Heavy neutrino decays at short-baseline experiments

Mark Ross-Lonergan
IPPP Durham University

Invisibles Workshop 2014 - Institut des Cordeliers
15th July 2014

Based on work in progress with Silvia Pascoli and Peter Ballett

Heavy neutrino decays at short-baseline experiments

Heavy neutrino here refers to any standard model singlet (sterile neutrino) whose mass is $\mathcal{O}(1 \rightarrow 400)$ MeV

These are non-oscillatory effects, the direct decay products of the produced steriles are investigated.

Outline

- Phenomenology of sterile decays at SBL facilities
- Case study: MiniBooNE low-energy anomaly
- Decays in flight
- Decays in transit
- Summary and Outlook

Sterile Production at SBL

• Directly produced in meson decays alongside that of the regular neutrino beam, at first approx $\phi_s \approx |U_{f4}|^2 \phi_{V_f}$

Approach uses full spectral analysis of steriles based on T.Asaka et al. hep-ph/1212.1062

• Extend SBL study to include faster decaying steriles, and their contribution to the flux impinging the detector^{[2][3]}

[2]Palomares-Ruiz, Pascoli, Schwetz. hep-ph/0505216.

[3] Ma, Rajasekaran, Stancu. hep-ph/0505216.

• Depending on |U|, M_s and Γ_{Decay} , two regimes of decay possible

• Depending on |U|, M_s and Γ_{Decay} , two regimes of decay possible

- Larger Γ_{Decay} and $|U_{\mu 4}|^2$
- Decay to SM v's before detector
- Increased number/flavour ratios in v_f CCQE events

• Depending on |U|, M_s and Γ_{Decay} , two regimes of decay possible

Decay in Transit

- Larger Γ_{Decay} and $|U_{\mu 4}|^2$
- Decay to SM v's before detector
- Increased number/flavour ratios in v_f CCQE events

Decay in Flight

- \bullet Smaller $\Gamma_{
 m Decay}$ and $|U_{\mu 4}|^2$
- Some survive and decay inside detector
- Decay fakes CCQE events

• Depending on |U|, M_s and Γ_{Decay} , two regimes of decay possible

Detector

$$\frac{\partial R}{\partial E_{\gamma}} = \text{VOL} \times \text{POT} \times \varepsilon(E_{\gamma}) \times \int_{0}^{\infty} e^{-\frac{\Gamma_{\text{Tot}}L}{\gamma\beta}} \frac{1}{\gamma} \frac{\partial \Gamma_{\text{eff}}}{\partial E_{\gamma}} \frac{\partial \phi_{v_{s}}}{\partial E_{S}} dE_{s}$$

 v_s Beam

E.g ay Products

Radiative Decay

B-L Gauge Z' Coupling

CCQE events

Case Study: MiniBooNE

 Modern SBL experiment operated at Fermilab

- 6m diameter mineral oil cherenkov detector
- Situated 550m downstream of proton target
- Observed anomalous low-energy (< 400 MeV) excess in electron like events

For example, the two body decay to photon and neutrino, parameterized by Γ_{eff} where the photon is mis-identified as an electron

Energy Spectrum, Shape only

For example, the two body decay to photon and neutrino, parameterized by Γ_{eff} where the photon is mis-identified as an electron

Energy Spectrum, Shape only

For example, the two body decay to photon and neutrino, parameterized by Γ_{eff} where the photon is mis-identified as an electron

Energy Spectrum

Energy alone, one can reject background only model in favour of that of decaying steriles at

 $\approx 3\sigma$

For example, the two body decay to photon and neutrino, parameterized by Γ_{eff} where the photon is mis-identified as an electron

Energy Spectrum

Energy alone, one can reject background only model in favour of that of decaying steriles at $\approx 3\sigma$

Angular Spectrum

Angular Spectrum *significantly* more constraining for decay in flight models

Decay in Transit

- If the sterile has a much shorter lifespan, the decay products integrated over the baseline must be considered
- Hadronic and charged leptonic remnants will be absorbed inside the dirt in transit
- Any final state with SM neutrino's could alter the observed CCQE flavour ratios and give rise to an anomalous signal

Energy Spectrum

Decay in Transit

- If the sterile has a much shorter lifespan, the decay products integrated over the baseline must be considered
- Hadronic and charged leptonic remnants will be absorbed inside the dirt in transit
- Any final state with SM neutrino's could alter the observed CCQE flavour ratios and give rise to an anomalous signal

Energy Spectrum

Angular Spectrum

Several models in the literature use steriles in the parameter range such that they may be affected by decays in transit/flight.

S. Gninenko^[4] uses an additional anomalous magnetic moment to enhance sterile-photon decays, and uses detector-side production to propose explanations to both the LSND and MiniBooNE anomaly

[4] S. Gninenko. hep-ph/1009.5536

Summary and Outlook

- Regards the MiniBooNE low-energy events, models which decay in flight or in transit can be *ruled out* as the source for the anomalous signal by their angular and energy spectral shapes respectively, irregardless of irrespective space.
- Furthermore, models which take advantage of shorter lifetimes must be careful not to generate extra unwanted events from sterile decay products, but this is model and parameter dependant.
- Ongoing work is considering further decay channels, and the possibility of putting competitive bounds on specific models' parameter space using SBL experiments