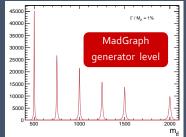
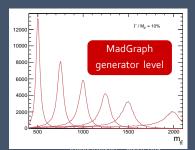
Search for tt resonances at ATLAS and CMS

Sébastien Brochet (IPN Lyon)
on behalf of the ATLAS & CMS collaborations

Top LHC France

Introduction


- The top quark is the heaviest fundamental particle known.
 - · Expected to have major role in BSM physics
- Many models (topcolor, extra dimensions, etc.) predict new heavy particles with enhanced coupling to the top quark
 - These particles may decay preferentially into t\u00e4
- ATLAS and CMS are both very active in these searches, and already have results for all-hadronic, semi and di-leptonic final states
- Focus only semi-leptonic final state, on which French groups are mainly involved.
- Public results:
 - ATLAS: ATLAS-CONF-2013-052
 - CMS: B2G-12-006 / Phys. Rev. Lett. 111 (2013) 211804
- Colors: CMS / ATLAS


Signal

- Generic Z' resonance: width and cross-section independent of resonance's mass → model independent benchmark.
 - $\Gamma/m_{Z'} = 1.2\%$
 - $\Gamma/m_{Z'} = 10\%$
 - Generator: MadGraph 4 / Pythia 8
- Kaluza-Klein excitation of SM gluon: width and cross-section fixed by the resonance's mass
 - $\Gamma/m_a = \sim 15\%$
 - Generator: Pythia 8 / MadGraph 4

Backgrounds

- SM tt̄ (irreducible background)
 - MC@NLO + Herwig + CT10
 - Powheg + Pythia + CT10
- Single top
 - MC@NLO + Herwig + CT10 (s and tW channels
 - AcerMC + Pythia + CTEQ6L1 (t channel
 - Powheg + Pythia + CT10
- W / Z + jets
 - Alpgen + Pythia + CTEQ6L1
 - Normalization taken from data for W + jets
 - Madgraph + Pythia + CTEQ6L
 - Normalized to NNLO predictions
- Multi-jets
 - Data-driven (matrix method)
 - Estimated from simulation

Analyses strategies

- Similar strategy in both collaborations: the mass range is split in two parts:
 - The resolved regime (M < 1 TeV)
 - The boosted regime (M > 1 TeV)
- ATLAS has one analysis, but two selections, optimized for resolved and boosted topologies:
 - Events that don't pass the boosted selection are considered resolved
 - Background is estimated on simulation as seen previously
- CMS has two different analyses: one optimized for resolved topologies, and one for boosted topologies
 - The resolved analysis uses a data-driven approach to estimate the background
 - The boosted analysis estimate the background on simulation

Jets / Leptons

- Standard jets: anti- $k_T R = 0.5$, $|\eta| < 2.4$, R = 0.4, $|\eta| < 2.5$
- ATLAS uses special jet reconstruction for boosted analysis, in order to stay efficient even in boosted regime:
 - anti- $k_T R = 1.0, |\eta| < 2.0$
 - Use trimming to mitigate effect of pileup:
 - Recluster the jet with a smaller radius (R = 0.3) and k_T algorithm
 - Remove jets with $p_T < 5$ % of fat jet p_T .

Muons

-
- Boosted: isolated and $\Delta R(\mu, j) > 0.1$
- Resolved: isolated

Isolated

Boosted: no isolation requirement

• Boosted: isolated and $\Delta R(e,j) > 0.4$

Electrons

- Posolyod, isolated
- Boosted: no isolation requirement

$$\Delta R(\mu,j) > 0.5$$
 or $\rho_T^{\text{rel}}(\mu,j) > 25$ GeV

$$\Delta R(e,j) > 0.5 \text{ or } p_T^{\text{rel}}(e,j) > 25 \text{ GeV}$$

Lepton isolation

• ATLAS

• dynamic cone size to compute isolation : efficient even for boosted objects

$$I = \frac{\sum p_T^{\text{tracks}}}{p_T^{\text{lepton}}} < 5\%, R = \frac{10 \text{ GeV}}{E_T}$$

- CMS
 - different cone sizes and thresholds for electrons (R = 0.3, I < 10 %) and muons (R = 0.4, I < 12 %)

$$I = \frac{\sum \rho_T^{\text{hadrons}} + \sum \rho_T^{\text{photons}}}{\rho_T^{\text{lepton}}}$$

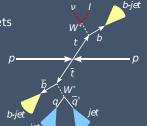
Boosted selection

CMS

ATLAS

- One high- p_T lepton trigger
- One e (μ), $p_T > 35$ GeV (45 GeV)
- At least 2 jets, $p_T > 150/50 \,\text{GeV}$
- *ŧ_t* > 50 GeV
- $\not\!\!E_t + p_T^{\text{lept}} > 150 \,\text{GeV}$
- semi-e: triangular cut against multijets.
- Four categories: e $\mid \mu$ and
 - 0 b-jet
 - ≥ 1 b-jets

