

[28] L.D. Landau, Nucl. Phys. 13, 181 (1959).

[29] J.M.F. Labastida and G. Sterman, Nucl. Phys. B254, 425 (1985).

[30] J.C. Collins, D.E. Soper and G. Sterman, in Perturbative quantum chromodynamics, ed.
A.H. Mueller (World Scientific, Singapore, 1989), p. 1, hep-ph/0409313.

[31] C.W. Bauer, S. Fleming and M.E. Luke, Phys. Rev. D63, 014006 (2001) hep-ph/0005275;
C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, light Phys. Rev. D63, 114020 (2001)
hep-ph/0011336;
C.W. Bauer and I.W. Stewart, Phys. Lett. B516, 134 (2001) hep-ph/0107001;
C.W. Bauer, D. Pirjol and I.W. Stewart, Phys. Rev. D65, 054022 (2002) hep-ph/0109045.

63

At higher orders, gluon-quark scattering may also contribute,

dσhh′→Q2(s, Q2)

dQ2
=

∑

i,j=f,f̄,G

∫ 1

0
dξdξ′ φi/h(ξ, µ

2)Hij

(

Q2

ξξ′s
,
Q2

µ2
, αs(µ

2)

)

φj/h′(ξ′, µ2) . (122)
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where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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The gluon luminosity function at LHC14
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2 ⇠ 6⇥ 10�4 .

1

⌧
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The luminosity functions are rapidly falling

MSTW-PDF running factorisation scale as Q2
= ŝ = ⌧s = ⌧ ⇥ 14

2
TeV

2

dLgg

dmgg
(blue) vs. m�3.1

gg (red)

mgg

1

mgg
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Generically, cross section falls even faster!

MSTW-PDF running factorisation scale as Q2
= ŝ = ⌧s = ⌧ ⇥ 14

2
TeV

2

⌧

�̂tt̄(⌧)

⌧

dLgg

d⌧ NDA: expect this part to fall like

Typical ⌧ for tt̄ proudction at LHC14: (2mt/14TeV)
2 ⇠ 6⇥ 10�4 .
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Generically, cross section falls even faster!

MSTW-PDF running factorisation scale as Q2
= ŝ = ⌧s = ⌧ ⇥ 14

2
TeV

2

⌧

�̂tt̄(⌧)

⌧

dLgg

d⌧ NDA: expect this part to fall like m�5
gg / ⌧�5/2

Typical ⌧ for tt̄ proudction at LHC14: (2mt/14TeV)
2 ⇠ 6⇥ 10�4 .
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Back to estimating LHC cross section

What are the implications for this rapid fall?	


!

Massive particles (h,W,Z,t, squarks, KK gluon …) are produced near 
threshold.	


Any dimensional cut (in the transverse direction),                                           
mxx, pT, missing ET, HT , implies that the signal and background           
distributions would peak right where the cut is located.	


Maybe we can use this fact for a quick & rough estimation of the top pair 
Xsection? 	


!
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Rough estimation for the LHC cross section step 1:	


Replacing the integral with differential

Let’s replace the integral with differential:	


!

⌧

�̂tt̄(⌧)

⌧

dLgg

d⌧

�p(g)p(g)!tt̄ =
R 1
⌧min

d⌧ �̂tt̄(ŝ=⌧s)
⌧

dLgg

d⌧ ⇠ �⌧ �̂tt̄(⌧s)
⌧

dLgg

d⌧ |⌧! 4
3 ⌧min

�⌧ ⇠ 4
3⌧min
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Rough NDA estimation for the cross section step 1.1:           
Replacing the Born Xsection with its NDA value

NDA for 2->2 Xsection (far from threshold):  	


!

�̂(ŝ) ! 1

ŝ

�p(g)p(g)!tt̄ =
R 1
⌧min

d⌧ �̂tt̄(ŝ=⌧s)
⌧

dLgg

d⌧

⇠ �⌧ �̂tt̄(⌧s)
⌧

dLgg

d⌧ |⌧! 4
3 ⌧min

⇠ �⌧
↵2
s

⌧s
⌧

dLgg

d⌧ |⌧! 4
3 ⌧min
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And the results are:

In[186]:= GeV2pb = 0.389 10^9 pb; 
mt = 173.1; 
βt[shat_] := Sqrt[1 - 4 mt^2/shat] 
αs = 0.11; 
σggtt[τ_] := (π αs^2 βt[τ s14])/( 
  48 τ s14) (31 βt[τ s14]^2 + (33/βt[τ s14] - 18 βt[τ s14] + βt[τ s14]^3) Log[(1 + βt[τ s14])/(1 - βt[τ s14])] - 59) 
In[191]:= NIntegrate[dLdtaugg14Num[τp] σggtt[τp], {τp, (2 mt)^2/s14, 1}] GeV2pb  
Out[191]= 398.687 pb  
In[232]:= dLdtaugg14Num[4/3 (2 mt)^2/s14] σggtt[4/3 (2 mt)^2/s14] 4/3 (2 mt)^2/ 
  s14 GeV2pb  
Out[232]= 354.212 pb  
In[233]:= dLdtaugg14Num[4/3 (2 mt)^2/s14] ( αs^2/(4/3 (2 mt)^2)) 4/3 (2 mt)^2/s14 GeV2pb  
Out[233]= 940.538 pb

Precise

LO
: �p(g)p(g)!tt̄

=

R 1

⌧min
d⌧ �̂tt̄(ŝ=⌧s)

⌧
dLgg

d⌧ = 398.687 pb

Approx’ luminosities: �⌧ �̂tt̄(⌧s)
⌧

dLgg

d⌧ |⌧! 4
3 ⌧min

= 354.212 pb

”NDA”: �⌧
↵2
s

⌧s
⌧

dLgg

d⌧ |⌧! 4
3 ⌧min

= 940.538 pb

my mathematica:
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 Xsection @ LHC14, compare with state of the art:

Precise

LO
: �p(g)p(g)!tt̄

=

R 1

⌧min
d⌧ �̂tt̄(ŝ=⌧s)

⌧
dLgg

d⌧ = 398.687 pb

Approx’ luminosities: �⌧ �̂tt̄(⌧s)
⌧

dLgg

d⌧ |⌧! 4
3 ⌧min

= 354.212 pb

”NDA”: �⌧
↵2
s

⌧s
⌧

dLgg

d⌧ |⌧! 4
3 ⌧min

= 940.538 pb

Theory: Xsection (Tevatron, LHC) now known to NNLO (+NNLL resum’)

Bärnreuther, Czakon & Mitov; Czakon & Mitov x2 (12); 
Czakon, Fiedler & Mitov (13).

tt̄

Best prediction at NNLO+NNLL 

Mitov, CERN, 4/13



Some kinematics
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LHC, longitudinal vs. transverse 

Relativistic invariant phase-space element:	

dτ = d3p/E = dpxdpydpz/E	


Define pp collision axis along z-axis:  
From pµ = (E, px, py, pz) – which are invariant under boosts along z?	

the two longitudinal components: E and pz are NOT invariant the two transverse 
components: px and py (and dpx, dpy) ARE invariant	


Need all variables invariant for boost along z-axis:	

For convenience, define pµ with only 1 component not Lorentz 
invariant Choose pT, m, φ as the “transverse” (invariant) coordinates	

where pT ≡ psin(θ) and φ is the azimuthal angle  
As 4th coordinate define “rapidity”: y = 1/2 ln [(E+pZ)/(E-pZ)]	
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Rapidity

Form a boost of velocity β along z axis
pz ⇒ γ(pz + βE)

E  ⇒ γ(E+ βpz)

Transform rapidity ⇒

Boosts along the beam axis change y by a constant, yb :
(pT,y,φ,m) ⇒ (pT,y+yb,φ,m)  with y ⇒ y + yb ,  yb ≡ ln γ(1+β)           
rapidity is simply additive

Boosts Along beam-axis

5
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Measure

Boosts along the beam axis change y by a constant, yb :	

 y -> y+yb   => rapidity is simply additive.	


Can change coordinate from:

dx1dx2 to dyd⌧ , with identity Jacobian.

LHC: q1 = 1⁄2√s (x1,0,0,x1) q2 = 1⁄2√s (x2,0,0,-x2)	


Rapidity of system q1+q2 is: y = 1⁄2 ln[(E+pz)/(E-pz)] = 1⁄2 ln(x1/x2)	

!



40

The relation between y, β and θ can be seen using pZ = pcosθ and p = βE:
     1     (E+pZ)     1      (1+βcosθ)   
y = —·ln ————— = —·ln ———————  
     2     (E-pZ)     2      (1-βcosθ)

This expression can almost associate the position in the detector (θ) with the 
rapidity y, apart from the β terms.
However, at the LHC (and Tevatron, HERA), ≳90% of the particles in the 
detector are pions with β≈1. Therefore we can introduce the “pseudorapidity” 
defined as η = y(θ) for β=1:

     1      (1+cosθ)       cos(θ/2)              θ
η = —·ln —————— = ln —————— = -ln (tan — )  
     2      (1-cosθ)       sin(θ/2)              2

“Pseudo” and “Real” rapidity

cos2θ/2 = ½·(1+cosθ)
sin2θ/2  = ½·(1-cosθ)

The pseudorapidity η is a good approximation 
of the true relativistic rapidity y when a 
particle is “relativistic”.
It is a handy variable to approximate the 
rapidity y if the mass and the momentum of a 
particle are not known.

14



Few words about jets
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Ex. I: Top jets & Xtra dimensions (RS)  (i) Observe (tiny) extra dimension => excite modes, new massive particles [Kaluza-Klein (KK) resonances],                       . The LHC: 1    pair      
the perfect place 
to probe FCNC 
top decays 

tt̄ s
−1

exp
−1

l

ν

t W

Z

u, c

t
l

l

b

channel t → Zu(c) t → γu(c) t → gu(c)
(3 jets) (4 jets) (combined)

upper limit on BR (L = 10 fb−1) 3.4 × 10−4 6.6 × 10−5 1.7 × 10−3 2.5 × 10−3 1.4 × 10−3

upper limit on BR (L = 100 fb−1) 6.5 × 10−5 1.8 × 10−5 5.0 × 10−4 8.0 × 10−4 4.3 × 10−4Table 7: The expected 95% confidence level limits on the FCNC top decays branching ratio in the absence

of signal hypothesis are shown. The results for a luminosity of L = 10 and 100 fb−1 are presented.

