

Experimental review on single top FCNC searches

Kirill Skovpen Institut Pluridisciplinaire Hubert Curien (IPHC), Strasbourg

> Top LHC-France meeting IPNL

> > 2014-04-08

FCNC and GIM mechanism

- Flavour-changing neutral current (FCNC) transition is an interaction process where a fermion undergoes the change of flavour without alternation of its charge
- FCNC amplitudes at tree level are forbidden by the Glashow-Iliopoulos-Maiani (GIM) mechanism in the Standard Model (SM)
- However, GIM-highly suppressed FCNC transitions are possible in the SM in the higher orders via penguin and box diagrams
- Some extensions of the SM could introduce FCNC decays at tree level including new particles

Effective FCNC Lagrangian:

$$\Delta \mathcal{L}_{\text{eff}} = e \ e_t \ \bar{t} \frac{i\sigma_{\mu\nu}p^{\nu}}{\Lambda} \kappa_{\gamma} u \ A^{\mu} + \frac{g}{2\cos\theta_W} \ \bar{t}\gamma_{\mu} v_{Z} u Z^{\mu} + \text{h.c.}$$

GIM mechanism: S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D 2 (1970) 1285 Kirill Skovpen - Top LHC-France meeting 2

FCNC in SM

Example of SM FCNC process: $K_L \rightarrow \mu + \mu$ -

Forbidden:

Observed but highly suppressed (Br $\approx 10^{-9}$):

Phys.Rev.Lett. 63 (1989) 2185 (AGS, BNL)

Kirill Skovpen - Top LHC-France meeting

Search for FCNC in BSM

Higher rates for FCNC processes are predicted by many extensions of the SM:

- Fourth-generation models
- Extended technicolor models
- Leptoquark models
- Extra dimensions
- Extra quark models
- Supersymmetry

•

• Two-Higgs-Doublet models

ModelBr (t \rightarrow Z/ χ q)SM~ 10E-12SUSY~ 10E-6Two-Higgs-Doublet~ 10E-7

Why look for FCNC with t-quark at the LHC ?

Search for FCNC in t-quark decays is promising because of the several important properties of t-quark:

- The formation of strong bound states occurs much slower than the decay of t-quark which results in a clean event signature
- Yukawa coupling for t-quark is close to unity which makes it an interesting candidate to study EW symmetry breaking mechanism
- t-quark is the heaviest elementary particle known sensitivity to new physics searches

Single top FCNC interaction vertices

transitions u/c to t-quark with radiation of Z/**y** or gluon via anomalous couplings

t

Search for single top FCNC processes

Monotop searches at CDF

7.7/fb at 1.96 TeV ppbar \rightarrow t + D \rightarrow qqbar b D D is a new WIMP, coupling set to 0.1 ---- J. Andrea *et al.* PRD 84 (2011) 074025 — Observed 95% C.L. limit

 $m_D < 150 \text{ GeV} (95\% \text{ CL}) \text{ excluded}$

Phys. Rev. Lett. 108 (2012) 201802

FCNC single top searches from OPAL and ZEUS

Anomalous couplings with trilepton signatures

Probing gqt and Zqt at the same time

Phenomenological study of single top production in association with Z-boson at LHC for 20/fb at 8 TeV

single non-vanishing coupling case, discovery for 3σ (5σ): $\mathcal{BR}(t \rightarrow gu) \leq 0.47\%$ (0.25%) $\mathcal{BR}(t \rightarrow gc) \leq 5.1\%$ (2.8%), $\mathcal{BR}(t \rightarrow Zu) \leq 0.39\%$ (0.20%) $\mathcal{BR}(t \rightarrow Zc) \leq 3.8\%$ (2.1%) $\mathcal{BR}(t \rightarrow Zu) \leq 1.07\%$ (0.56%) $\mathcal{BR}(t \rightarrow Zc) \leq 7.2\%$ (4.0%)

two non-vanishing couplings (u and c quarks):

Contributions from IPHC and GRPHE

Phys. Lett B725 (2013) 123-126

Monotop phenomenology at LHC

2014-04-08

FCNC at ATLAS: Overview

Probe gqt anomalous couplings

- t-quark produced singly: W and b-quark are back-to-back
- higher momenta of decay products compared to W/Z +jets background

