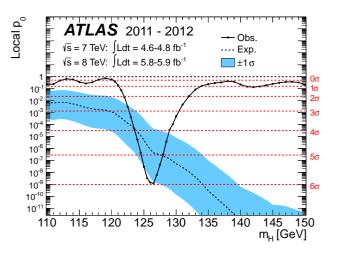
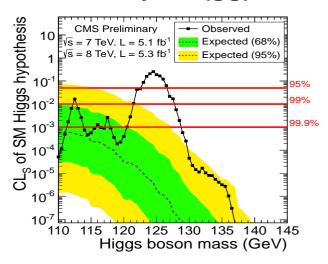
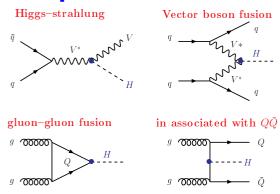
The Higgs boson and the top quark



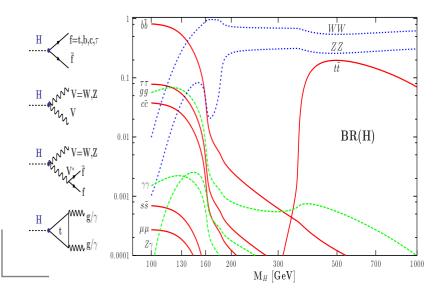

Abdelhak DJOUADI (U. Paris-Sud)

- First implications of the discovery
- Probing EWSB with Higgs and tops:
 - The CP texture of the Higgs
 - The Higgs couplings to matter
- One example of Higss + tops in SUSY
 - Conclusion

After 48 years of postulat, 30 years of search (and a few heart attacks), "a boson" is discovered at LHC on the 4th of July: Hi(gg)storical day!



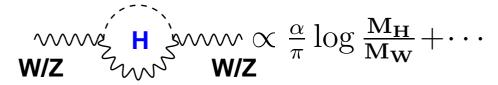
Thanks to whom? The top quark of course!


Production processes at LHC

Large production cross sections with top induced $gg \rightarrow H$ dominant

Higgs detection channels:

Lyon, 7/4/2014


Dominant decays: $H\to b\bar b, WW^*$ Cleanest decays: $H\to \gamma\gamma, ZZ^*\to 4\ell^\pm$ (with $H\to \gamma\gamma$ induced by W+t loops).

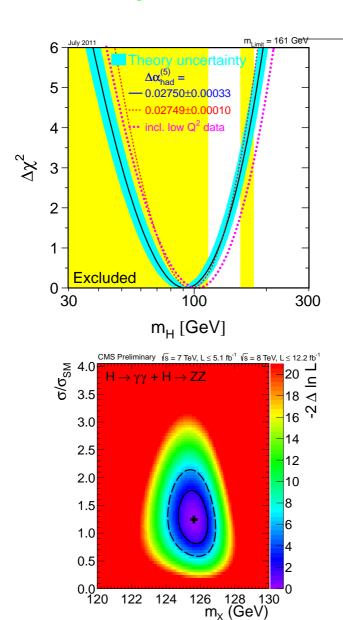
Most important discovery mode@LHC: $\mathbf{gg} \rightarrow \mathbf{H} \rightarrow \gamma \gamma (\mathbf{ZZ^*})$

- thanks to the large ttH coupling...
- produced via quantum fluctuation...

Higgs and Tops – A. Djouadi – p.3/15

Higgs looks like expected in SM \Rightarrow a triumph for high-energy physics! Indirect constraints from EW data H contributes to RC to W/Z masses:

Fit the EW precision measurements, one obtains $m M_{H} = 92^{+34}_{-26}$ GeV, or


$$M_{H} \lesssim 160$$
 GeV at 95% CL

compared with the measured mass

$$M_{
m H}\!pprox\!126$$
 GeV.