• top mass: The limits presented in the last subsection were evaluated using back-
ground and signal samples generated with mt = 175 GeV/c2. The effect of the
top mass uncertainty was evaluated using different Monte Carlo samples with mt =
170 GeV/c2 and mt = 180 GeV/c2. This systematic affects both the event kine-
matics (and consequently the discriminant variables shape) and the value of the tt̄
cross-section (used in the limits evaluation).• σ(tt̄): The overall theoretical uncertainty on σ(tt̄) was estimated to be 12% [21].
This uncertainty was included by varing the tt̄SM cross-section used both in the tt̄SM

background normalization and in the BR limits evaluation.• PDFs choice: The CTEQ 5L PDF set was used in the Monte Carlo generation. A
different PDF set (CTEQ 4M [15,16]) was used to estimate the effect of this choice
on the event kinematics.

• b-tag algorithm efficiency: As mentioned in section 2, the ATLFASTB package
was used to parametrize the b − tag efficiency. The NSET=2 flag (corresponding to
a b-tagging efficiency of 60%) was used. In order to study the impact of a different
choice, the NSET=1 (corresponding to a b-tagging efficiency of 50%) and NSET=3

(corresponding to a b-tagging efficiency of 70%) options were also used. This source
of uncertainty affects the signal efficiency, background estimation and discriminant
variable shapes.

• jet energy calibration: The impact of the knowledge of the absolute jet energy
scale was estimated by recalibrating the reconstructed jet energy. A miscalibration of
±1% for light jets and ±3% for b-jets was used. This uncertainty was found to have
a negligible effect on the signal efficiency, background estimation and discriminant
variable shapes.

• analysis stability: The stability of the sequential analysis was studied by changing
the preselection and final selection (typically a ±10% variation on the cut values was
considered).

• p.d.f. choice: The discriminant variables were computed using the probability
density function sets described in section 3. In order to estimate the effect of a
different p.d.f. set, the following changes were studied:
a) t → Zu(c) channel: the t̄ reconstruction was done by considering the jet closest

to the reconstructed Z in the invariant mass evaluation.b) t → γu(c) channel: similarly to the t → Zu(c) channel, the t̄ mass reconstruction
was done using the jet closest to the leading γ. Moreover, the t mass was included
in the p.d.f. set and the multiplicity of jets with |η| < 2.5 was chosen as p.d.f.
(instead of the jet multiplicity).

8

(Carvalho, Castro, Onofre, Veloso 2005)

SM: BR ~ 10-14

Interesting region:
BR ~ 10-4 ÷10-8

Top sector observables
• Precision: look for anomalies in flavor couplings (10^3 improvement). 

• Search for coupling to a new sector (like in the      case): J/�

_

(ii) Fine tuning solution => New states decay quickly to top pairs.

mKK & 1 TeV

What if we have a heavy resonance decaying 
dominantly to tops H/W/Z ?

Connection to this school’s themeLooking at boosted massive objects, 
generic motivations (3 examples below) 

Seymour (93); Butterworth, Cox, Forshaw (02); 
Agashe, Belyaev, Krupovnickas, GP & Virzi (06); 
Lillie, Randall & Wang (07); Butterworth, Davison, 
Rubin & Salam (08).

♦New hard dynamics => boosted electroweak+top particles.

♦Massive particles easier to identify when boosted.

Barger, Han & Walker (06); Butterworth, Davison, Rubin & 
Salam (08); Butterworth, Ellis, Raklev & Salam (09); 
Brooijmans et al. (10); Eshel, Gedalia, GP & Soreq (11).

Combinatorial background is removed, less soft junk collected & 
often backgrounds fall faster than signal with energy.
For instance                     (RPV)h + V, t, �0, g̃

Observing signal => identify collimated W/Z/h/t,                         .                       �✓ij ⇠ mJ/EJ
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Top sector observables

• Precision: look for anomalies in flavor 
couplings (10^3 improvement). 

• Search for coupling to a new sector (like 

in the      case): J/�

_

(ii) Fine tuning solution => New states decay quickly to top pairs.

mKK & 1 TeV

Apart from mass, 
similar to ordinary
2-jet QCD process. 

(misb + µ + �̄µ

 Top (exp’) uniqueness, decay
• Tops decay after 10-24sec, can’t be “seen”.

• Above a TeV, due to collimation, top’s similar to light 
jet, efficiency &                                                                             
fake rate worsen. • Complicated final state, force 

experimentalists to understand their
detectors (commissioning tool).

Inclusive Search for              
Gluino/Squark 

SUSY 2010 Gianluca De Lorenzo, IFAE Barcelona 

6 

!!mSUGRA:  A0=0, �<0, tan�=5:    
scan gluino/squark masses via 
variation of M0 – M1/2 . 

!! 132 MC samples generated with 
ISASUGRA in PYTHIA Tune A. 

!! 5 squarks degenerate, stop 
production not considered.  

!! Rp conserved: final state with           
MET + jets. 

!! Jet multiplicity depends on              
gluino/squark masses. 

!! 3 analyses with MET + ! 2,3,4 jets final 
state for best sensitivity across the 
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•!!Single Top ~ Vtb
2  

Assume:  

a)!|Vts|,|Vtd| << |Vtb| (from top BR measure) 
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dark matter

dark
 matte

r

• Similar to new physics signals 
(especially when dark matter is involved).

Inclusive Search for              
Gluino/Squark 

SUSY 2010 Gianluca De Lorenzo, IFAE Barcelona 
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!!mSUGRA:  A0=0, �<0, tan�=5:    
scan gluino/squark masses via 
variation of M0 – M1/2 . 

!! 132 MC samples generated with 
ISASUGRA in PYTHIA Tune A. 

!! 5 squarks degenerate, stop 
production not considered.  

!! Rp conserved: final state with           
MET + jets. 

!! Jet multiplicity depends on              
gluino/squark masses. 

!! 3 analyses with MET + ! 2,3,4 jets final 
state for best sensitivity across the 
plane. 

 Top (exp’) uniqueness, decay

• Tops decay after 10-24sec, can’t be “seen”.

• Above a TeV, due to collimation, top’s similar to light 
jet, efficiency &                                                                             
fake rate worsen. 

• t -> 3 separated objects, often with missing E      .(�)
• Above a TeV, due to collimation, top’s similar to light 

jet, efficiency &                                                                             
fake rate worsen. 

Tevatron Combination and |Vtb| 

24 

•!!Single Top ~ Vtb
2  

Assume:  

a)!|Vts|,|Vtd| << |Vtb| (from top BR measure) 

b)!Pure (V-A) coupling 

PIC 2009 – Kobe, Japan Bernd Stelzer, Simon Fraser University 

•!Combination of CDF and D0 results 

Tevatron (3.2 fb-1): 

!s+t=2.76 +0.58 
-0.47 (stat+syst) pb 

Tevatron (3.2 fb-1) 

|Vtb|=0.91 ± 0.08 (stat+syst)  

!"#$$%&'(!

Thursday, November 25, 2010

• t -> 3 separated objects, often with missing E      .(�)
• Above a TeV, due to collimation, top’s similar to light 

jet, efficiency &                                                                             
fake rate worsen. 

Thursday, December 2, 2010

,

(iii) Since                     the outgoing tops are ultra-relativistic,  their 

products collimate => top jets.

mt ⌧ mKK

Agashe, Belyaev, Krupovnickas, GP & Virzi (06);
Lillie, Randall & Wang (07).

(misb + µ + �̄µ

The LHC: 1    pair      
the perfect place 
to probe FCNC 

top decays 

tt̄ s
−1

exp
−1

l

ν

t
W

Z

u, c

t

l

l

b

channel t → Zu(c) t → γu(c) t → gu(c)
(3 jets) (4 jets) (combined)

upper limit on BR (L = 10 fb−1) 3.4 × 10−4 6.6 × 10−5 1.7 × 10−3 2.5 × 10−3 1.4 × 10−3

upper limit on BR (L = 100 fb−1) 6.5 × 10−5 1.8 × 10−5 5.0 × 10−4 8.0 × 10−4 4.3 × 10−4

Table 7: The expected 95% confidence level limits on the FCNC top decays branching ratio in the absence
of signal hypothesis are shown. The results for a luminosity of L = 10 and 100 fb−1 are presented.

• top mass: The limits presented in the last subsection were evaluated using back-
ground and signal samples generated with mt = 175 GeV/c2. The effect of the
top mass uncertainty was evaluated using different Monte Carlo samples with mt =
170 GeV/c2 and mt = 180 GeV/c2. This systematic affects both the event kine-
matics (and consequently the discriminant variables shape) and the value of the tt̄
cross-section (used in the limits evaluation).

• σ(tt̄): The overall theoretical uncertainty on σ(tt̄) was estimated to be 12% [21].
This uncertainty was included by varing the tt̄SM cross-section used both in the tt̄SM

background normalization and in the BR limits evaluation.

• PDFs choice: The CTEQ 5L PDF set was used in the Monte Carlo generation. A
different PDF set (CTEQ 4M [15,16]) was used to estimate the effect of this choice
on the event kinematics.

• b-tag algorithm efficiency: As mentioned in section 2, the ATLFASTB package
was used to parametrize the b − tag efficiency. The NSET=2 flag (corresponding to
a b-tagging efficiency of 60%) was used. In order to study the impact of a different
choice, the NSET=1 (corresponding to a b-tagging efficiency of 50%) and NSET=3

(corresponding to a b-tagging efficiency of 70%) options were also used. This source
of uncertainty affects the signal efficiency, background estimation and discriminant
variable shapes.

• jet energy calibration: The impact of the knowledge of the absolute jet energy
scale was estimated by recalibrating the reconstructed jet energy. A miscalibration of
±1% for light jets and ±3% for b-jets was used. This uncertainty was found to have
a negligible effect on the signal efficiency, background estimation and discriminant
variable shapes.

• analysis stability: The stability of the sequential analysis was studied by changing
the preselection and final selection (typically a ±10% variation on the cut values was
considered).

• p.d.f. choice: The discriminant variables were computed using the probability
density function sets described in section 3. In order to estimate the effect of a
different p.d.f. set, the following changes were studied:

a) t → Zu(c) channel: the t̄ reconstruction was done by considering the jet closest
to the reconstructed Z in the invariant mass evaluation.

b) t → γu(c) channel: similarly to the t → Zu(c) channel, the t̄ mass reconstruction
was done using the jet closest to the leading γ. Moreover, the t mass was included
in the p.d.f. set and the multiplicity of jets with |η| < 2.5 was chosen as p.d.f.
(instead of the jet multiplicity).

8

(Carvalho, Castro, Onofre, Veloso 2005)

SM: BR ~ 10-14

Interesting region:
BR ~ 10-4 ÷10-8

Top sector observables

• Precision: look for anomalies in flavor 
couplings (10^3 improvement). 

• Search for coupling to a new sector (like 

in the      case): J/�

Boosted tops appears as 2 jets, top jets.

42



But what are jets??
Intuitive definition: spray of particles moving in the same 
direction.