Process: $qg \rightarrow t \rightarrow \ell \nu b$

Signature:

one isolated lepton+ b-tagged jet + missing energy

Main background:

W/Z+(b/c)+jets, SM top, WW/ZZ/WZ+jets, QCD

Discriminant: Neural Network

FCNC at ATLAS: Selection criteria

• Exactly one isolated lepton with $P_T > 25$ GeV

electron with $|\mathbf{\eta}_{clus}| < 2.47$ vetoing crack region E_T -dependent isolation using $\Delta R < 0.2$ and 0.3 muon with $|\mathbf{\eta}| < 2.5$ relative mini-isolation (< 0.05) using cone radius of $R_{iso} = 10 \text{ GeV} / P_T(\mu)$

 Exactly one b-tagged jet with P_T > 30 GeV Using AntiKt4 Topo jets Reject closest jet to electron in ΔR(e,j) < 0.2 Remove all electrons close to jets in ΔR(e,j) < 0.4 Suppress pileup jets with JVF > 0.5

Missing E_T > 30 GeV (Additional suppression of Z+jets background)

signal region (SR): same as above
W+jets control region: looser b-tagging requirement + SR b-tag veto

m_T(W) > 50 GeV (Additional suppression of QCD background)

FCNC at ATLAS: Background estimation

All background except QCD is estimated from MC

QCD background measurement (no cut on missing E_T is applied):

- **Electron channel**: *Jet-electron method* with template fit:
 - Measure missing E_T shape templates in multi-jet MC with SR selection criteria applied where jet is selected in place of an electron (jet mis-reconstructed as electron = jet-electron object)
 - A bin maximum likelihood fit to the observed data in missing E_T distribution using multi-jet and other SM background templates
- Muon channel: Matrix Method
 - Fake efficiencies measured in high impact parameter significance region
 - Real efficiencies measured with $m_T(W) > 100 \text{ GeV}$

Systematics (50%) are assessed by switching the two methods for electron and muon channels, and switching missing E_T and $m_T(W)$ variables to extract multi-jet background normalisation from the fit

FCNC at ATLAS: Background validation

FCNC at ATLAS: Neural Network inputs

- No single discriminating variable to separate signal from background
- Total 13 input variables used by Neural Network:
 momenta, relative angles, pseudorapidity, reconstructed particles masses, lepton electric charge, etc.
- Most discriminating variables: $P_T(b-jet)$, $P_T(W)$, $\Delta \varphi(W,v)_{t-rest}$

SR

FCNC at ATLAS: Neural Network results

Overall good agreement between data and background prediction

FCNC at ATLAS: Upper limits

- No evidence for FCNC strong interaction in single top production
- 95% CL upper limits are set with Bayesian approach

FCNC in tZ events at CMS: Overview

Probing both Zqt and gqt anomalous couplings

Process:

 $qg \rightarrow t(q) \rightarrow tZ \rightarrow 3\ell b v$

Signature:

three isolated leptons + b-tagged jet + missing energy

Main background:

WZ/ZZ+jets tZq+jets Z+jets, ttbar+jets, single top, tW, WW+jets

Discriminant: BDT

Contributions from: IPHC and GRPHE

Analysis at 8 TeV with 20/fb in progress !

Kirill Skovpen - Top LHC-France meeting

FCNC in tZ events at CMS: Selection criteria

- Analysis is performed in the following tri-lepton channels: μμμ, μμε, eeμ and eee
- At least three leptons with $P_T > 20 \text{ GeV}$ electrons with $|\eta| < 2.5$ with relative energy isolation (0.17) in $\Delta R < 0.2$ muons with $|\eta| < 2.4$ with relative Pt isolation (0.20) in $\Delta R < 0.2$
- Invariant mass of two same flavour and opposite-sign leptons is required to lie within [76,106] GeV window, the remaining lepton is treated as the one from W decay
- Up to one b-tagged jet with $P_T > 30$ GeV and $|\eta| < 2.5$ AntiKt5 jets reconstructed from Particle Flow objects with pileup suppression If no b-tagged jets, the highest- P_T jet is considered as b-jet candidate
- m_T(W) > 20 GeV (Additional suppression of Z+jets background)
- \bullet No explicit selection on missing E_T but this variable is used in BDT