A very non-trivial consistency check! closing the story of the top quark:

• Particle spectrum complete:

4th family excluded by $H \rightarrow VV, ff$ rates

- **⇒** top remains heaviest SM particle!
- (that couples "normally" to the Higgs..)
- Extrapolable up to highest scales.

$$\frac{\lambda(\mathbf{Q^2})}{\lambda(\mathbf{v^2})} \approx 1 + 3 \frac{2\mathbf{M_W^4 + M_Z^4 - 4m_t^4}}{16\pi^2\mathbf{v^4}} log \frac{\mathbf{Q^2}}{\mathbf{v^2}}$$

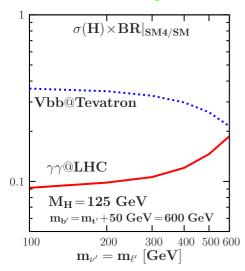
tops make $\lambda < 0$: unstable vacuum

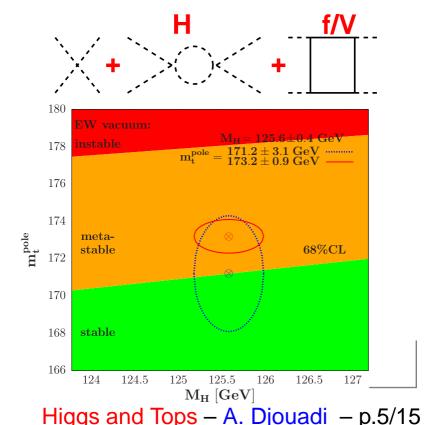
$$\Lambda_{\mathrm{C}}\!\sim\!\mathrm{M_{Pl}}\Rightarrow\mathrm{M_{H}}\!\gtrsim\!129\,\mathrm{GeV}!$$

at 2 loops for $m_t^{
m pole}\!=\!173$ GeV...

⇒ Degrassi et al., Bezrukov et al.

but what is measured $m_{\rm t}$ at TEV/LHC


$$m_t^{\mathrm{TeV+LHC}}\!=\!173.34\pm0.76~\text{GeV...}$$

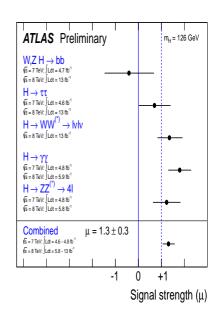

 $m_t^{
m pole} ? m_t^{
m MC} ?$ not clear; much better:

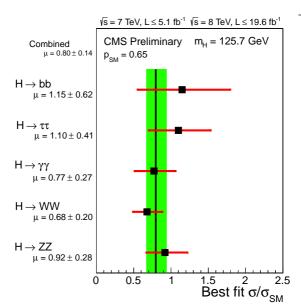
$$m_t\!=\!171\!\pm\!3$$
GeV from $\sigma(pp o t\overline{t})$

Other alternatives at TEV/LHC (tt+j rates..)?

or should we wait for $e^+e^-
ightarrow \, t \overline{t}$ scan?

Lyon, 7/4/2014


 $\sigma \times$ BR rates compatible with those expected in the SM


Fit of all LHC Higgs data \Rightarrow agreement at 20–30% level

$$\mu_{ ext{tot}}^{ ext{ATL}} = 1.30 \pm 0.30$$

$$\mu_{ ext{tot}}^{ ext{ATL}} = ext{0.87} \pm ext{0.23}$$

.... standardissimo...

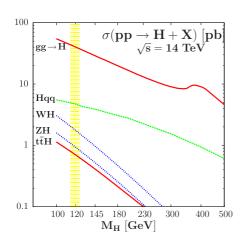
Some beyond the SM scenarios are in 'mortuary":

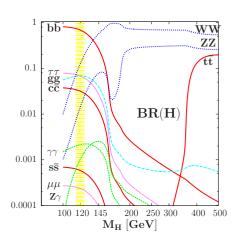
- Higgsless models, extreme Technicolor and composite scenarios, ...
- fermiophobic Higgs, gauge-phobic Higgs, 4th generation, ...

Some beyond the SM scenarios are in "hospital": Composite...

Other BSM scenarios are strongly constrained: SUSY

To go beyond: you need very precise measurements to see small deviations..


In fact, the story is a two chapters story......


2. Probing EWSB with Higgs and tops

First: find the dof which would correspond to a scalar Higgs boson Second: need to check that H is indeed responsible of sEWSB (SM-like?)