More precise: Objects that describe differential energy 
flow that are sensitive to microscopic (perturbative) 
dynamics & insensitive to long distance (non-perturbative) 
physics.

Let us see an example. 
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Intro’: e+e� ! quarks

Far below the Z pole:

1 &CD AND E+E- ANNIHILATION 27 

where 

Xl(S) = K 
s(s - Ml) 

(s - kg)2 + I$bf; 

x2(5-) = kc2 
(s - At;)2 + rgf; 

K = yEas; 

Here GF is the Fermi constant, a is the electromagnetic coupling, Mr and Ts are 
the mass and total decay width of the Z boson respectively. The vector and axial 
couplings of the fermions to the Z are 

vf = Is/ - 2Q, sin2 Bw, af = 13f , WI 

with 131 = +i for f = Y, u, . and I3/ = -4 for f = e, d, The x2 term comes 
from the square of the Z-exchange amplitude and the x1 term from the photon-Z 
interference. At centre-of-mass scattering energies (,,6) far below the Z peak, the 
ratio s/i@ is small and so 1 > x1 > ~2. This means that the weak effects - 
manifest in the terms involving the vector and axial couplings - are small and can 
be neglected. Eq. (95) then reduces to 

da -= 
dcos0 %(1+ cos2,). 

Integrating over 0 gives the total cross section, 

(98) 

On the Z pole, ,I% = Ms, the ~2 term in (95) dominates and the corresponding 
(peak) cross section is 

00 = 12gK2 (UT + v,‘)($ + vj) 

We next introduce the ratio R of the the total e+e- hadronic cross section to the 
muon pair production cross section. As we have seen, the former is obtained at leading 
order simply by counting the possible qQ final states. Thus, at energies far below the 
Z pole, we have 

R = o(e+e- + hadrons) 
u(e+e- -t p+p-) 

=Cq4ef++qd =3CQ2, 
u(e+e- -* p+p-) ~ q (101) 

On the Z pole, the corresponding quantity is the ratio of the partial decay widths of 
the Z to hadrons and to muon pairs: 

c w + 4 Rz = rzz?+h$;:y = r(‘z ~ ~+~-) = 3~~(o; + v;) 
u; + v; . (102) 

1 &CD AND E+E- ANNIHILATION 27 

where 

Xl(S) = K 
s(s - Ml) 

(s - kg)2 + I$bf; 

x2(5-) = kc2 
(s - At;)2 + rgf; 

K = yEas; 

Here GF is the Fermi constant, a is the electromagnetic coupling, Mr and Ts are 
the mass and total decay width of the Z boson respectively. The vector and axial 
couplings of the fermions to the Z are 

vf = Is/ - 2Q, sin2 Bw, af = 13f , WI 

with 131 = +i for f = Y, u, . and I3/ = -4 for f = e, d, The x2 term comes 
from the square of the Z-exchange amplitude and the x1 term from the photon-Z 
interference. At centre-of-mass scattering energies (,,6) far below the Z peak, the 
ratio s/i@ is small and so 1 > x1 > ~2. This means that the weak effects - 
manifest in the terms involving the vector and axial couplings - are small and can 
be neglected. Eq. (95) then reduces to 

da -= 
dcos0 %(1+ cos2,). 

Integrating over 0 gives the total cross section, 

(98) 

On the Z pole, ,I% = Ms, the ~2 term in (95) dominates and the corresponding 
(peak) cross section is 

00 = 12gK2 (UT + v,‘)($ + vj) 

We next introduce the ratio R of the the total e+e- hadronic cross section to the 
muon pair production cross section. As we have seen, the former is obtained at leading 
order simply by counting the possible qQ final states. Thus, at energies far below the 
Z pole, we have 

R = o(e+e- + hadrons) 
u(e+e- -t p+p-) 

=Cq4ef++qd =3CQ2, 
u(e+e- -* p+p-) ~ q (101) 

On the Z pole, the corresponding quantity is the ratio of the partial decay widths of 
the Z to hadrons and to muon pairs: 

c w + 4 Rz = rzz?+h$;:y = r(‘z ~ ~+~-) = 3~~(o; + v;) 
u; + v; . (102) 

1 &CD AND E+E- ANNIHILATION 27 

where 

Xl(S) = K 
s(s - Ml) 

(s - kg)2 + I$bf; 

x2(5-) = kc2 
(s - At;)2 + rgf; 

K = yEas; 

Here GF is the Fermi constant, a is the electromagnetic coupling, Mr and Ts are 
the mass and total decay width of the Z boson respectively. The vector and axial 
couplings of the fermions to the Z are 

vf = Is/ - 2Q, sin2 Bw, af = 13f , WI 

with 131 = +i for f = Y, u, . and I3/ = -4 for f = e, d, The x2 term comes 
from the square of the Z-exchange amplitude and the x1 term from the photon-Z 
interference. At centre-of-mass scattering energies (,,6) far below the Z peak, the 
ratio s/i@ is small and so 1 > x1 > ~2. This means that the weak effects - 
manifest in the terms involving the vector and axial couplings - are small and can 
be neglected. Eq. (95) then reduces to 

da -= 
dcos0 %(1+ cos2,). 

Integrating over 0 gives the total cross section, 

(98) 

On the Z pole, ,I% = Ms, the ~2 term in (95) dominates and the corresponding 
(peak) cross section is 

00 = 12gK2 (UT + v,‘)($ + vj) 

We next introduce the ratio R of the the total e+e- hadronic cross section to the 
muon pair production cross section. As we have seen, the former is obtained at leading 
order simply by counting the possible qQ final states. Thus, at energies far below the 
Z pole, we have 

R = o(e+e- + hadrons) 
u(e+e- -t p+p-) 

=Cq4ef++qd =3CQ2, 
u(e+e- -* p+p-) ~ q (101) 

On the Z pole, the corresponding quantity is the ratio of the partial decay widths of 
the Z to hadrons and to muon pairs: 

c w + 4 Rz = rzz?+h$;:y = r(‘z ~ ~+~-) = 3~~(o; + v;) 
u; + v; . (102) 

1 &CD AND E+E- ANNIHILATION 27 

where 

Xl(S) = K 
s(s - Ml) 

(s - kg)2 + I$bf; 

x2(5-) = kc2 
(s - At;)2 + rgf; 

K = yEas; 

Here GF is the Fermi constant, a is the electromagnetic coupling, Mr and Ts are 
the mass and total decay width of the Z boson respectively. The vector and axial 
couplings of the fermions to the Z are 

vf = Is/ - 2Q, sin2 Bw, af = 13f , WI 

with 131 = +i for f = Y, u, . and I3/ = -4 for f = e, d, The x2 term comes 
from the square of the Z-exchange amplitude and the x1 term from the photon-Z 
interference. At centre-of-mass scattering energies (,,6) far below the Z peak, the 
ratio s/i@ is small and so 1 > x1 > ~2. This means that the weak effects - 
manifest in the terms involving the vector and axial couplings - are small and can 
be neglected. Eq. (95) then reduces to 

da -= 
dcos0 %(1+ cos2,). 

Integrating over 0 gives the total cross section, 

(98) 

On the Z pole, ,I% = Ms, the ~2 term in (95) dominates and the corresponding 
(peak) cross section is 

00 = 12gK2 (UT + v,‘)($ + vj) 

We next introduce the ratio R of the the total e+e- hadronic cross section to the 
muon pair production cross section. As we have seen, the former is obtained at leading 
order simply by counting the possible qQ final states. Thus, at energies far below the 
Z pole, we have 

R = o(e+e- + hadrons) 
u(e+e- -t p+p-) 

=Cq4ef++qd =3CQ2, 
u(e+e- -* p+p-) ~ q (101) 

On the Z pole, the corresponding quantity is the ratio of the partial decay widths of 
the Z to hadrons and to muon pairs: 

c w + 4 Rz = rzz?+h$;:y = r(‘z ~ ~+~-) = 3~~(o; + v;) 
u; + v; . (102) 

1 &CD AND E+E- ANNIHILATION 27 

where 

Xl(S) = K 
s(s - Ml) 

(s - kg)2 + I$bf; 

x2(5-) = kc2 
(s - At;)2 + rgf; 

K = yEas; 

Here GF is the Fermi constant, a is the electromagnetic coupling, Mr and Ts are 
the mass and total decay width of the Z boson respectively. The vector and axial 
couplings of the fermions to the Z are 

vf = Is/ - 2Q, sin2 Bw, af = 13f , WI 

with 131 = +i for f = Y, u, . and I3/ = -4 for f = e, d, The x2 term comes 
from the square of the Z-exchange amplitude and the x1 term from the photon-Z 
interference. At centre-of-mass scattering energies (,,6) far below the Z peak, the 
ratio s/i@ is small and so 1 > x1 > ~2. This means that the weak effects - 
manifest in the terms involving the vector and axial couplings - are small and can 
be neglected. Eq. (95) then reduces to 

da -= 
dcos0 %(1+ cos2,). 

Integrating over 0 gives the total cross section, 

(98) 

On the Z pole, ,I% = Ms, the ~2 term in (95) dominates and the corresponding 
(peak) cross section is 

00 = 12gK2 (UT + v,‘)($ + vj) 

We next introduce the ratio R of the the total e+e- hadronic cross section to the 
muon pair production cross section. As we have seen, the former is obtained at leading 
order simply by counting the possible qQ final states. Thus, at energies far below the 
Z pole, we have 

R = o(e+e- + hadrons) 
u(e+e- -t p+p-) 

=Cq4ef++qd =3CQ2, 
u(e+e- -* p+p-) ~ q (101) 

On the Z pole, the corresponding quantity is the ratio of the partial decay widths of 
the Z to hadrons and to muon pairs: 

c w + 4 Rz = rzz?+h$;:y = r(‘z ~ ~+~-) = 3~~(o; + v;) 
u; + v; . (102) 

44



1 &CD AND E+E- ANNIHILATION 

the proton and neutron as constituents yielding 

t = [(1)2 - (0)2] = 1 (5) 

So the measured decay rate is suigestive of the existence of three colours of fractionally 
charged quarks, but not conclusive. 

Y 
P e- P 

Y’ 
ITo 

/ 

-4L h il e’ g 
Y 
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Figure 1: (a) no decay. (b) e+e- annihilation to quarks 

Another test of the number of charged fundamental constituents is provided by 
the ratio of the e+e- hadronic total cross-section to the cross section for the produc- 
tion of a point-like object such as a muon pair. The virtual photon emitted by the 
annihilating electron and positron will excite all electrically charged constituent-anti- 
constituent pairs from the vacuum. Thus the contribution from the U, d and s quarks 
each of which occurs in three colours is 

.=3[ @+ (-;)2+ (-9’1 =2 (‘5) 

The experimental data are shown in Fig. 2. Below charm threshold they are in 
approximate agreement with Eq. (6). 