FCNC in tZ events at CMS: Background estimation

Non-prompt lepton background is estimated from $m_T(W)$ template fit in data:

- No b-jet tagging and $m_T(W)$ selection cuts applied
- Three templates:

Z+jets (from data, non-Z-decay-associated lepton is non-isolated)

WZ+jets (from MC, also accounts for signal)

All other processes summed

Boosted Decision Tree (BDT) is used to discriminate signal and background events with the following variables:

- reconstructed t-quark mass
- $\Delta \phi(\ell_W,b), \Delta \phi(Z,missing E_T), \Delta \phi(\ell_W,Z)$
- P_{T} and η of Z candidate
- total and b-tagged jet multiplicities
- CSV b-tagging discriminator
- $\bullet\,$ charge and $\eta\,$ of W candidate
- η of the leading jet
- ...

BDT is trained on WZ+jets and signal events

FCNC in tZ events at CMS: BDT results

Cut	signal (0.1 pb)		tī		SingleTop		DY	
lepton selection	98.6 ± 3.6		12.0 ± 0.5		0.9 ± 0.3 2		233.0 ± 12.8	
Z mass cut	89.7 ± 3.5		3.8 ± 0.3		0.4 ± 0.2		187.8 ± 8.2	
jet multiplicity	78.6 ± 3.3		3.5 ± 0.3		0.3 ± 0.2	5	55.6 ± 4.5	
b-jet multiplicity	73.8 ± 3.2		3.1 ± 0).3	0.3 ± 0.2	5	55.6 ± 4.5	
m_T^W	62.4 ± 2.9		2.8 ± 0).2	0.2 ± 0.2	4	0.2 ± 3.8	
Cut	Diboson		tZq	tota	al Backgrour	nd	Data	
Cut lepton selection	Diboson 775.9 ± 2.2	5.	$\frac{\text{tZq}}{0\pm0.2}$	tota 1	al Backgrour 026.7 \pm 13.0	nd	Data 891.0 ± 29	.8
Cut lepton selection Z mass cut	Diboson 775.9 ± 2.2 471.1 ± 2.1	5.0 4.4	tZq 0 ± 0.2 4 ± 0.2	tota 1	al Backgrour 026.7 ± 13.0 667.6 ± 8.4	nd	Data 891.0 ± 29 667.0 ± 25	.8 .8
Cut lepton selection Z mass cut jet multiplicity	Diboson 775.9 \pm 2.2 471.1 \pm 2.1 197.6 \pm 1.4	5.0 4.4 4.4	$ tZq 0 \pm 0.2 4 \pm 0.2 4 \pm 0.2 4 \pm 0.2 $	tota 1	al Backgrour 026.7 ± 13.0 667.6 ± 8.4 261.4 ± 4.7	nd	Data 891.0 ± 29 667.0 ± 25 245.0 ± 15	.8 .8 .7
Cut lepton selection Z mass cut jet multiplicity b-jet multiplicity	$\begin{array}{c} \text{Diboson} \\ 775.9 \pm 2.2 \\ 471.1 \pm 2.1 \\ 197.6 \pm 1.4 \\ 179.3 \pm 1.3 \end{array}$	5.0 4.4 4.4	$\begin{array}{c} tZq \\ 0 \pm 0.2 \\ 4 \pm 0.2 \\ 4 \pm 0.2 \\ 1 \pm 0.1 \end{array}$	tota 1	al Backgrour 026.7 ± 13.0 667.6 ± 8.4 261.4 ± 4.7 241.5 ± 4.7	nd	Data 891.0 ± 29 667.0 ± 25 245.0 ± 15 231.0 ± 15	.8 .8 .7 .2

FCNC in tZ events at CMS: Upper limits

95% CL upper limits are computed with profile likelihood ratio (PLR) method using Theta

couplings	Expected	Observed	$\mathcal{B}(t \to gq/Zq)$
κ_{gut}/Λ	0.096	0.096	0.56 %
κ_{gct}/Λ	0.427	0.354	7.12 %
κ_{Zut}/Λ	0.492	0.451	0.51 %
κ_{Zct}/Λ	2.701	2.267	11.40 %

$$Br(t \to gq/Zq) = \frac{\Gamma_{t \to gq/t \to Zq}}{\Gamma_{t \to gq/t \to Zq} + \Gamma_{top}}$$

Monotop search at CMS: Overview

New Result !