- ⇒ measure its fundamental properties in the most precise way:
- its spin-parity quantum numbers and check SM prediction for them,
- its couplings to fermions and gauge bosons and check that they are indeed proportional to the particle masses (fundamental prediction!),
- \bullet its self–couplings to reconstruct the potential $V_{\mathbf{H}}$ that makes EWSB.

Possible for $M_{
m H}\!pprox$ 126 GeV as all production/decay channels useful!

What kind of tests can we make with top quarks? Three examples (others are FCNC top decays, single top + Higgs, $t \to H^+ b$, ...).

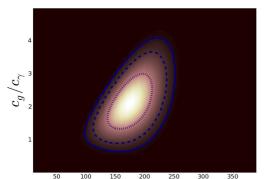
2. Probing EWSB with Higgs and tops: JPC

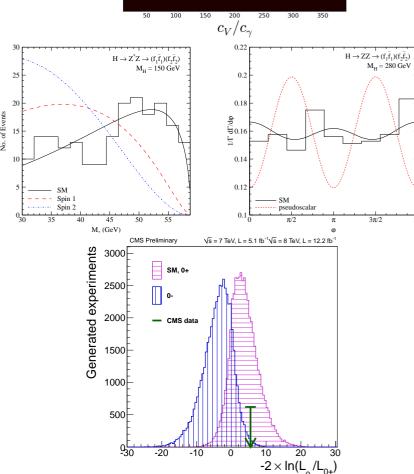
Spin: the state decays into $\gamma\gamma$

- not spin-1: Landau-Yang
- could be spin—2 like graviton? Ellis et al.
- miracle that couplings fit that of H,
- "prima facie" evidence against it:

e.g.:
$$c_{\mathbf{g}}
eq c_{\gamma}, c_{\mathbf{V}} \gg 35c_{\gamma}$$

many th. analyses (no suspense).


CP: even, odd, or mixture? (more important; CPV in Higgs!) ATLAS/CMS CP analyses for pure CP-even vs pure-CP-odd


$$\mathbf{H}\mathbf{V}_{\mu}\mathbf{V}^{\mu}$$
 versus $\mathbf{H}\epsilon^{\mu
u
ho\sigma}\mathbf{Z}_{\mu
u}\mathbf{Z}_{
ho\sigma}$

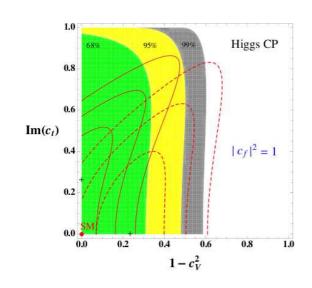
$$\Rightarrow \frac{{\rm d}\Gamma(H\!\!\to\!\! ZZ^*)}{{\rm d}M_*}$$
 and $\frac{{\rm d}\Gamma(H\!\!\to\!\! ZZ)}{{\rm d}\phi}$

MELA $pprox 3\sigma$ for CP-even..

Lyon, 7/4/2014

2. Probing EWSB with Higgs and tops: JPC

There are however some problems with this (too simple) picture:


- a pure CP odd Higgs does not couple to VV states at tree-level
- coupling should be generated by loops or HOEF: should be small
- H CP-even with small CP-odd admixture: high precision measurement..
- in H→VV only CP-even component projected out in most cases!

Indirect probe:

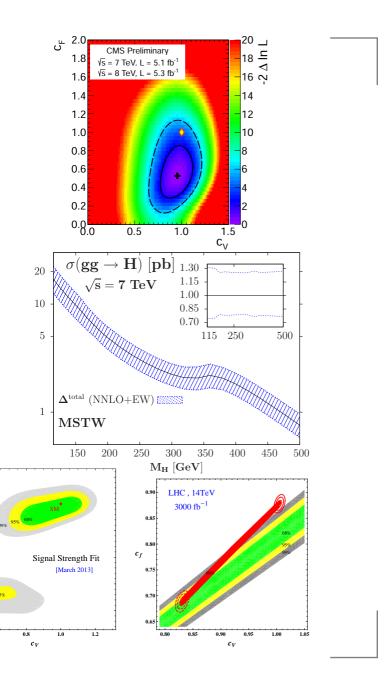
$$g_{HVV} = c_V g_{\mu\nu} \text{ with } c_V \leq 1$$
 better probe: $\hat{\mu}_{ZZ} = 1.1 \pm 0.4!$

gives upper bound on CP mixture:

$$\eta_{\mathrm{CP}} \equiv 1 - c_{\mathrm{V}}^2 \gtrsim 0.5@68\%\mathrm{CL}$$
 for any value of Im and Re c_{f} ...

