Highlights on Neutrino Astron

Teresa Montaruli

ITN INVISIBLES Workshop 2014 Paris, 18th July 2014

Most of the presented results are obtained by a great team of people capable of leaving forever a sign of their explorations in the South Pole ice!

http://icecube.wisc.edu/gallery

The IceCube Collaboration

10 countries, 40 institutions, ~260 collaborators

<u>http://icecube.wisc.edu</u>

University of Alberta

Clark Atlanta University Georgia Institute of Technology Lawrence Berkeley National Laboratory Ohio State University Pennsylvania State University Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California-Berkeley University of California-Irvine University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls

University of Oxford ·

Université Libre de Bruxelles Université de Mons University of Gent Vrije Universiteit Brussel

> University of Adelaide

University of Canterbury Stockholm University

Deutsches Elektronen-Synchrotron Humboldt Universität Ruhr-Universität Bochum RWTH Aachen University Technische Universität München Universität Bonn Universität Dortmund Universität Mainz Universität Wuppertal

Ecole Polytechnique Fédérale de Lausanne University of Geneva

International Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY) Inoue Foundation for Science, Japan Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR)- University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

...neutrinos from the cosmos

Ve

photon arrival timings: red - early yellow orange green blue - late

Theme I: Cosmic Particle Acceleration

what are the sources of the huge luminosity we observe in photons and cosmic rays?
how do the accelerators work? gamma-ray bursts, black holes, SNRs

magnetic fields in the local environment and in sources

Theme 2: Fundamental Physics

what is the nature of **dark matter** and where it is located?
Neutrino oscillations and hadronic interactions (kaons, charm)
Is the speed of light a constant for high energy neutrinos (VLI)

The IceCube bservatory

South Pole Station

Geographic South Pole

IceCube outline

Skiway -

The IceCube Observatory

- ► 5160 PMTs
- ► 1 km³ volume
- ► 86 strings
- 17 m PMT-PMT spacing per string
- 125 m string spacing
- Completed 2010

Deep ice is a dark transparent medium

Neutrino Signal and Background

 π^0

... each Digital Optical Module independently collects light signals like this, digitizes them,

...time stamps them with 2 nanoseconds precision, and sends them to a computer that sorts them events...

Run 114305 Event 10091078

[Ons, 14000ns]

Color = hit times

Indirect Searches for Dark Matter

Look at objects where dark matter might have accumulated gravitationally over the evolution of the Universe

Dark Matter Searches in IceCube

IceCube searches for neutrinos from accumulations of WIMPs

Various Potential Dark Matter Signals

Various analyses looking at different source distributions

Galactic Halo:

- IC22 PRD 8 (2011) 022004
- **Galactic Center:**
- IC79 in preparation
- **Dwarf spheroids:**
- IC59 PRD 88 (2013) 122001

Neutrinos from WIMP annihilations in the Sun

317 days of livetime, down to neutrino energies of ~10GeV!

Neutrinos from WIMP annihilations in the Sun

90% CL χ-p cross-section (spin-independent)

90% CL χ-p cross-section (spin-dependent)

- Assume : Capture and annihilation have reached equilibrium in the Sun -> Set limits on WIMP-nucleon scattering cross section
- Translation into Direct detection parameter almost model indepdent
- Most stringent SD cross-section limit for most models

IceCube, PRL 110 (2013) 131302

Neutrino Oscillations with IceCube

>

The FUTURE

PINGU

Further in-fill of deep core. Lower the energy threshold few GeV Oscillations and Neutrino Mass Hierarchy Dark Matter

KM3NeT outlook

Diffuse Fluxes of Neutrinos

Evidence : Upgoing Muons in IceCube 79 and 86-1

Standard through going-muon diffuse analysis

- ►The best-fit astrophysical flux: 1.01 × 10⁻⁸ E⁻² GeV cm⁻² s⁻¹ sr⁻¹
- The bkg-only hypothesis is disfavored:

3.90, 659 d

Some Hints : I. Cascades in IceCube 40

Some Hints: 3. PeV Neutrinos

- Two very interesting cascade events found in IceCube (IC79/IC86)
- Analysis targeting much higher energy all flavor neutrinos (related to GZK cutoff)
- Expected background:
 0.08 ± 0.05
 2.80
- Significance:

Too low in energy for GZK Too high in energy for atmospheric

IceCUbe PRL111 (2013)

Muon Veto efficiency tagged on data 6 ± 3.4 muons per 2 years

High Energy Starting Events (HESE): 3 YEARS 37 EVENTS

9 track-like events

I° ang. resolution Muon takes some energy away

28 cascade-like events

10° – 45° ang. resolution 15% visible energy resolution

Estimated background:

- ▶ 6.6^{+5.9}-1.6 atm. neutrinos
- ▶ 8.4±4.2 atm. muons

5.70 full likelihood fit of all components $0.95 \pm 0.3 \times 10^{-8} E^{-2} GeV cm^{-2} s^{-1} sr^{-1}$ ICeCube arXiv:1405.5303

Bulog-dn

down-going

Declination Distribution

Or: "zenith Distribution" because we are at the South Pole

Compatible with isotropic flux

upgoing events absorbed in Earth

Multi-Messenger approach

AGN, SNRs, GRBs,..

black hole

They point to the sources but they get absorbed and have multiple emission mechanisms. Also produced by leptonic acceleration, inverse Compton and synchrotron emission

NEUTRINOS

They are neutral and weak v particles: point to the source carrying information from the deepest parts.

● COSMIC RAYS

Deflected by magnetic fields $(E < 10^{19} \text{ eV})$

air shower

Earth

Supernova Remnants in the TeV

? E_{max} = Z x 100 TeV < E_{knee} ?

Indirect evidence of protons: clouds.

Fit of spectra prefer GeV pions (Fermi Agile) A Fermi, Science 15 Feb 2013 IC 443

Chandra

SN 1006

The gamma-ray liaison

Cygnus region in neutrinos

Most Significant Deviation

6 TeV associations with supernova remnants based on Milagro observations.
p-value of 2% *a posteriori* in IC40.
Evolved from under-fluctuation in IC59 and 20% in IC59+IC79.
p-value in IC86+IC79+IC59: 1.99%

*F. Halzen, A. Kappes and A. O'Murchadha (Phys. Rev. D78:063004, 2008)

Neutrinos coincident with GRBs?

Diffuse fluxes

Diffuse fluxes

Diffuse fluxes

Conclusions

We fit a E⁻² - like spectrum at the level of the expected upper bound on cosmic neutrinos from measured CRs Neutrinos play a relevant role for DM searches

Thank You for your attention

