

SM single top experimental overview at ATLAS and CMS.

Carolina Gabaldon

LPSC, Université Grenoble-Alpes, CNRS/IN2P3

top LHC-France Lyon 7-8/04/2014

Top quark electroweak production at LHC

t-channel $\sim 1/3 \, \sigma_{t\bar{t}}$

- Observed at Tevatron (2009), then at LHC (2011).
- Cross-section and $|V_{tb}|$ measurements:
 - 7 TeV: Phys. Lett B 717 (2012) 330 (ATLAS); JHEP 12 (2012) 035 (CMS)
 - 8 TeV: ATLAS-CONF-2014-007; arXiv:1403.7366 (CMS-TOP-12-038)
 - LHC combination at 8 TeV: CMS-PAS-TOP-12-002 ; ATLAS-CONF-2013-098 \rightarrow Contribution from LPC Clermont-Fd
- Charge ratio: ATLAS-CONF-2012-056 @ 7 TeV; CMS-PAS-TOP-12-038 @ 8 TeV
- Top polarisation: CMS-PAS-TOP-13-001 @ 8 TeV; ATLAS no public results yet
- → Contribution from LPSC Grenoble

- First evidence at LHC (2011).
- Cross-section and $|V_{tb}|$ measurements:
- → Contribution from LPSC Grenoble
 - 7 TeV: Phys. Lett B 716 (2012) 142 (ATLAS); Phys. Rev. Lett 110 (2013) 022003 (CMS).
 - 8 TeV: ATLAS-CONF-2013-100; arxiv:1401.2942 (CMS-TOP-12-040)

s-channel

- Challenge → smallest cross-section.
- Observation at Tevatron in 2014
- Cross-section and V_{th} limits at LHC:
 - 7 TeV: ATLAS-CONF-2011-118:
 - 8 TeV: CMS-PAS-TOP-13-009; ATLAS no public results vet. → Contribution from LPSC Grenoble

Approx. NNLO

\sqrt{s}	σ (t-channel)	σ (Wt)	σ (s-channel)
7 TeV	$64.6 \pm 2.4 \text{ pb}$	$15.7 \pm 1.1 \mathrm{pb}$	$4.6 \pm 0.2 \mathrm{pb}$
8 TeV	$87.8 \pm 3.4 \mathrm{pb}$	$22.4 \pm 1.5 \mathrm{pb}$	$5.6 \pm 0.2 \mathrm{pb}$

Single top quark production summary

Summary of measurements of the single top-quark cross-section compared to the corresponding theoretical expectation:

- All measurements are in agreement with approx. NNLO calculations
- Present here the LATEST cross-section results at 8 TeV

t-channel

ATLAS; t-channel @ 8 TeV: analysis strategy

 Analysed data corresponding to 20.3 fb⁻¹ (ATLAS-CONF-2014-007)

Selection:

- Require exactly one isolated lepton (e/μ) with $p_T > 25 \text{ GeV}$
- Two jets with |η| < 4.5 and p_T > 30 GeV and exactly one b-tagged jet
- $E_T^{miss} > 30 \text{ GeV}, m_T(W) > 50 \text{ GeV}$

Main backgrounds:

- W+jets, top pairs derived using theoretical cross-sections.
- ightharpoonup multijet determined from data with a template fit to E_T^{miss} .

Analysis:

- For signal/background discrimination combine several kinematic variables into one discriminant by using a Neural Network (NN) technique.
- Three kinematic regions are defined:
 - Signal region (SR) with 1 b-tag jet.
 - W-boson control region (W CR) with 1 b-tag jet with a less stringent btagging requirement.
- $t\bar{t}$ control region ($t\bar{t}$ CR) with 2 b-tag jets.
- 14 highest-ranking variables are chosen in the signal & control regions.

ATLAS; t-channel @ 8 TeV: results

▶ The fiducial t-channel cross-section within detector acceptance is measured from the maximum likelihood fit to the NN output distributions:

$$\sigma_{\textit{fid}} = 3.37 \pm 0.05 \text{ (stat.)} \pm 0.47 \text{ (syst.)} \pm 0.09 \text{ (lumi) pb (17\% syst.)}$$

The t-channel cross-section is determined by extrapolation to the entire phase space using several generator assumptions:

 $\sigma = \frac{1}{\epsilon_{fid}} \cdot \sigma_{fid}$, with ϵ_{fid} is the selection efficiency of the particle-level selection.

$$\sigma_{t-\it{channel}} =$$
 82.6 \pm 1.2 (stat.) \pm 11.4 (syst.) \pm 3.1 (PDF) \pm 2.3 (lumi.) pb (20% syst.)