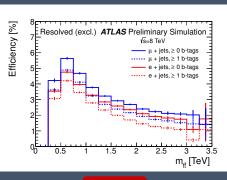
- One high- p_T lepton trigger
- One isolated lepton, $p_T > 25 \,\text{GeV}$
- At least one fat jet:
 - $p_T > 300 \,\text{GeV}$, $m > 100 \,\text{GeV}$
 - $\sqrt{d_{12}} > 40 \,\text{GeV}$
 - $\Delta R(\text{jet, I}) > 2.3$
- At least one standard jet:
 - At least 1 b-tagged jet
 - $\Delta R(\text{jet, fat jet}) > 1.5$
- semi-e: $\not\!\!E_t > 25 \, {\rm GeV}, m_T > 25 \, {\rm GeV}$
- semi- μ : $\not{\!\! E}_t > 20 \, {\rm GeV}$, $\not{\!\! E}_t + m_T > 60 \, {\rm GeV}$

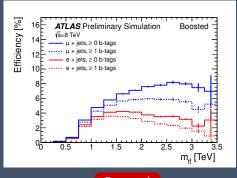

Resolved selection

CMS

- One isolated lepton + 3 jets trigger
- One isolated e / μ , $p_T > 30 \,\text{GeV}/26 \,\text{GeV}$
- At least 4 jets, $p_T > 70/50/30/30 \text{ GeV}$
- At least 1 b-tagged jet
- **₺**_t > 20 GeV
- Four categories: e / μ and
 - 1 b-jet
 - ≥ 2 b-jets

ATI AS


- Not selected by the boosted selection
- One high- p_T lepton trigger
- One isolated lepton, $p_T > 25 \,\text{GeV}$
- If one jet has $m > 60 \,\text{GeV}$:
 - At least 3 jets, p_T > 25 GeV (semiboosted)
- Otherwise
 - At least 4 jets, $p_T > 25 \,\text{GeV}$
- At least 1 b-tagged jet
- semi-e: $E_t > 25 \,\text{GeV}$, $m_T > 25 \,\text{GeV}$
- semi- μ : $\not\!\!E_t > 20 \, \text{GeV}$, $\not\!\!E_t + m_T > 60 \, \text{GeV}$


Selection performances

- CMS: selection efficiency on inclusive Z' sample:
 - Resolved analysis: \sim 3 6% (0.5 to 1.5 TeV)
 - Boosted analysis: ~6 11 % (1 to 3 TeV)
- ullet ATLAS: selection efficiency on inclusive Z' sample:

Resolved

Neutrino reconstruction

- Interpret E_t as the neutrino. The longitudinal component must be reconstructed.
- We form a quadratic equation using the invariant mass of the lepton and the neutrino, which is constrained to the W mass.
 - Two solutions? Use both in the χ^2 test
 - No solution?
 - Resolved:

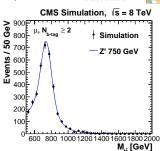
 - change E_x and E_y independently until a solution is found
 - Boosted:
 - keep only real part of the solution
 - change $\not \!\! E_x$ and $\not \!\!\! E_y$ independently until a solution is found

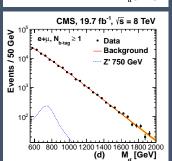
Jets combination choice — resolved analyses

- Choose good jets combination using a χ^2 sorting algorithm
- ATLAS
 - No high mass jet: χ^2 with hadronic W mass, leptonic top mass, (hadronic top mass hadronic W mass) and $\Delta \rho_{\tau}^{\text{tops}}$
 - High mass jet: consider it as the hadronic W boson. Remove hadronic W mass term from χ^2
- CMS: χ^2 with hadronic W mass, leptonic and hadronic top mass, and p_T of $t\bar{t}$ system.

Jets combination choice — boosted analyses

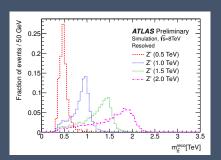
- Choose good jets combination using a χ^2 sorting algorithm
- ATLAS
 - No ambiguity: the fat jet is considered as the hadronic top, and the light jet is the leptonic B jet.
- CMS
 - Exactly one jet on the leptonic side, and at least one jet to the hadronic side
 - χ^2 with leptonic and hadronic top masses.
 - $\chi^2 < 10$

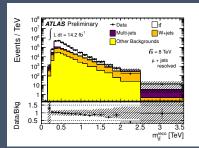

Background modeling — resolved analyses

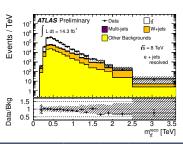


- Data-driven estimation for background: fit the data with a functional form

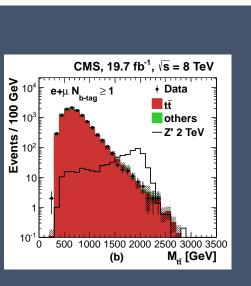
$$\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\mathrm{t}\bar{\mathrm{t}}}} = \frac{\left(1-m/\sqrt{s}\right)^{c_1}}{\left(m/\sqrt{s}\right)^{c_2+c_3\ln m/\sqrt{s}}}$$