Direct probe: look at processes with the Higgs decaying into fermions (Higgs couplings to fermions are more democratic with respect to CP.....)

Best deal at the LHC: corelations in $q\bar{q}/gg \to Ht\bar{t} \to b\bar{b}t\bar{t}!$


... extremely challenging process but maybe doable with some efforts?

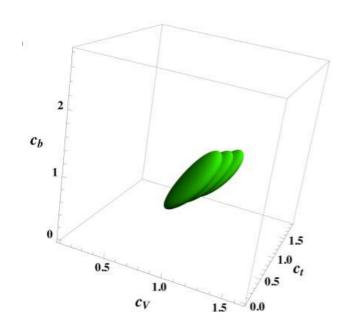
2. Probing EWSB with Higgs and tops: couplings

- ullet Look at various H production/decay channels and measure $N_{ev}\!=\!\sigma\! imes\!BR$
- For the moment, not much information:
- only gg→H has significant rate
- c_{V} versus universal c_{f} for simple.
- measurement at 20-30% level...
- Not better to be expected with gg→H:
- total theory error of about 15–20%
- more when broken to jet categories
- gg→Hjj contaminates VBF (now 30%).
- \Rightarrow ratios of σxBR : many errors out!

Deal with ratios of widths $\Gamma_{\mathbf{X}}/\Gamma_{\mathbf{Y}}$, no:

- TH error on σ and some EX errors
- parametric/QCD errors in BRs
- TH ambiguities from $\Gamma_{
 m H}^{
 m tot}$ (invisible?)
- Achievable accuracy: a few %!

2. Probing EWSB at the LHC:


Sufficient to probe BSM physics? Maybe not..

 \bullet First of all $c_{\mathbf{V}}, c_{\mathbf{f}}$ only not sufficient.

Example of lightest (SM-like) MSSM Higgs:

$$\mathbf{c_V} = \mathbf{sin}(\beta - \alpha), \mathbf{c_t} = \frac{\mathbf{cos}\alpha}{\mathbf{sin}\beta}, \mathbf{c_b} = \frac{\mathbf{sin}\alpha}{\cos\beta}$$

⇒ at least a 3-dimensional coupling fit. (ideal is to probe all couplings separately..).

• We are not really measuring the Htt coupling c_t but Hgg coupling c_g and loop induced c_g is affected by possible BSM loop contributions. (the other occurence of g_{Htt} is also in the loop process H $\rightarrow \gamma\gamma$...) Example of the MSSM: stop loops also contribute to the gg \rightarrow H process:

$$\mathbf{c_t} \rightarrow \mathbf{c_t} \times \left[\mathbf{1} + \frac{\mathbf{m_t^2}}{4\mathbf{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2}} (\mathbf{m_{\tilde{t}_1}^2} + \mathbf{m_{\tilde{t}_2}^2} - (\mathbf{A_t} - \mu \cot \alpha) (\mathbf{A_t} + \mu \tan \alpha)) \right]$$

We therefore need a more direct probe of the important Htt coupling

 \Rightarrow we have to consider the $pp o t \overline{t} H$ process!