Main systematics: Jet energy scale (7.9%) and t-channel generator (7.9%).

CMS; t-channel @ 8 TeV: analysis strategy

 Analysed data corresponding to 19.7 fb⁻¹ (arXiv:1403.7366v1)

Selection:

- Require exactly one isolated lepton, e/μ , with $p_T > 30 \text{ GeV}/p_T > 26 \text{ GeV}$
- Jets with |η| < 4.5 and E_T > 40 GeV and exactly one b-tagged jet.

Main backgrounds:

Mulijet, W+jets & top pairs.

Analysis:

- Used the $|\eta_{j'}|$ (pseudorapidity of the outgoing jet) to isolated the signal from background.
 - Signal events concentrated in forward regions of the $|\eta_{ii'}|$ spectrum.
- A top-quark candidate is reconstructed in several categories:
 - Enriched signal region (SR) with 2-jet, 1 b-tag jet.
 - ▶ 2-jet, 0 b-tag control region to estimate W+jets.
 - 3-jet, 1 b-tag & 3-jet, 2 b-tag control regions to estimate tt.

CMS; t-channel @ 8 TeV: results

A maximum-likelihood fit to the $|\eta_{j'}|$ is performed to extract the *t*-channel cross-section:

$$\sigma_{t-\textit{channel}} = 83.6 \pm 2.3 \; (ext{stat.}) \pm 7.4 \; (ext{syst.}) \; ext{pb} \; (9\% \; ext{syst.})$$

▶ Ratio of *t*-channel production cross-sections at 8 & 7 TeV (JHEP 12 (2012) 035):

$$R_{8/7} = 1.24 \pm 0.08 \, (stat.) \pm 0.12 \, (syst.) \, pb$$

Main systematics: *t*-channel generator (\sim 6%) and Jet energy scale (\sim 4%).

CMS & ATLAS; Charge ratio

- Inside proton: $2 \times u$ -quark density than d-quark.
- Measurements of $\sigma_t(t)$ & $\sigma_t(\bar{t})$ are sensitive to the PDFs of the u-quark & d-quark.

ATLAS at 7 TeV (ATLAS-CONF-2012-056)

Binned max. likelihood fit to NN distribution in 2-& 3-jet bins.

$$\sigma_t(t) = 53.2 \pm 1.7 \text{ (stat.)} \pm 10.6 \text{ (syst.) pb}$$

 $\sigma_t(t) = 29.5 \pm 1.5 \text{ (stat.)} \pm 7.3 \text{ (syst.) pb}$
 $R_t = 1.81 \pm 0.10 \text{ (stat.)}_{-0.20}^{+0.21} \text{ (syst.)}$

CMS at 8 TeV (arXiv:1403.7366v1)

▶ Binned max. likelihood fit to $|\eta_{j'}|$ distributions in 2-jet 1-tag bins.

$$\sigma_t(t) = 53.8 \pm 1.5 \text{ (stat.)} \pm 4.4 \text{ (syst.)} \text{ pb}$$

 $\sigma_t(t) = 27.6 \pm 1.3 \text{ (stat.)} \pm 3.7 \text{ (syst.)} \text{ pb}$
 $R_t = 1.95 \pm 0.10 \text{ (stat.)} \pm 0.19 \text{ (syst.)}$

CMS; W boson/ top quark polarisation @ 8 TeV

- Analysed data corresponding to 20 fb⁻¹ (CMS-PAS-TOP-13-001)
- The t-channel data sample is large enough to study the differential cross-section distributions.

Motivation:

- To probe anomalous couplings in Wtb vertex.
- The SM coupling $V_{tb} \sim 1$.

Analysis:

- Study single-top polarisation in the *t*-channel by the slope of the $cos\theta^*$.
 - θ^* : angle between the lepton in W rest frame and the untagged jet in the reconstructed top rest frame.
- To remove detector effects → regularised unfolding of cosθ* distribution, after selection based on BDT discriminant.