The existence of approximately point-like constituents inside a hadron was demon- 
strated by the classic electron deep inelastic scattering experiments performed at 
SLAC. The surprising result was that the measured structure functions did not fall 
off as the inelasticity of the reaction increased. Rather the structure functions had 
the property of scaling which was indicative of point-like structure inside the target 
nucleons. This gave rise to the ‘parton’ model, where the constituents of hadrons 
were identified with partons. The partons are now known to be the coloured quarks 
and gluons. 

The final step in this chain of argument was provided by the discovery of asymp- 
totic freedom. Before the discovery of asymptotic freedom the outstanding question 
was why quarks appeared to be free particles when probed by a deep inelastic photon. 
Since quarks vrere not observed as free entities they evidently had strong interactions 
which bound them together to form hadrons. The discovery of asymptotic freedom 
predicted that the coupling of quarks and gluons could be large at large distances 

For the 3 light quarks:

Intro’: e+e� ! quarks

1 &CD AND E+E- ANNIHILATION 5 

(I I It I 

1 ++++++t+++++t+t++++t++++++ 

R 

I 
2 1 0 

Figure 2: Compilation of values of R 

so as to confine quarks; at the same time the coupling was predicted to be small at 
short distances so that quarks behaved as free particles at asymptotic,energies. How- 
ever the approach to asymptotia is very slow - it is only logarithmic. At any finite 
energy there are calculable corrections to the free quark result which are unambigu- 
ous predictions of the theory. These lectures examine those predictions at collider 
energies. 

1.2.2 QCD Lagrangian 

We begin with a brief description of the QCD Lagrangian and the Feynman rules 
which can be derived from it. This is a practical guide which does little more than 
introduce notation and certainly does not do justice to the elegant structure of quan- 
tum field theory. For more details, the reader is referred to the standard texts [5,6,7]. 
Introductions to perturbative QCD can be found in refs.[8,9,10,11,12]. 

Just as in Quantum Electrodynamics, the perturbative calculation of any process 
requires the use of Feynman rules describing the interactions of quarks and gluons. 
The Feynman rules required for a perturbative analysis of QCD can be derived from 
an effective Lagrangian density which is given by 

’ = -iF,A,Fi’ + C qc~.(‘P - m)abqb + Lgauge-fixing + &host. 
fla”ours 

(7) 

This Lagrangian density describes the interaction of spin-h quarks of maSS m and 

Adding c, c + b yield R = 10/3, 11/3

Results seem always higher??
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Contribution from higher orders ...

Intro’:                         @ NLOe+e� ! quarks
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Figure 8: The total cross section as predicted by Eq. (95) and Eq. (99) 

These results are valid for massless quarks. 
With q = u ,..., b, Eq. (101) gives R = 11/3 = 3.67. From Fig. 2 one can see 

that at 4 = 34 GeV the measured value is about 3.9. Even allowing for the Z 
contribution (ARz N 0.05 at this energy), the measurement is some 5% higher than 
the lowest-order prediction. As we shall see, the difference is due to higher-order 
QCD corrections, and in fact the comparison between theory and experiment gives 
one of the most precise determinations of the strong coupling constant. 

The O(as) corrections to the total hadronic cross section are calculated from the 
real and virtual gluon diagrams shown in Fig. 9. For the former, 

e+(qd +e-(92) + 4424 + dP2) +9(k) (103) 

Fig. 9(b), it is convenient to write the three-body phase space integration as 

da3 = &da d CDS /3 dy dx, dx2 (104) 

where 0,/3,-y are Euler angles, and zr = 2E,J& and x2 = 2Eq/& are the energy 
fractions of the final state quark and antiquark. The matrix element is obtained using 
the Feynman rules. 

; FFzM = 8e4Q;CFg 21(41.P1)2 + (q2.p212 + (Pl.P2)2 + (q2.P,)2] 
p1.k p2.k q1.a 

(105) 
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a) 

Figure 9: Feynman diagrams for the O(crs) corrections to the total hadronic cross 
section in e+e- annihilation. 

where the sums are over spins and colours. Integrating out the Euler angles gives a 
matrix element which depends only on zi and zs, and the contribution to the total 
cross section is 

un@ = uo 3xQ; /dx,dxz + (1 -$$“tx2, 
P 

where the integration region is: 0 < .ri,xs 5 1, 11 + 2s 2 1. Unfortunately, we 
see that the integrals are divergent at xi = 1. Since 1 - xi = zsE,(l - coses,)/fi 
and 1 - xs = z,E,(l - cos6’,,)/&, where Eg is the gluon energy and Big the angles 
between the gluon and the quarks, we see that the singularities come from regions 
of phase space where the gluon is collinear with the quark or antiquark, .9;, + 0, or 
where the gluon is soft, Eg + 0. These singularities are not of course physical; they 
simply indicate a breakdown of the perturbative approach. ‘Quarks and gluons are 
never on-mass-shell particles, as this calculations assumes. When we encounter gluon 
energies and quark-gluon invariant masses which are of the same order as hadronic 
mass scales ( N 1 GeV or less) then we cannot ignore the effects of confinement. In the 
meantime, we can regard the singular behaviour on the boundaries of the phase-space 
plot at xi = 1 as indicating physics beyond perturbation theory. 

The key point is that we have not yet demonstrated that these ‘dangerous’ regions 
actually make an important contribution to the total cross section. The way to 
proceed is to introduce a temporary ‘regularization procedure’ for making the integrals 
finite, both for the real and virtual gluon diagrams, and then to see whether we can 
remove the regulator at the end of the calculation and obtain a finite result. Several 
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where the sums are over spins and colours. Integrating out the Euler angles gives a 
matrix element which depends only on zi and zs, and the contribution to the total 
cross section is 

un@ = uo 3xQ; /dx,dxz + (1 -$$“tx2, 
P 

where the integration region is: 0 < .ri,xs 5 1, 11 + 2s 2 1. Unfortunately, we 
see that the integrals are divergent at xi = 1. Since 1 - xi = zsE,(l - coses,)/fi 
and 1 - xs = z,E,(l - cos6’,,)/&, where Eg is the gluon energy and Big the angles 
between the gluon and the quarks, we see that the singularities come from regions 
of phase space where the gluon is collinear with the quark or antiquark, .9;, + 0, or 
where the gluon is soft, Eg + 0. These singularities are not of course physical; they 
simply indicate a breakdown of the perturbative approach. ‘Quarks and gluons are 
never on-mass-shell particles, as this calculations assumes. When we encounter gluon 
energies and quark-gluon invariant masses which are of the same order as hadronic 
mass scales ( N 1 GeV or less) then we cannot ignore the effects of confinement. In the 
meantime, we can regard the singular behaviour on the boundaries of the phase-space 
plot at xi = 1 as indicating physics beyond perturbation theory. 

The key point is that we have not yet demonstrated that these ‘dangerous’ regions 
actually make an important contribution to the total cross section. The way to 
proceed is to introduce a temporary ‘regularization procedure’ for making the integrals 
finite, both for the real and virtual gluon diagrams, and then to see whether we can 
remove the regulator at the end of the calculation and obtain a finite result. Several 
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where 

Xl(S) = K 
s(s - Ml) 

(s - kg)2 + I$bf; 

x2(5-) = kc2 
(s - At;)2 + rgf; 

K = yEas; 

Here GF is the Fermi constant, a is the electromagnetic coupling, Mr and Ts are 
the mass and total decay width of the Z boson respectively. The vector and axial 
couplings of the fermions to the Z are 

vf = Is/ - 2Q, sin2 Bw, af = 13f , WI 

with 131 = +i for f = Y, u, . and I3/ = -4 for f = e, d, The x2 term comes 
from the square of the Z-exchange amplitude and the x1 term from the photon-Z 
interference. At centre-of-mass scattering energies (,,6) far below the Z peak, the 
ratio s/i@ is small and so 1 > x1 > ~2. This means that the weak effects - 
manifest in the terms involving the vector and axial couplings - are small and can 
be neglected. Eq. (95) then reduces to 

da -= 
dcos0 %(1+ cos2,). 

Integrating over 0 gives the total cross section, 

(98) 

On the Z pole, ,I% = Ms, the ~2 term in (95) dominates and the corresponding 
(peak) cross section is 

00 = 12gK2 (UT + v,‘)($ + vj) 

We next introduce the ratio R of the the total e+e- hadronic cross section to the 
muon pair production cross section. As we have seen, the former is obtained at leading 
order simply by counting the possible qQ final states. Thus, at energies far below the 
Z pole, we have 

R = o(e+e- + hadrons) 
u(e+e- -t p+p-) 

=Cq4ef++qd =3CQ2, 
u(e+e- -* p+p-) ~ q (101) 

On the Z pole, the corresponding quantity is the ratio of the partial decay widths of 
the Z to hadrons and to muon pairs: 

c w + 4 Rz = rzz?+h$;:y = r(‘z ~ ~+~-) = 3~~(o; + v;) 
u; + v; . (102) 

CF = 4/3 
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Figure 8: The total cross section as predicted by Eq. (95) and Eq. (99) 

These results are valid for massless quarks. 
With q = u ,..., b, Eq. (101) gives R = 11/3 = 3.67. From Fig. 2 one can see 

that at 4 = 34 GeV the measured value is about 3.9. Even allowing for the Z 
contribution (ARz N 0.05 at this energy), the measurement is some 5% higher than 
the lowest-order prediction. As we shall see, the difference is due to higher-order 
QCD corrections, and in fact the comparison between theory and experiment gives 
one of the most precise determinations of the strong coupling constant. 

The O(as) corrections to the total hadronic cross section are calculated from the 
real and virtual gluon diagrams shown in Fig. 9. For the former, 

e+(qd +e-(92) + 4424 + dP2) +9(k) (103) 

Fig. 9(b), it is convenient to write the three-body phase space integration as 

da3 = &da d CDS /3 dy dx, dx2 (104) 

where 0,/3,-y are Euler angles, and zr = 2E,J& and x2 = 2Eq/& are the energy 
fractions of the final state quark and antiquark. The matrix element is obtained using 
the Feynman rules. 