2. Probing EWSB with Higgs and tops: MSSM

In the MSSM: two Higgs doublets:
$$H_1=inom{H_1^0}{H_1^-}$$
 and $H_2=inom{H_2^+}{H_2^0}$,

After EWSB and $M_{\mathbf{W}^\pm}, M_{\mathbf{Z}} :\Rightarrow$ 5 physical states left out: h, H, A, H^\pm

Only two free parameters at tree–level: $an\!eta, \mathbf{M_A}$ but rad. cor. important

$$\mathbf{M_h} \lesssim \! \mathbf{M_Z} |\mathbf{cos2}\beta| \! + \! \mathbf{RC} \lesssim \! \mathbf{130~GeV} \;, \; \mathbf{M_H} \approx \! \mathbf{M_A} \approx \! \mathbf{M_{H^{\pm}}} \lesssim \! \mathbf{M_{EWSB}}$$

- Couplings of \mathbf{h}, \mathbf{H} to VV are suppressed; no AVV couplings (CP).
- For $an\!eta\gg 1$: couplings to b (t) quarks enhanced (suppressed).

In the decoupling limit: MSSM reduces to SM but with a light SM Higgs

$$\mathbf{M_h} \overset{\mathbf{M_A} \gg \mathbf{M_Z}}{\rightarrow} \mathbf{M_Z} |\mathbf{cos2}\beta| + \frac{3\bar{\mathbf{m}_t^4}}{2\pi^2 \mathbf{v^2} \sin^2 \beta} \left[\log \frac{\mathbf{M_S^2}}{\bar{\mathbf{m}_t^2}} + \frac{\mathbf{X_t^2}}{\mathbf{M_S^2}} \left(1 - \frac{\mathbf{X_t^2}}{12\mathbf{M_S^2}} \right) \right] + \dots$$

$$\mathbf{M_h} = \mathbf{125}$$
 GeV: $\mathbf{M_A} \gg \mathbf{M_Z}, aneta \gg \mathbf{1}, \mathbf{M_S} \gg \mathbf{M_Z}, \mathbf{X_t} pprox \sqrt{6} \mathbf{M_S}$,...

At $\tan\beta \gg 1$: one SM-like and two CP-odd like Higgses with cplg to b, τ

$$M_A\!\leq\!M_h^{max}\!\Rightarrow\!h\!\equiv\!A,H\!\equiv\!H_{SM}$$
 , $M_A\!\geq\!M_h^{max}\!\Rightarrow\!H\!\equiv\!A,h\equiv\!H_{SM}$

At $an\!eta\!pprox\!$ 1: top plays again the major role but large $M_{\rm S}$ required...

Lyon, 7/4/2014

2. Probing EWSB with Higgs and tops: MSSM

Model independent – effective – approach

• $\tan \beta \lesssim 3$ usually "excluded" by LEP2:

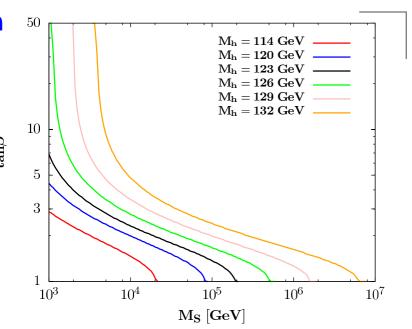
 $M_{
m h}\!\gtrsim\!114$ GeV for BMS with $M_{
m S}\!pprox\!1$ TeV.

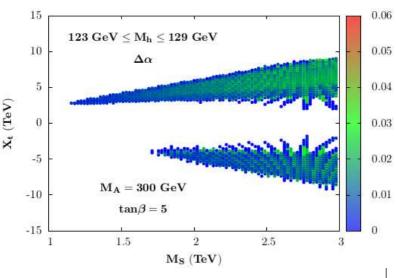
Be we can be more relaxed: ${
m M_S}\gg {
m M_Z}$

- \Rightarrow tan β as low as 1 could be allowed!
- ullet We turn $\mathbf{M_h} \!pprox\! \mathbf{M_Z} |\cos 2eta| +$ RC to RC= 126 GeV - $f(M_A, \tan \beta)$

ie. we "trade" RC with the measured $M_{\rm h}$

MSSM with only 2 inputs at HO: $\mathbf{M_A}$, an eta


$$\mathbf{M_H^2} = \frac{(\mathbf{M_A^2 + M_Z^2 - M_h^2})(\mathbf{M_Z^2 c_\beta^2 + M_A^2 s_\beta^2}) - \mathbf{M_A^2 M_Z^2}}{\mathbf{M_Z^2 c_\beta^2 + M_A^2 s_\beta^2 - M_h^2}}$$


$$\alpha = -\arctan\left(\frac{(\mathbf{M_Z^2 + M_A^2})\mathbf{c_\beta s_\beta}}{\mathbf{M_Z^2 c_\beta^2 + M_A^2 s_\beta^2 - M_h^2}}\right)$$

$$m M_{H^\pm} \simeq \sqrt{M_A^2 + M_W^2}$$

Habemus MSSM (hMSSSM):