Results:

$$A_l \equiv \frac{1}{2} \cdot P_t \cdot \alpha_l = \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N_\perp}$$

- Top spin asymmetry:
 - $A_l = 0.41 \pm 0.06 \text{ (stat.)} \pm 0.16 \text{ (syst.)}.$
- Top polarization: $P_1 = 0.82 \pm 0.12 \text{ (stat.)} \pm 0.32 \text{ (syst.)}$

Wt channel

ATLAS; Wt channel @ 8 TeV: analysis strategy

 Analysed data corresponding to 20.3 fb⁻¹ (ATLAS-CONF-2012-100)

Selection:

- Require two opposite sign leptons (only $e\mu$) with $p_T > 25 \text{ GeV}$
- One or two central jets with $p_T > 30 \text{ GeV}$ and at least one *b*-tagged jet
- The main background is the top pair production simulated with POWHEG

Analysis:

- To separate the Wt signal from the large tt
 background a multivariate method called
 BDT is used.
- 19 highest-ranking variables are chosen in the signal region (exactly 1 b-tag) and 20 for the control region (at least 1 b-tag)

ATLAS; Wt channel @ 8 TeV: cross-section

1-jet signal region; $S/B \sim 0.16$; 80% top-pair

2-jet control region; $S/B \sim 0.05$; 90% top-pair

- The Wt cross-section is measured from a maximum likelihood fit to BDT classifier.
 - lacktriangle The 2-jets control region constrains the $t\bar{t}$ background uncertainties
 - The impact of systematic uncertainties is evaluated using ensembles of pseudo-experiments
 - Few systematics are profiled in the fit to data: b-tag, JES detector modelling component, E_T^{miss} scale contributions

$$\sigma_{Wt}=27.2\pm2.8~{\rm (stat.)}\pm5.4~{\rm (syst.)}~{\rm pb}~{\rm (19\%~syst.)}$$
 Significance: 4.2 σ (4.0 σ exp.)

Consistent with SM expectation at 8 TeV: $\sigma_{Wt} = 22.2 \pm 0.6 \pm 1.4 \text{ pb}$

Main **Systematics**: generator & PS modelling (\sim 8%), *b*-tagging (\sim 9%) and JES

ATLAS: Wt channel @ 8 TeV: BG-subtracted BDT

- > Subtracted the background prediction from the data to check the robustness of our analysis.
 - Data points follow the *Wt* signal prediction (blue distribution)
 - Wt signal is clearly visible
 - The systematic uncertainties affect the lower part of the 1-jet bin distribution

CMS; Wt channel @ 8 TeV: analysis strategy

 Analysed data corresponding to 12.2 fb⁻¹ (arXiv:1401.2942v1)

Selection:

- Require two opposite sign leptons (*ee*, $\mu\mu$, $e\mu$) with $p_T > 20 \text{ GeV}$
- One or two central loose jets with p_T > 30 GeV and at least one b-tagged jet.
- For ee & $\mu\mu$: m_{\parallel} < 81 GeV or m_{\parallel} > 101 GeV and E_T^{miss} > 50 GeV.
- The main background is the top pair production simulated with MADGRAPH.

Analysis:

- ▶ To separate the Wt signal from the large tt̄ background BDT is also used.
- Three regions are defined:
 - Signal region with 1-jet b-tagged (1j1t).
 - Two control regions enriched in $t\bar{t}$: 2 jets with either one (2j1t) or both *b*-tagged (2j2t).
- 13 highest-ranking variables are chosen as inputs to the training of the BDT.

CMS: Wt channel @ 8 TeV: cross-section

1-jet signal region:

2-jet 1 b-tagged control region;

2-jet 2 b-tagged control region;

- The Wt cross-section is measured from a simultaneous binned likelihood fit to the rate and shape of the BDT distributions.
 - The 2-jets control regions constrain the $t\bar{t}$ background uncertainties

$$\sigma_{\mathit{Wt}} = 23.4 \pm 5.4 \ \mathrm{pb} \ (23\% \ \mathrm{syst.} \)$$
 Significance: $6.1\sigma \ (5.4\sigma \ \mathrm{exp.})$

OBSERVATION of the Wt channel

Consistent with SM expectation at 8 TeV: $\sigma_{Wt} = 22.2 \pm 0.6 \pm 1.4 \text{ pb}$

Main **Systematics**:

ME/PS matching (\sim 14%), renormalization/factorization scale (\sim 12%) and JES

s-channel

CMS; s-channel @ 8 TeV

 Analysed data corresponding to 19.3 fb⁻¹ (CMS-PAS-TOP-13-009)

Selection:

- semileptonic channel.
- The main background is the top pair production simulated with MADGRAPH.

Analysis:

- BDT are used to separate s-channel signal from backgrounds.
- Two regions are defined:
 - Signal region with 2-jet 2 b-tagged.
 - Control region enriched in $t\bar{t}$ with 3-jet 2 b-tagged
- 10 highest-ranking variables are chosen as inputs to the training of the BDT.