; FFzM = 8e4Q;CFg 21(41.P1)2 + (q2.p212 + (Pl.P2)2 + (q2.P,)2] 
p1.k p2.k q1.a 

(105) 
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Figure 9: Feynman diagrams for the O(crs) corrections to the total hadronic cross 
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where the sums are over spins and colours. Integrating out the Euler angles gives a 
matrix element which depends only on zi and zs, and the contribution to the total 
cross section is 

un@ = uo 3xQ; /dx,dxz + (1 -$$“tx2, 
P 

where the integration region is: 0 < .ri,xs 5 1, 11 + 2s 2 1. Unfortunately, we 
see that the integrals are divergent at xi = 1. Since 1 - xi = zsE,(l - coses,)/fi 
and 1 - xs = z,E,(l - cos6’,,)/&, where Eg is the gluon energy and Big the angles 
between the gluon and the quarks, we see that the singularities come from regions 
of phase space where the gluon is collinear with the quark or antiquark, .9;, + 0, or 
where the gluon is soft, Eg + 0. These singularities are not of course physical; they 
simply indicate a breakdown of the perturbative approach. ‘Quarks and gluons are 
never on-mass-shell particles, as this calculations assumes. When we encounter gluon 
energies and quark-gluon invariant masses which are of the same order as hadronic 
mass scales ( N 1 GeV or less) then we cannot ignore the effects of confinement. In the 
meantime, we can regard the singular behaviour on the boundaries of the phase-space 
plot at xi = 1 as indicating physics beyond perturbation theory. 

The key point is that we have not yet demonstrated that these ‘dangerous’ regions 
actually make an important contribution to the total cross section. The way to 
proceed is to introduce a temporary ‘regularization procedure’ for making the integrals 
finite, both for the real and virtual gluon diagrams, and then to see whether we can 
remove the regulator at the end of the calculation and obtain a finite result. Several 
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simply indicate a breakdown of the perturbative approach. ‘Quarks and gluons are 
never on-mass-shell particles, as this calculations assumes. When we encounter gluon 
energies and quark-gluon invariant masses which are of the same order as hadronic 
mass scales ( N 1 GeV or less) then we cannot ignore the effects of confinement. In the 
meantime, we can regard the singular behaviour on the boundaries of the phase-space 
plot at xi = 1 as indicating physics beyond perturbation theory. 

The key point is that we have not yet demonstrated that these ‘dangerous’ regions 
actually make an important contribution to the total cross section. The way to 
proceed is to introduce a temporary ‘regularization procedure’ for making the integrals 
finite, both for the real and virtual gluon diagrams, and then to see whether we can 
remove the regulator at the end of the calculation and obtain a finite result. Several 
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CF = 4/3 

Question: are the x’s Lorentz invariant?
Show that s12 ⌘ m

2
12 = (p1 + p2)

2
= s(1� x3)
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Figure 9: Feynman diagrams for the O(crs) corrections to the total hadronic cross 
section in e+e- annihilation. 

where the sums are over spins and colours. Integrating out the Euler angles gives a 
matrix element which depends only on zi and zs, and the contribution to the total 
cross section is 

un@ = uo 3xQ; /dx,dxz + (1 -$$“tx2, 
P 

where the integration region is: 0 < .ri,xs 5 1, 11 + 2s 2 1. Unfortunately, we 
see that the integrals are divergent at xi = 1. Since 1 - xi = zsE,(l - coses,)/fi 
and 1 - xs = z,E,(l - cos6’,,)/&, where Eg is the gluon energy and Big the angles 
between the gluon and the quarks, we see that the singularities come from regions 
of phase space where the gluon is collinear with the quark or antiquark, .9;, + 0, or 
where the gluon is soft, Eg + 0. These singularities are not of course physical; they 
simply indicate a breakdown of the perturbative approach. ‘Quarks and gluons are 
never on-mass-shell particles, as this calculations assumes. When we encounter gluon 
energies and quark-gluon invariant masses which are of the same order as hadronic 
mass scales ( N 1 GeV or less) then we cannot ignore the effects of confinement. In the 
meantime, we can regard the singular behaviour on the boundaries of the phase-space 
plot at xi = 1 as indicating physics beyond perturbation theory. 

The key point is that we have not yet demonstrated that these ‘dangerous’ regions 
actually make an important contribution to the total cross section. The way to 
proceed is to introduce a temporary ‘regularization procedure’ for making the integrals 
finite, both for the real and virtual gluon diagrams, and then to see whether we can 
remove the regulator at the end of the calculation and obtain a finite result. Several 
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These singularities are not physical due to the IR hadronic 	

scale of QCD. However, the corresponding IR dynamics 	


cannot be described in perturbation theory.
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e+e� ! quarks :  regularization of the total Xsection

The above singularities actually don’t really affect the 
total Xsec’ if it’s appropriately regularized (various ways).	


We use Dim’ Reg’, it affects both phase space & Dirac 
matrix trace factors. 
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methods are suitable. We can give the gluon a small mass, or take the final state quark 
and antiquark off-mass-shell by a small amount (which one might argue had some 
physical relevance). With either of these procedures, the singularities are avoided, 
being manifest instead as logarithms of the regulating mass scale. 

A mathematically more elegant regularization procedure is to use dimensional 
regularization, with the number of space-time dimensions now d > 4. Here the 
method is being extended to real gluon emission in addition to loop diagrams. Going 
to d dimensions affects both the phase space and the traces of the Dirac matrices in 
the qqg cross section calculation. As a result, Eq. (106) becomes 

U@‘(E) = 00 “TQ; H(E) jdx,dxZ 2 x~l+-x~,~~~~~--x~~~~~~) (107) 

with E = $(4 - d), and 

3( 1 - 6)2 
H(E) = (3 - 2e)P(2 - 2E) = l+ O(E) 

With the three-body phase space integrals recast in d dimensions, the soft and 
collinear singularities are regulated, appearing instead as poles at d = 4. Performing 
the integrals in Eq. (107) gives 

ugqg(,) = u. 3c Q; F H(c) [$ +; +; + O(c)] (109) 
‘I 

The virtual gluon contribution can be calculated in a similar fashion, with dimen- 
sional regularization again used to control the infra-red divergences in the loops. The 
result is 

&g)(c) = o. 3x Q; 2 H(E) [-$ - 5 - 8 + O(e)] (110) 
P 

When the two contributions Eqs. (109) and (110) are added together, the poles exactly 
cancel and the result is finite in the limit E + 0: 

R = 3xQ; (l+?+O(o;)). 
P 

Note that the next-to-leading order correction is positive, and with a value for as of 
about 0.15, can accommodate the experimental measurement at fi = 34 GeV. In 
contrast, the corresponding correction is negative for a scalar gluon. 

The cancellation of the soft and collinear singularities between the real and virtual 
gluon diagrams is not accidental. Indeed, there are theorems - the Bloch, Nordsieck 
[23] and Kinoshita, Lee, Nauenberg [24] theorems - which state that suitably de- 
fined inclusive quantities will be free of singularities in the massless limit. The total 
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Figure 9: Feynman diagrams for the O(crs) corrections to the total hadronic cross 
section in e+e- annihilation. 

where the sums are over spins and colours. Integrating out the Euler angles gives a 
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un@ = uo 3xQ; /dx,dxz + (1 -$$“tx2, 
P 

where the integration region is: 0 < .ri,xs 5 1, 11 + 2s 2 1. Unfortunately, we 
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and 1 - xs = z,E,(l - cos6’,,)/&, where Eg is the gluon energy and Big the angles 
between the gluon and the quarks, we see that the singularities come from regions 
of phase space where the gluon is collinear with the quark or antiquark, .9;, + 0, or 
where the gluon is soft, Eg + 0. These singularities are not of course physical; they 
simply indicate a breakdown of the perturbative approach. ‘Quarks and gluons are 
never on-mass-shell particles, as this calculations assumes. When we encounter gluon 
energies and quark-gluon invariant masses which are of the same order as hadronic 
mass scales ( N 1 GeV or less) then we cannot ignore the effects of confinement. In the 
meantime, we can regard the singular behaviour on the boundaries of the phase-space 
plot at xi = 1 as indicating physics beyond perturbation theory. 

The key point is that we have not yet demonstrated that these ‘dangerous’ regions 
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Jets
The previous success, regarding the total rate, didn’t tell us anything 
about the distribution of energy flow / hadrons in the final state & 

how to linked it with the partonic Xsec':

LO -
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where 

Xl(S) = K 
s(s - Ml) 

(s - kg)2 + I$bf; 

x2(5-) = kc2 
(s - At;)2 + rgf; 

K = yEas; 

Here GF is the Fermi constant, a is the electromagnetic coupling, Mr and Ts are 
the mass and total decay width of the Z boson respectively. The vector and axial 
couplings of the fermions to the Z are 

vf = Is/ - 2Q, sin2 Bw, af = 13f , WI 

with 131 = +i for f = Y, u, . and I3/ = -4 for f = e, d, The x2 term comes 
from the square of the Z-exchange amplitude and the x1 term from the photon-Z 
interference. At centre-of-mass scattering energies (,,6) far below the Z peak, the 
ratio s/i@ is small and so 1 > x1 > ~2. This means that the weak effects - 
manifest in the terms involving the vector and axial couplings - are small and can 
be neglected. Eq. (95) then reduces to 

da -= 
dcos0 %(1+ cos2,). 

Integrating over 0 gives the total cross section, 

(98) 

On the Z pole, ,I% = Ms, the ~2 term in (95) dominates and the corresponding 
(peak) cross section is 

00 = 12gK2 (UT + v,‘)($ + vj) 

We next introduce the ratio R of the the total e+e- hadronic cross section to the 
muon pair production cross section. As we have seen, the former is obtained at leading 
order simply by counting the possible qQ final states. Thus, at energies far below the 
Z pole, we have 

R = o(e+e- + hadrons) 
u(e+e- -t p+p-) 

=Cq4ef++qd =3CQ2, 
u(e+e- -* p+p-) ~ q (101) 

On the Z pole, the corresponding quantity is the ratio of the partial decay widths of 
the Z to hadrons and to muon pairs: 

c w + 4 Rz = rzz?+h$;:y = r(‘z ~ ~+~-) = 3~~(o; + v;) 
u; + v; . (102) 
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to the emission of a gluon off the quark lines, each emission ‘costing’ a power of 
os c(: 1. However, this simple picture, although essentially correct, masks a much 
more complicated situation, which involves both perturbative and non-perturbative 
aspects of the theory. We will now attempt to construct a theory of jets based on the 
lowest orders in perturbation theory. 

We begin by considering the next-to-leading process efe- -t qqg. From the 
previous section (Eq. (106)), we have 

1 d% = &OS x: + x; - 
u dx,dxz 2r (1 - 5,)( 1 - 12) (119) 

Recall that this cross section becomes (infinitely) large when one or both of the ri 
approach 1, which corresponds to the gluon being collinear with one of the quarks, 
or soft (i.e. its energy is small compared to fi) respectively. If we again assume 
that quarks and gluons fragment collinearly into hadrons, then this preference for 
the gluon to be soft or collinear means that the two-jet-like structure of the lowest 
order is maintained at O(as). If, on the other hand, the gluon is required to be 
well-separated in phase space from the quarks - a configuration corresponding to a 
‘three-jet event’ - then the singular regions of the matrix element are avoided and 
the cross section is suppressed relative to lowest order by one power of os. In fact, 
this qualitative result holds to all orders of perturbation theory. The amplitudes for 
multiple gluon emission contain the same type of singularities as those which appear 
at first order, which leads to a final state which is predominantly ‘two-jet-like’, with 
a smaller probability (determined by as) for three or more distinguishable jets. 