AD, Maiani, Polosa, Quevillon, Riquer

Higgs and Tops – A. Djouadi – p.13/15

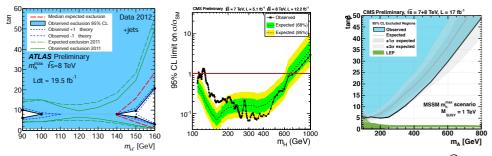
2. Probing EWSB with Higgs and tops: MSSM

Constraints on the $[\mathbf{M_A}, an\!eta]$ plane

ullet Fits of the h properties \Rightarrow

can be turned into MSSM constraints

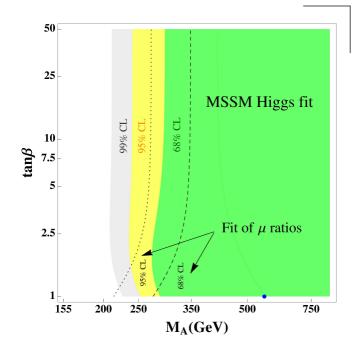
h SM-like
$$\Rightarrow M_{
m A}\!\gtrsim\!200\!-\!500$$
 GeV

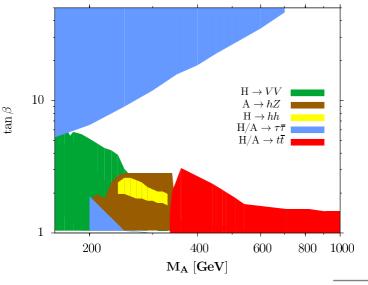

(best fit: $an\!etapprox 1, M_{\mathbf{A}}\!pprox\!500$ GeV...)

ullet Constraints in the high taneta region:

$$-\,\mathrm{t}
ightarrow \mathrm{H}^+\mathrm{b}
ightarrow \mathrm{b} au
u : \mathrm{M}_{\mathsf{A}} \gtrsim 140 \; \mathsf{GeV}$$

$$-\,\mathrm{H/A}
ightarrow au au:\mathrm{M_A} \gtrsim 300$$
 GeV

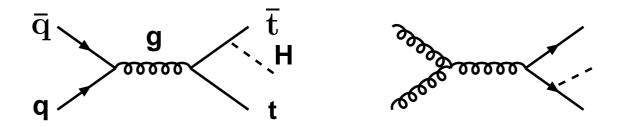

– Extrapolate H \rightarrow WW,ZZ of SM

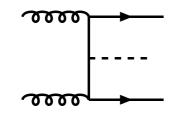


• Addtional constraints at low tan β :

$$\mathbf{g}\mathbf{g}\!\rightarrow\!\mathbf{H}/\mathbf{A}\to\mathbf{t}\mathbf{t}$$

already discussed for heavy Z' and $V_{\rm KK}$ needs large mass for boosted tops (no?)...


Higgs and Tops – A. Djouadi – p.14/15


3. Conclusion

Hence, to complete the LHC Higgs program and to probe the Higgs properties in the most complete and fairly model-independent way

 \Rightarrow we need to consider the $pp \to ttH$ process

and make the Higgs decay not only to $\gamma\gamma$ but also to bb etc.. final states.

- extremely complicated topology
- ullet very low production rates (even with high luminosity for H $o\gamma\gamma...$)
- huge backgrounds (in particular if one considers H→bb)

Good luck...

and do not forget to address the other important issues related to tops:

like t o Hc, in the SM and $pp o H^-t, pp o H/A o t \overline{t}$ in BSM...