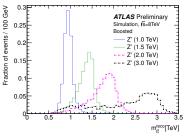


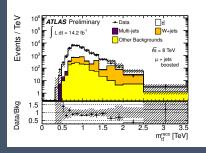

Background modeling — resolved analyses



- Monte-Carlo estimation
- W + jets normalization calculated using W charge asymmetry
- Multi-jets normalized from matrix method






Background modeling — boosted analyses

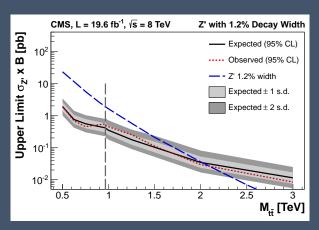
Systematic uncertainties

CMS

(Boosted — Common — Resolved)

- tī
 - Normalization: 15 %
 - Factorization / renormalization scale
- W + jets
 - Light-flavor jets: 50 %
 - Heavy-flavor jets: 100 %
- Z + jets: 100 %
- Single top: 50 %
- Multi-jets: 100 %
- PDF
- JES, JER, Luminosity
- Signal / background Probability Density Function

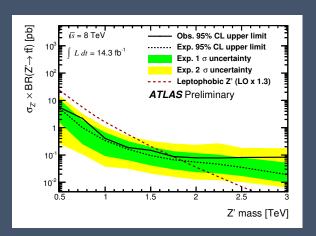
ATLAS


- tī
 - Normalization: 11%
 - Electroweak corrections: 3 % to 9 %
 - QCD ISR/FSR modeling
 - MC@NLO vs Powheg
 - Factorization/renormalization scale
- W + jets
 - Resolved: $18 \frac{\%}{16 \%} \frac{(e / \mu)}{(e / \mu)}$
 - Boosted: 22 % / 16 % (e / μ)
- Z + jets: 48 %
- Single top: 7.7 %
- Multi-jets: 50 %
- PDF: up to 40 % at 2 TeV
- JES, luminosity, ...

Results — CMS

- Bayesian method to extract upper limit on $\sigma \times BR$
- Combine limits from both analysis: transition between resolved and boosted analysis based on the sensitivity of the expected limit

Exclude masses below:


- ullet 2.10 TeV (narrow Z')
- 2.68 TeV (large Z')
- 2.54 TeV (KK gluons)

Results — ATLAS

- Bayesian method to extract upper limit on $\sigma \times BR$
- ~6 fb⁻¹ missing compared to CMS

Exclude masses below:

- 1.8 TeV (narrow Z')
- 1.9 TeV (KK gluons)

French groups involvement

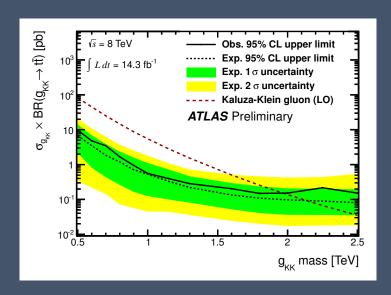
- ATLAS:
 - Grenoble: fat jet selection optimization
 - Clermont: selection optimization, reconstruction performances for resolved selection and analysis coordination
- CMS:
 - Lyon: responsible for resolved analysis

Conclusion

- Both collaborations use similar strategy to improve sensibility over the whole mass range:
 - CMS uses two different analyses and combines limits
 - ATLAS uses one analysis but two different selections
- Main difference comes from boosted topologies
 - · ATLAS uses fat jet with grooming
 - CMS loosen isolation criteria on lepton and number of jets
- ullet No sign of new physics is found. We start to reach exclusion limit of ~2 TeV
- CMS is a bit more efficient than ATLAS on exclusion, but comparison is not fair: ~6 fb⁻¹ of data is missing. Let's wait for the analysis on the full dataset!

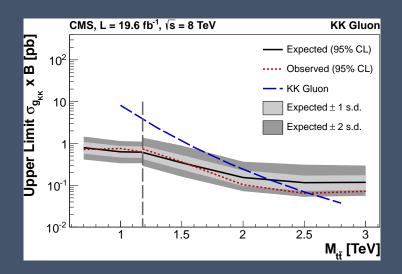
Backup

CMS — Boosted analysis triangular cut

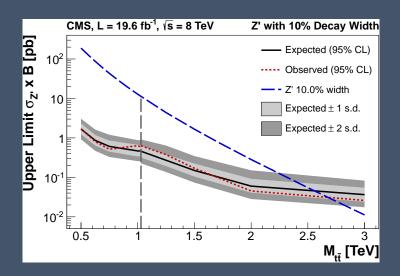


$$\frac{-1.5}{75} \rlap/ E_t + 1.5 < \Delta \phi (\text{e or j}, \rlap/ E_t) < \frac{1.5}{75} \rlap/ E_t + 1.5$$

ATLAS — KK gluons limits



CMS — KK gluons limits



CMS — Large Z' limits