To make all this more quantitative, we need to introduce the concept of a jet 
measure, i.e. a procedure for classifying a final state of hadrons (experimentally) or 
quarks and gluons (theoretically) according to the number of jets it contains. To be 
useful, a jet measure should give cross sections which, like the total cross section, are 
free of soft and collinear singularities when calculated in perturbation theory, and 
should also be relatively insensitive to the non-perturbative fragmentation of quarks 
and gluons into hadrons. 

One of the first attempts to define jet cross sections in perturbation theory was by 
Sterman and Weinberg (291. In their picture, a final state is classified as two-jet-like if 
all but a fraction e of the total available energy is contained in a pair of cones of half- 
angle 6. The two-jet cross section is then obtained by integrating the matrix elements 
for the various quark and gluon final states over the appropriate region of phase space 
determined by s and 6. At lowest order, the two-jet and total cross sections obviously 
coincide, for any values of the parameters. At O(as), the two-jet cross section is 
obtained by integrating the right-hand-side of Eq. (119) over the appropriate range 
of zi and zs. Fig. 11 shows the boundaries (solid lines) for the specific choice of 
parameters E = 0.3 and 6 = 30”. The two-jet region is the narrow band between these 
boundaries and the edges of the triangle. Note that.the 6 constraint corresponds to 
then curved portions of the boundary, while the E constraint gives the straight line 
segments at the corners. 

NLO -?? ??

We expect the fragmented hadrons to roughly follow the 
parton direction, as seen in data from the 50s in cosmic ray 

& then latter on consistently in many exp’.

Then the soft/collinear gluons events would still have 
energy flow of 2 outgoing partons - “2 jets” topology.

On the other hand a well separated Xtra gluon emission is 
suppressed & look like an Xtra energy flow source - “3 jets” 
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Cone Jets, IRC safety (Sterman-Weinberg, 77)

Need to find a definition of these object, calculable in 
perturbation theory & yield finite rates (IRC save).

Sterman Weinberg:

1 &CD AND E+E- ANNIHILATION 34 

to the emission of a gluon off the quark lines, each emission ‘costing’ a power of 
os c(: 1. However, this simple picture, although essentially correct, masks a much 
more complicated situation, which involves both perturbative and non-perturbative 
aspects of the theory. We will now attempt to construct a theory of jets based on the 
lowest orders in perturbation theory. 

We begin by considering the next-to-leading process efe- -t qqg. From the 
previous section (Eq. (106)), we have 

1 d% = &OS x: + x; - 
u dx,dxz 2r (1 - 5,)( 1 - 12) (119) 

Recall that this cross section becomes (infinitely) large when one or both of the ri 
approach 1, which corresponds to the gluon being collinear with one of the quarks, 
or soft (i.e. its energy is small compared to fi) respectively. If we again assume 
that quarks and gluons fragment collinearly into hadrons, then this preference for 
the gluon to be soft or collinear means that the two-jet-like structure of the lowest 
order is maintained at O(as). If, on the other hand, the gluon is required to be 
well-separated in phase space from the quarks - a configuration corresponding to a 
‘three-jet event’ - then the singular regions of the matrix element are avoided and 
the cross section is suppressed relative to lowest order by one power of os. In fact, 
this qualitative result holds to all orders of perturbation theory. The amplitudes for 
multiple gluon emission contain the same type of singularities as those which appear 
at first order, which leads to a final state which is predominantly ‘two-jet-like’, with 
a smaller probability (determined by as) for three or more distinguishable jets. 

To make all this more quantitative, we need to introduce the concept of a jet 
measure, i.e. a procedure for classifying a final state of hadrons (experimentally) or 
quarks and gluons (theoretically) according to the number of jets it contains. To be 
useful, a jet measure should give cross sections which, like the total cross section, are 
free of soft and collinear singularities when calculated in perturbation theory, and 
should also be relatively insensitive to the non-perturbative fragmentation of quarks 
and gluons into hadrons. 

One of the first attempts to define jet cross sections in perturbation theory was by 
Sterman and Weinberg (291. In their picture, a final state is classified as two-jet-like if 
all but a fraction e of the total available energy is contained in a pair of cones of half- 
angle 6. The two-jet cross section is then obtained by integrating the matrix elements 
for the various quark and gluon final states over the appropriate region of phase space 
determined by s and 6. At lowest order, the two-jet and total cross sections obviously 
coincide, for any values of the parameters. At O(as), the two-jet cross section is 
obtained by integrating the right-hand-side of Eq. (119) over the appropriate range 
of zi and zs. Fig. 11 shows the boundaries (solid lines) for the specific choice of 
parameters E = 0.3 and 6 = 30”. The two-jet region is the narrow band between these 
boundaries and the edges of the triangle. Note that.the 6 constraint corresponds to 
then curved portions of the boundary, while the E constraint gives the straight line 
segments at the corners. 

1 &CD AND E+E- ANNIHILATION 34 

to the emission of a gluon off the quark lines, each emission ‘costing’ a power of 
os c(: 1. However, this simple picture, although essentially correct, masks a much 
more complicated situation, which involves both perturbative and non-perturbative 
aspects of the theory. We will now attempt to construct a theory of jets based on the 
lowest orders in perturbation theory. 

We begin by considering the next-to-leading process efe- -t qqg. From the 
previous section (Eq. (106)), we have 

1 d% = &OS x: + x; - 
u dx,dxz 2r (1 - 5,)( 1 - 12) (119) 

Recall that this cross section becomes (infinitely) large when one or both of the ri 
approach 1, which corresponds to the gluon being collinear with one of the quarks, 
or soft (i.e. its energy is small compared to fi) respectively. If we again assume 
that quarks and gluons fragment collinearly into hadrons, then this preference for 
the gluon to be soft or collinear means that the two-jet-like structure of the lowest 
order is maintained at O(as). If, on the other hand, the gluon is required to be 
well-separated in phase space from the quarks - a configuration corresponding to a 
‘three-jet event’ - then the singular regions of the matrix element are avoided and 
the cross section is suppressed relative to lowest order by one power of os. In fact, 
this qualitative result holds to all orders of perturbation theory. The amplitudes for 
multiple gluon emission contain the same type of singularities as those which appear 
at first order, which leads to a final state which is predominantly ‘two-jet-like’, with 
a smaller probability (determined by as) for three or more distinguishable jets. 

To make all this more quantitative, we need to introduce the concept of a jet 
measure, i.e. a procedure for classifying a final state of hadrons (experimentally) or 
quarks and gluons (theoretically) according to the number of jets it contains. To be 
useful, a jet measure should give cross sections which, like the total cross section, are 
free of soft and collinear singularities when calculated in perturbation theory, and 
should also be relatively insensitive to the non-perturbative fragmentation of quarks 
and gluons into hadrons. 

One of the first attempts to define jet cross sections in perturbation theory was by 
Sterman and Weinberg (291. In their picture, a final state is classified as two-jet-like if 
all but a fraction e of the total available energy is contained in a pair of cones of half- 
angle 6. The two-jet cross section is then obtained by integrating the matrix elements 
for the various quark and gluon final states over the appropriate region of phase space 
determined by s and 6. At lowest order, the two-jet and total cross sections obviously 
coincide, for any values of the parameters. At O(as), the two-jet cross section is 
obtained by integrating the right-hand-side of Eq. (119) over the appropriate range 
of zi and zs. Fig. 11 shows the boundaries (solid lines) for the specific choice of 
parameters E = 0.3 and 6 = 30”. The two-jet region is the narrow band between these 
boundaries and the edges of the triangle. Note that.the 6 constraint corresponds to 
then curved portions of the boundary, while the E constraint gives the straight line 
segments at the corners. 

1 &CD AND E+E- ANNIHILATION 34 

to the emission of a gluon off the quark lines, each emission ‘costing’ a power of 
os c(: 1. However, this simple picture, although essentially correct, masks a much 
more complicated situation, which involves both perturbative and non-perturbative 
aspects of the theory. We will now attempt to construct a theory of jets based on the 
lowest orders in perturbation theory. 

We begin by considering the next-to-leading process efe- -t qqg. From the 
previous section (Eq. (106)), we have 

1 d% = &OS x: + x; - 
u dx,dxz 2r (1 - 5,)( 1 - 12) (119) 

Recall that this cross section becomes (infinitely) large when one or both of the ri 
approach 1, which corresponds to the gluon being collinear with one of the quarks, 
or soft (i.e. its energy is small compared to fi) respectively. If we again assume 
that quarks and gluons fragment collinearly into hadrons, then this preference for 
the gluon to be soft or collinear means that the two-jet-like structure of the lowest 
order is maintained at O(as). If, on the other hand, the gluon is required to be 
well-separated in phase space from the quarks - a configuration corresponding to a 
‘three-jet event’ - then the singular regions of the matrix element are avoided and 
the cross section is suppressed relative to lowest order by one power of os. In fact, 
this qualitative result holds to all orders of perturbation theory. The amplitudes for 
multiple gluon emission contain the same type of singularities as those which appear 
at first order, which leads to a final state which is predominantly ‘two-jet-like’, with 
a smaller probability (determined by as) for three or more distinguishable jets. 

To make all this more quantitative, we need to introduce the concept of a jet 
measure, i.e. a procedure for classifying a final state of hadrons (experimentally) or 
quarks and gluons (theoretically) according to the number of jets it contains. To be 
useful, a jet measure should give cross sections which, like the total cross section, are 
free of soft and collinear singularities when calculated in perturbation theory, and 
should also be relatively insensitive to the non-perturbative fragmentation of quarks 
and gluons into hadrons. 

One of the first attempts to define jet cross sections in perturbation theory was by 
Sterman and Weinberg (291. In their picture, a final state is classified as two-jet-like if 
all but a fraction e of the total available energy is contained in a pair of cones of half- 
angle 6. The two-jet cross section is then obtained by integrating the matrix elements 
for the various quark and gluon final states over the appropriate region of phase space 
determined by s and 6. At lowest order, the two-jet and total cross sections obviously 
coincide, for any values of the parameters. At O(as), the two-jet cross section is 
obtained by integrating the right-hand-side of Eq. (119) over the appropriate range 
of zi and zs. Fig. 11 shows the boundaries (solid lines) for the specific choice of 
parameters E = 0.3 and 6 = 30”. The two-jet region is the narrow band between these 
boundaries and the edges of the triangle. Note that.the 6 constraint corresponds to 
then curved portions of the boundary, while the E constraint gives the straight line 
segments at the corners. 