Results

Upper limit: $\sigma_{s-channel} < 11.5 = 2.1 \times \sigma^{SM}, 95\%CL$ Assuming SM signal: $\sigma_{s-channel} = 6.2^{8.0}_{-5.1}$ pb (68% FC internal) Sensitivity still very limited mainly by theory systematics: 0.9σ exp (0.7 σ obs).

ATLAS & CMS combination

ATLAS & CMS: Combination of cross-section measurements.

- CMS & ATLAS starting to combine their results within the TOPLHCWG.
 - Understand the different analysis strategies and systematic determination approaches.
 - Blue method is used to extract the final result.
 - 1st single top combination: preliminary results at 8 TeV for the t-channel cross-section measurements (CMS-PAS-TOP-12-002; ATLAS-CONF-2013-098).
 - Work in progress:
 - \blacktriangleright t-channel cross-section measurements at 8 TeV with \sim 20 fb⁻¹ luminosity.
 - Wt cross-section measurements at 8 TeV.

$|V_{tb}|$ measurements: t & Wt channel

- **)** Direct determination of the quark mixing matrix element $|V_{tb}|$:
 - Opportunity to test the unitarity of the CKM matrix.
 - Deviations from the SM are potentially sensitive to new physics.
- Measure of $|V_{tb}|$ assuming left-handed SM-like W-t-b coupling and $|V_{tb}| >> |V_{ts}|, |V_{td}|$:

$$|V_{tb} \cdot f|^2 = \frac{\sigma^{obs.}}{\sigma^{theory}}$$

with f = 1 in SM

- ▶ Independent of N_{quark} generations or CKM unitarity
- g company by the property of t
- Summary of the $|V_{tb}|$ measurements in the *t*-channel and Wt:

A	ATLAS		CMS		
t-channel	Wt channel		t-channel	Wt channel	
7 TeV 1.13 ^{+0.14} _{-0.13} (11.9%)	1.03 ^{+0.16} _{-0.19} (17.0%)		1.02 ± 0.05 (4.8%)	1.01 ^{+0.16} _{-0.14} (14.8%)	
8 TeV 0.97 ^{+0.09} _{-0.10} (9.8%)	1.10 ± 0.12 (11.2%)		0.98 ± 0.05 (4.9%)	1.03 ± 0.13 (12.3%)	

Conclusions & Prospects

- We have learned a lot about the single top quark recently:
 - CMS & ATLAS experiments measured the cross-section and |V_{tb}| for t-channel and Wt channel with good precision.
 - CMS & ATLAS started to combine their results within the TOPLHCWG
- France labs involved in single top:
 - ▶ LPSC is strongly involved in several ATLAS single top analyses:
 - Top polarization using the t-channel @ 8 TeV.
 - Wt cross-section measurements @ 8 TeV.
 - s-channel @ 8 TeV
 - ▶ LPC is involved in the CMS & ATLAS combination.
- Challenges for future single top analyses at LHC:
 - Increase the precision by constraints of main systematics uncertainties: generator modelling, jet energy scale and b-tagging efficiency (in situ)
 - Effort on boosted top topologies

BACKUP

ATLAS; t-channel @ 8 TeV: results

Table 3: Selection cuts of the fiducial volume. Electrons and muons from τ contributes with about 3% to the acceptance.

Object	Cut	
Electrons	$p_{\mathrm{T}} > 25 \; \mathrm{GeV} \; \mathrm{and} \; \eta < 2.5$	
Muons	$p_{\mathrm{T}} > 25~\mathrm{GeV}$ and $ \eta < 2.5$	
Jets	$p_{\mathrm{T}} > 30~\mathrm{GeV}$ and $ \eta < 4.5$	
	$p_{\rm T} > 35$ GeV, if $2.75 < \eta < 3.5$	
Lepton (ℓ) , Jets (j_i)	$\Delta R(\ell, j_i) > 0.4$	
$E_{ m T}^{ m miss}$	$E_{\rm T}^{\rm miss} > 30~{ m GeV}$	
Transverse W-boson mass	$m_{\rm T}(W) > 50~{\rm GeV}$	
Lepton (ℓ), jet with the highest p_T (j_1)	$p_{\mathrm{T}}(\ell) > 40 \text{ GeV} \left(1 - \frac{\pi - \Delta\phi(j_1, \ell) }{\pi - 1}\right)$	