20/fb at 8 TeV

Contributions from: IPHC

Process: qg→t+V(S)→bqq+V(S)

CMS PAS B2G-12-022

Signature: large ETmiss + two jets + one b-tagged jet

Main background:

ttbar W+jets QCD multijet Z(Z→vv)+3j

Discriminant:

Invariant mass of three jets

signal cross-sections

Mass (GeV)	$\sigma \times BR(t \to 3j)(\text{pb})$		
	scalar DM	vector DM	
1	6.320	184590	
50	5.072	110.0	
100	3.406	36.36	
150	2.227	19.29	
200	1.447	9.357	
300	0.624	3.215	
400	0.290	1.304	
500	0.149	0.607	
600	0.079	0.298	
700		0.158	
800		0.087	
900		0.050	
1000		0.030	

coupling constants are set at 0.1

Probing new couplings with new scalar and vector fields

Monotop search at CMS: Selection criteria

- Two jets with $P_T > 60$ GeV and one jet with $P_T > 40$ GeV, $|\mathbf{\eta}| < 2.4$ AntiKt5 jets reconstructed from Particle Flow objects with pileup suppression
- Invariant mass of three leading jets has to be less than 250 GeV
- Events with additional jets with $P_T > 35$ GeV are rejected
- One of the jets is required to be b-tagged by CSV algorithm
- Events with isolated electrons ($P_T > 20$ GeV) or muons ($P_T > 10$ GeV) are rejected (relative isolation of 0.2 in $\Delta R < 0.3$ for electrons and $\Delta R < 0.4$ for muons)
- Missing $E_T > 350$ GeV (optimised on best expected limit)

Monotop search at CMS: Background estimation

Monotop search at CMS: QCD background

$$\mathcal{L}_{S+B}(\sigma_{sig}, \boldsymbol{\nu}) = Poisson\left(N_{observed}^{0b}|N^{0b}\right) \times Poisson\left(N_{observed}^{1b}|N^{1b}\right)$$

systematic uncertainties are treated as nuisance parameters

Parameter	p_{QCD}^{0b}	p_{QCD}^{1b}	p_{sig}^{0b}	p_{sig}^{1b}
Value	0.80	0.18	0.32	0.56
Uncertainty	0.03	0.03	0.05	0.05

Result QCD background prediction in the signal region is negligible

Monotop search at CMS: Results

# of b tags	$Z \rightarrow \nu \nu + jets$	W+jets	tŦ	Single top	VV	Sum	Data
zero b tags	103 ± 34	18±12	5.9±4.5	$2{\pm}0.5$	$5{\pm}0.4$	134 ± 36	143
one b tag	$11{\pm}11$	$2.6{\pm}2.2$	12 ± 12	$1{\pm}0.6$	0 ± 0	27 ± 16	30

Monotop search at CMS: Results

# of b tags	Zero CSVm b tag	One CSVm b tag
tĪ	$6\pm0\pm5$	12±0±12
W+jets	$18\pm9\pm7$	$3\pm1\pm2$
Z+jets	$103 \pm 33 \pm 9$	$11 \pm 10 \pm 1$
Single top	$2\pm1\pm1$	$1\pm1\pm1$
VV	$5{\pm}0{\pm}0$	$0\pm0\pm0$
QCD	6	1
sum	140±36	28±16
Data	143	30

No significant excess above the SM expectation is found

95% CL exclusion limits are computed with CLs (RooStats)

2014-04-08

Kirill Skovpen - Top LHC-France meeting

Conclusion

- The study of FCNC processes is important for precise tests of the SM as well as probing new physics
- With the LHC experiments the most stringent limits on the processes with FCNC anomalous couplings in single top production have been set
- Anticipating new results soon on monotop search (Clermont-Ferrand, ATLAS) and FCNC tZ at 8 TeV (IPHC, CMS)
- Run II would improve the sensitivity to FCNC even further