1 &CD AND E+E- ANNIHILATION 34 

to the emission of a gluon off the quark lines, each emission ‘costing’ a power of 
os c(: 1. However, this simple picture, although essentially correct, masks a much 
more complicated situation, which involves both perturbative and non-perturbative 
aspects of the theory. We will now attempt to construct a theory of jets based on the 
lowest orders in perturbation theory. 

We begin by considering the next-to-leading process efe- -t qqg. From the 
previous section (Eq. (106)), we have 

1 d% = &OS x: + x; - 
u dx,dxz 2r (1 - 5,)( 1 - 12) (119) 

Recall that this cross section becomes (infinitely) large when one or both of the ri 
approach 1, which corresponds to the gluon being collinear with one of the quarks, 
or soft (i.e. its energy is small compared to fi) respectively. If we again assume 
that quarks and gluons fragment collinearly into hadrons, then this preference for 
the gluon to be soft or collinear means that the two-jet-like structure of the lowest 
order is maintained at O(as). If, on the other hand, the gluon is required to be 
well-separated in phase space from the quarks - a configuration corresponding to a 
‘three-jet event’ - then the singular regions of the matrix element are avoided and 
the cross section is suppressed relative to lowest order by one power of os. In fact, 
this qualitative result holds to all orders of perturbation theory. The amplitudes for 
multiple gluon emission contain the same type of singularities as those which appear 
at first order, which leads to a final state which is predominantly ‘two-jet-like’, with 
a smaller probability (determined by as) for three or more distinguishable jets. 

To make all this more quantitative, we need to introduce the concept of a jet 
measure, i.e. a procedure for classifying a final state of hadrons (experimentally) or 
quarks and gluons (theoretically) according to the number of jets it contains. To be 
useful, a jet measure should give cross sections which, like the total cross section, are 
free of soft and collinear singularities when calculated in perturbation theory, and 
should also be relatively insensitive to the non-perturbative fragmentation of quarks 
and gluons into hadrons. 

One of the first attempts to define jet cross sections in perturbation theory was by 
Sterman and Weinberg (291. In their picture, a final state is classified as two-jet-like if 
all but a fraction e of the total available energy is contained in a pair of cones of half- 
angle 6. The two-jet cross section is then obtained by integrating the matrix elements 
for the various quark and gluon final states over the appropriate region of phase space 
determined by s and 6. At lowest order, the two-jet and total cross sections obviously 
coincide, for any values of the parameters. At O(as), the two-jet cross section is 
obtained by integrating the right-hand-side of Eq. (119) over the appropriate range 
of zi and zs. Fig. 11 shows the boundaries (solid lines) for the specific choice of 
parameters E = 0.3 and 6 = 30”. The two-jet region is the narrow band between these 
boundaries and the edges of the triangle. Note that.the 6 constraint corresponds to 
then curved portions of the boundary, while the E constraint gives the straight line 
segments at the corners. 

perturbation theory, we must thus check that we can go to the zero-mass limit. Once we can
identify a quantity with a finite zero-mass limit, and have traded zero mass back for high energy,
we have a situation that is perfect for QCD. We will be able to use (12) to pick the coupling
at the scale of the energy, and asymptotic freedom will ensure that as the energy scale grows,
the relevant coupling will decrease. Perturbative predictions will then improve with increasing
energy.

The classic analyses of Kinoshita and of Lee and Nauenberg [24] showed that total transition
rates remain finite in fully massless theories because the zero-mass limit does not violate unitarity
in perturbation theory. Infrared safe cross sections are generalizations of this analysis to less
inclusive observables. For QED, this can be done with an energy resolution; for QCD in the
zero-mass limit, this is not sufficient. For e+e− annihilation, however, we can identify infrared
safe quantities by introducing an additional resolution. The motivation is completely analogous to
the QED case. In the limit of zero quark mass, a quark of momentum p, p2 = 0 can emit an gluon
of momentum xp, 0 < x < 1, (xp)2 = 0 and remain on-shell, since the remaining momentum
(1 − x)p is still lightlike with positive energy. The resulting quark and gluon, however, are
exactly collinear in direction, and it is by no means clear how to resolve them, especially since
the emission, or its inverse, can take place at any time, even within a hypothetical detector. The
same would be true for a massless electron and collinear photon.

If we draw an analogy to the energy resolution of QED, we are naturally led to seek observables
with angular as well as energy resolutions for high energy QCD (or massless QED), as represented
in Fig. 7, where the cones show an angular range into which large energy flows, while the small
ball in the remaining directions represents an energy resolution. Without going into detail yet,

δ
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Figure 7: Cone jets for e+e− annihilation.

such cross sections are infrared safe, and depend only on the overall energy Q, the angular
resolution δ, and the energy resolution ϵQ, with ϵ a small but finite number. Because they are
physical quantities, the perturbative expansions for the corresponding cross sections satisfy Eq.
(12), and we can write

σjet (Q/µ, δ, ϵ, αs(µ)) = σjet (1, δ, ϵ, αs(Q))
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Rather than calculating the two-jet cross section directly, integrating the qqg 
matrix element (in d dimensions) over this region and adding the contribution from 
the virtual gluon diagrams, it is easier to use the fact that at this order o = os + as. 
The two-jet cross section can therefore be obtained by subtracting the three-jet cross 
section from the total cross section already obtained in Section 1.9. The advantage of 
this is that the calculation of us can be performed in 4 dimensions, since the matrix 
element singularities are outside the three-jet region at this order. Defining the two- 
and three-jet fractions3 by ji = ui/u (i = 2,3) we obtain4 

j2 = 1-8CFz{log; [Iog(&l)-:+3e] 

+~-~-e+~‘s+o(6slogc) , 
I 

f3 = 1 - fz . (120) 

Notice that when the parameters E and 6 are small, the O(cys) correction becomes 
logarithmically large. This is simply the vestige of the soft and collinear singularities. 
There are techniques for resumming terms involving as log6 to all orders in pertur- 
bation theory; when 6 is small this should improve on the first order result. On the 
other hand, as the parameters become large, the three-jet region in Fig. 11 shrinks 
and the three-jet fraction decreases, as expected. 

At higher orders in perturbation theory, we can have events with more than three 
jets. For example, the O(a$) qqqcj and qqgg production processes can give rise to 
two, three or four jet events, depending on the separation in phase space and en- 
ergy of the outgoing partons. It turns out that from an experimental and theoretical 
point of view, the Sterman-Weinberg jet definition based on cones is not well-suited 
to analysing multijet final states. One of the reasons is that fixed-angle cones give 
an inefficient ‘tiling’ of the phase-space 47r solid angle. For this reason, various alter- 
natives have been proposed, the most important of which is the ‘minimum invariant 
mass’ or JADE algorithm [30], which we shall now describe. 

Consider qcjg production at O(crs). A three-jet event is defined as one in which 
the minimum invariant msss of the parton pairs is larger than some fixed fraction y 
(sometimes called ycU,) of the overall centre-of-mass energy: 

min (pi +pj)* = min 2EiEj(l - COS0ij) > ys, i,j = q,q,s I (121) 

for msssless partons in the e+e- centre-of-mass frame. It is easily shown that this 
region of phase space avoids the soft and collinear singularities of the matrix element. 
In fact in terms of the energy fractions, Eq. (121) is equivalent to 

o<z1,1*<1-y. 21 + x2 > 1+ y. (122) 

‘The notation Ri is also used for jet fractions in the literature. 
‘We show here only those terms which are important when 6 is small. The full expression is 

rather unwieldy. 
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to the emission of a gluon off the quark lines, each emission ‘costing’ a power of 
os c(: 1. However, this simple picture, although essentially correct, masks a much 
more complicated situation, which involves both perturbative and non-perturbative 
aspects of the theory. We will now attempt to construct a theory of jets based on the 
lowest orders in perturbation theory. 

We begin by considering the next-to-leading process efe- -t qqg. From the 
previous section (Eq. (106)), we have 

1 d% = &OS x: + x; - 
u dx,dxz 2r (1 - 5,)( 1 - 12) (119) 

Recall that this cross section becomes (infinitely) large when one or both of the ri 
approach 1, which corresponds to the gluon being collinear with one of the quarks, 
or soft (i.e. its energy is small compared to fi) respectively. If we again assume 
that quarks and gluons fragment collinearly into hadrons, then this preference for 
the gluon to be soft or collinear means that the two-jet-like structure of the lowest 
order is maintained at O(as). If, on the other hand, the gluon is required to be 
well-separated in phase space from the quarks - a configuration corresponding to a 
‘three-jet event’ - then the singular regions of the matrix element are avoided and 
the cross section is suppressed relative to lowest order by one power of os. In fact, 
this qualitative result holds to all orders of perturbation theory. The amplitudes for 
multiple gluon emission contain the same type of singularities as those which appear 
at first order, which leads to a final state which is predominantly ‘two-jet-like’, with 
a smaller probability (determined by as) for three or more distinguishable jets. 

To make all this more quantitative, we need to introduce the concept of a jet 
measure, i.e. a procedure for classifying a final state of hadrons (experimentally) or 
quarks and gluons (theoretically) according to the number of jets it contains. To be 
useful, a jet measure should give cross sections which, like the total cross section, are 
free of soft and collinear singularities when calculated in perturbation theory, and 
should also be relatively insensitive to the non-perturbative fragmentation of quarks 
and gluons into hadrons. 

One of the first attempts to define jet cross sections in perturbation theory was by 
Sterman and Weinberg (291. In their picture, a final state is classified as two-jet-like if 
all but a fraction e of the total available energy is contained in a pair of cones of half- 
angle 6. The two-jet cross section is then obtained by integrating the matrix elements 
for the various quark and gluon final states over the appropriate region of phase space 
determined by s and 6. At lowest order, the two-jet and total cross sections obviously 
coincide, for any values of the parameters. At O(as), the two-jet cross section is 
obtained by integrating the right-hand-side of Eq. (119) over the appropriate range 
of zi and zs. Fig. 11 shows the boundaries (solid lines) for the specific choice of 
parameters E = 0.3 and 6 = 30”. The two-jet region is the narrow band between these 
boundaries and the edges of the triangle. Note that.the 6 constraint corresponds to 
then curved portions of the boundary, while the E constraint gives the straight line 
segments at the corners. 
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Rather than calculating the two-jet cross section directly, integrating the qqg 
matrix element (in d dimensions) over this region and adding the contribution from 
the virtual gluon diagrams, it is easier to use the fact that at this order o = os + as. 
The two-jet cross section can therefore be obtained by subtracting the three-jet cross 
section from the total cross section already obtained in Section 1.9. The advantage of 
this is that the calculation of us can be performed in 4 dimensions, since the matrix 
element singularities are outside the three-jet region at this order. Defining the two- 
and three-jet fractions3 by ji = ui/u (i = 2,3) we obtain4 

j2 = 1-8CFz{log; [Iog(&l)-:+3e] 

+~-~-e+~‘s+o(6slogc) , 
I 

f3 = 1 - fz . (120) 

Notice that when the parameters E and 6 are small, the O(cys) correction becomes 
logarithmically large. This is simply the vestige of the soft and collinear singularities. 
There are techniques for resumming terms involving as log6 to all orders in pertur- 
bation theory; when 6 is small this should improve on the first order result. On the 
other hand, as the parameters become large, the three-jet region in Fig. 11 shrinks 
and the three-jet fraction decreases, as expected. 

At higher orders in perturbation theory, we can have events with more than three 
jets. For example, the O(a$) qqqcj and qqgg production processes can give rise to 
two, three or four jet events, depending on the separation in phase space and en- 
ergy of the outgoing partons. It turns out that from an experimental and theoretical 
point of view, the Sterman-Weinberg jet definition based on cones is not well-suited 
to analysing multijet final states. One of the reasons is that fixed-angle cones give 
an inefficient ‘tiling’ of the phase-space 47r solid angle. For this reason, various alter- 
natives have been proposed, the most important of which is the ‘minimum invariant 
mass’ or JADE algorithm [30], which we shall now describe. 

Consider qcjg production at O(crs). A three-jet event is defined as one in which 
the minimum invariant msss of the parton pairs is larger than some fixed fraction y 
(sometimes called ycU,) of the overall centre-of-mass energy: 

min (pi +pj)* = min 2EiEj(l - COS0ij) > ys, i,j = q,q,s I (121) 

for msssless partons in the e+e- centre-of-mass frame. It is easily shown that this 
region of phase space avoids the soft and collinear singularities of the matrix element. 
In fact in terms of the energy fractions, Eq. (121) is equivalent to 

o<z1,1*<1-y. 21 + x2 > 1+ y. (122) 

‘The notation Ri is also used for jet fractions in the literature. 
‘We show here only those terms which are important when 6 is small. The full expression is 

rather unwieldy. 
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to the emission of a gluon off the quark lines, each emission ‘costing’ a power of 
os c(: 1. However, this simple picture, although essentially correct, masks a much 
more complicated situation, which involves both perturbative and non-perturbative 
aspects of the theory. We will now attempt to construct a theory of jets based on the 
lowest orders in perturbation theory. 

We begin by considering the next-to-leading process efe- -t qqg. From the 
previous section (Eq. (106)), we have 
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that quarks and gluons fragment collinearly into hadrons, then this preference for 
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order is maintained at O(as). If, on the other hand, the gluon is required to be 
well-separated in phase space from the quarks - a configuration corresponding to a 
‘three-jet event’ - then the singular regions of the matrix element are avoided and 
the cross section is suppressed relative to lowest order by one power of os. In fact, 
this qualitative result holds to all orders of perturbation theory. The amplitudes for 
multiple gluon emission contain the same type of singularities as those which appear 
at first order, which leads to a final state which is predominantly ‘two-jet-like’, with 
a smaller probability (determined by as) for three or more distinguishable jets. 

To make all this more quantitative, we need to introduce the concept of a jet 
measure, i.e. a procedure for classifying a final state of hadrons (experimentally) or 
quarks and gluons (theoretically) according to the number of jets it contains. To be 
useful, a jet measure should give cross sections which, like the total cross section, are 
free of soft and collinear singularities when calculated in perturbation theory, and 
should also be relatively insensitive to the non-perturbative fragmentation of quarks 
and gluons into hadrons. 

One of the first attempts to define jet cross sections in perturbation theory was by 
Sterman and Weinberg (291. In their picture, a final state is classified as two-jet-like if 
all but a fraction e of the total available energy is contained in a pair of cones of half- 
angle 6. The two-jet cross section is then obtained by integrating the matrix elements 
for the various quark and gluon final states over the appropriate region of phase space 
determined by s and 6. At lowest order, the two-jet and total cross sections obviously 
coincide, for any values of the parameters. At O(as), the two-jet cross section is 
obtained by integrating the right-hand-side of Eq. (119) over the appropriate range 
of zi and zs. Fig. 11 shows the boundaries (solid lines) for the specific choice of 
parameters E = 0.3 and 6 = 30”. The two-jet region is the narrow band between these 
boundaries and the edges of the triangle. Note that.the 6 constraint corresponds to 
then curved portions of the boundary, while the E constraint gives the straight line 
segments at the corners. 
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lowest orders in perturbation theory. 

We begin by considering the next-to-leading process efe- -t qqg. From the 
previous section (Eq. (106)), we have 

1 d% = &OS x: + x; - 
u dx,dxz 2r (1 - 5,)( 1 - 12) (119) 

Recall that this cross section becomes (infinitely) large when one or both of the ri 
approach 1, which corresponds to the gluon being collinear with one of the quarks, 
or soft (i.e. its energy is small compared to fi) respectively. If we again assume 
that quarks and gluons fragment collinearly into hadrons, then this preference for 
the gluon to be soft or collinear means that the two-jet-like structure of the lowest 
order is maintained at O(as). If, on the other hand, the gluon is required to be 
well-separated in phase space from the quarks - a configuration corresponding to a 
‘three-jet event’ - then the singular regions of the matrix element are avoided and 
the cross section is suppressed relative to lowest order by one power of os. In fact, 
this qualitative result holds to all orders of perturbation theory. The amplitudes for 
multiple gluon emission contain the same type of singularities as those which appear 
at first order, which leads to a final state which is predominantly ‘two-jet-like’, with 
a smaller probability (determined by as) for three or more distinguishable jets. 

To make all this more quantitative, we need to introduce the concept of a jet 
measure, i.e. a procedure for classifying a final state of hadrons (experimentally) or 
quarks and gluons (theoretically) according to the number of jets it contains. To be 
useful, a jet measure should give cross sections which, like the total cross section, are 
free of soft and collinear singularities when calculated in perturbation theory, and 
should also be relatively insensitive to the non-perturbative fragmentation of quarks 
and gluons into hadrons. 

One of the first attempts to define jet cross sections in perturbation theory was by 
Sterman and Weinberg (291. In their picture, a final state is classified as two-jet-like if 
all but a fraction e of the total available energy is contained in a pair of cones of half- 
angle 6. The two-jet cross section is then obtained by integrating the matrix elements 
for the various quark and gluon final states over the appropriate region of phase space 
determined by s and 6. At lowest order, the two-jet and total cross sections obviously 
coincide, for any values of the parameters. At O(as), the two-jet cross section is 
obtained by integrating the right-hand-side of Eq. (119) over the appropriate range 
of zi and zs. Fig. 11 shows the boundaries (solid lines) for the specific choice of 
parameters E = 0.3 and 6 = 30”. The two-jet region is the narrow band between these 
boundaries and the edges of the triangle. Note that.the 6 constraint corresponds to 
then curved portions of the boundary, while the E constraint gives the straight line 
segments at the corners. 
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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Rather than calculating the two-jet cross section directly, integrating the qqg 
matrix element (in d dimensions) over this region and adding the contribution from 
the virtual gluon diagrams, it is easier to use the fact that at this order o = os + as. 
The two-jet cross section can therefore be obtained by subtracting the three-jet cross 
section from the total cross section already obtained in Section 1.9. The advantage of 
this is that the calculation of us can be performed in 4 dimensions, since the matrix 
element singularities are outside the three-jet region at this order. Defining the two- 
and three-jet fractions3 by ji = ui/u (i = 2,3) we obtain4 

j2 = 1-8CFz{log; [Iog(&l)-:+3e] 

+~-~-e+~‘s+o(6slogc) , 
I 

f3 = 1 - fz . (120) 

Notice that when the parameters E and 6 are small, the O(cys) correction becomes 
logarithmically large. This is simply the vestige of the soft and collinear singularities. 
There are techniques for resumming terms involving as log6 to all orders in pertur- 
bation theory; when 6 is small this should improve on the first order result. On the 
other hand, as the parameters become large, the three-jet region in Fig. 11 shrinks 
and the three-jet fraction decreases, as expected. 

At higher orders in perturbation theory, we can have events with more than three 
jets. For example, the O(a$) qqqcj and qqgg production processes can give rise to 
two, three or four jet events, depending on the separation in phase space and en- 
ergy of the outgoing partons. It turns out that from an experimental and theoretical 
point of view, the Sterman-Weinberg jet definition based on cones is not well-suited 
to analysing multijet final states. One of the reasons is that fixed-angle cones give 
an inefficient ‘tiling’ of the phase-space 47r solid angle. For this reason, various alter- 
natives have been proposed, the most important of which is the ‘minimum invariant 
mass’ or JADE algorithm [30], which we shall now describe. 

Consider qcjg production at O(crs). A three-jet event is defined as one in which 
the minimum invariant msss of the parton pairs is larger than some fixed fraction y 
(sometimes called ycU,) of the overall centre-of-mass energy: 

min (pi +pj)* = min 2EiEj(l - COS0ij) > ys, i,j = q,q,s I (121) 

for msssless partons in the e+e- centre-of-mass frame. It is easily shown that this 
region of phase space avoids the soft and collinear singularities of the matrix element. 
In fact in terms of the energy fractions, Eq. (121) is equivalent to 

o<z1,1*<1-y. 21 + x2 > 1+ y. (122) 

‘The notation Ri is also used for jet fractions in the literature. 
‘We show here only those terms which are important when 6 is small. The full expression is 

rather unwieldy. 
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and three-jet fractions3 by ji = ui/u (i = 2,3) we obtain4 
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Cones in hadron colliders

Sterman-Weinberg cones give inefficient ‘tiling’ of the phase-space 4pi 
solid angle. 
!
Similarly for hadronic machine one needs to use different E threshold 
and not COM. 
!
And, also non trivial to implement in practice, “where to place the 
cone?” And, “how to deal with overlaps?”. Thus, alternatives were 
constructed. 
!
One needs to find way to cluster partons (energy) in an IR safe manner.
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Summary 
LHC opens a new era: colliders energy > electroweak (EW) 
scale.	

!
Probing the mechanism of EW symmetry breaking.	

!
New phenomena is kinematically allowed a shot of looking	

at new physics related to naturalness.	

!
Calculation at the LHC are challenging due to nature of 
incoming composite particles.	

!
Yet simple concepts as parton luminosities & understanding 
kinematics & jets allow for semi-quantitative control.	
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