Determination of the neutrino mass ordering

Invisibles 14 workshop, 14-18 July 2014, Paris

Thomas Schwetz

Stockholms universitet

Blennow, Coloma, Huber, Schwetz, arXiv:1311.1822 Blennow, Schwetz, arXiv:1306.3988 Blennow, Schwetz, arXiv:1203.3388

T. Schwetz

2

almost complete degeneracy in present data

T. Schwetz

On parameterization and conventions

- We know that the mass state with a dominant V_e component (" V_1 ") is the lighter of the ($V_1 V_2$) pair ($m_1 < m_2$)
- We do not know whether the mass state with the smallest V_e component (" V_3 ") is lighter or heavier than the ($V_1 V_2$) pair (sign of Δm^2_{31})

normal versus abnormal

for inverted ordering lepton mixing is very different from quarks:

normal versus abnormal

for inverted ordering lepton mixing is very different from quarks:

 the neutrino mass state mostly related to the 1 st generation is not the lightest

normal versus abnormal

for inverted ordering lepton mixing is very different from quarks:

- the neutrino mass state mostly related to the 1 st generation is not the lightest
- there is strong degeneracy between at least two mass states

$$deg \equiv \frac{m_2 - m_1}{\overline{m}} = 2 \frac{\Delta m_{21}^2}{(m_1 + m_2)^2}$$
$$\approx \frac{1}{2} \frac{\Delta m_{21}^2}{|\Delta m_{31}^2| + m_3^2} \le \frac{1}{2} \frac{\Delta m_{21}^2}{|\Delta m_{31}^2|}$$
$$1.3 \times 10^{-3} \left(\frac{\sum m_i}{0.5 \,\mathrm{eV}}\right)^{-2} \le deg \le 1.8 \times 10^{-2}$$

- Matter effect in the 1-3 sector
- Interference of (vacuum) oscillations with Δm^2_{21} and Δm^2_{31}

- Matter effect in the 1-3 sector
- Interference of (vacuum) oscillations with Δm^2_{21} and Δm^2_{31}

Both methods depend on θ_{13}

• many experimental options are open, thanks to "large" value of θ_{13}

- Matter effect in the 1-3 sector
- Interference of (vacuum) oscillations with Δm^2_{21} and Δm^2_{31}

not discussed here:

- Supernova: need to get lucky (to have a SN explode + have detector)
- neutrino mass from cosmology
- other ideas....

- Matter effect in the 1-3 sector
 - Iong-baseline accelerator experiments NOvA, LBNE, LBNO, ESS-SB, NuFact
 - atmospheric neutrinos INO, PINGU, ORCA, HyperK
- Interference of oscillations with Δm^2_{21} and Δm^2_{31}
 - Reactor experiment at ~60 km JUNO, RENO50

Matter effect - MSW resonance

$$\sin^2 2\theta_{\rm mat} = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - A)^2} \qquad A \equiv \pm \frac{2EV}{\Delta m^2}$$

resonance for $\cos 2\theta = A$

T. Schwetz

look for matter effect in $V_{\mu} \rightarrow V_{e}$ transitions

$$P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2(1-A)\Delta}{(1-A)^2} + \sin 2\theta_{13} \hat{\alpha} \sin 2\theta_{23} \frac{\sin(1-A)\Delta}{1-A} \frac{\sin A\Delta}{A} \cos(\Delta + \delta_{\rm CP}) + \hat{\alpha}^2 \cos^2 \theta_{23} \frac{\sin^2 A\Delta}{A^2}$$

+
$$\hat{\alpha}^2 \cos^2 \theta_{23} - A^2$$

with
 $\Delta \equiv \frac{\Delta m_{31}^2 L}{4E_{\nu}}, \quad \hat{\alpha} \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \sin 2\theta_{12}, \quad A \equiv \frac{2E_{\nu}V}{\Delta m_{31}^2}$

correlation with CP phase important - "sign degeneracy"

31

look for matter effect in $V_{\mu} \rightarrow V_{e}$ transitions

 In vaccum, P_{µe} for neutrinos and antineutrinos are invariant under
 Minakata, Nunokawa, JHEP 01

$$\Delta m_{31}^2 \to -\Delta m_{31}^2 \,, \quad \delta_{\rm CP} = \pi - \delta_{\rm CP}$$

 Leading order in A << 1 cannot break the degeneracy
 TS, hep-ph/0703279

need to observe "strong" matter effect

look for matter effect in $V_{\mu} \rightarrow V_{e}$ transitions

size of the matter effect:

$$A \simeq 0.09 \, \left(\frac{E}{\text{GeV}}\right) \left(\frac{|\Delta m_{31}^2|}{2.5 \times 10^{-3} \,\text{eV}^2}\right)^{-1}$$

for experiments at the 1st osc. max, $|\Delta m_{31}^2|L/2E \simeq \pi$, and

$$A \simeq 0.02 \, \left(\frac{L}{100 \, \mathrm{km}}\right)$$

need $L \gtrsim 2000$ km and $E_{\nu} \gtrsim 5$ GeV in order to reach the regime of strong matter effect $A \gtrsim 0.5$.

T. Schwetz

- NOvA: Fermilab → 820 km have seen already few neutrinos!
- LBNE: Fermilab \rightarrow Homestake, I 300 km LAr detector (10 - 34 kt)
- LBNO: CERN \rightarrow ? (Finnland 2300 km) LAr detector (20 - ? kt)
- ESS-SB: Lund → ? (360 / 540 km)
 WC detector
- Neutrino Factory: ?

To quantify the sensitivity of an experiment we need to specify two numbers (errors of first and second kind):

- Decide on a CL at which you want to exclude a certain hypothesis.
- Determine how likely it is that a given experiment will exclude the hypothesis at that CL.

define a test statistics and find out its distribution

$$T = \min_{\theta \in \mathrm{IO}} \chi^2(\theta) - \min_{\theta \in \mathrm{NO}} \chi^2(\theta)$$

T. Schwetz

Under certain conditions T is normal distributed:

 $T = \mathcal{N}(\pm T_0, 2\sqrt{T_0})$

Qian et al, 1210.3651 Blennow et al, 1311.1822

with

$$T_0^{\text{NO}}(\theta_0) = \min_{\theta \in \text{IO}} \sum_i \frac{[\mu_i^{\text{NO}}(\theta_0) - \mu_i^{\text{IO}}(\theta)]^2}{\sigma_i^2}$$

Under certain conditions T is normal distributed:

 $T = \mathcal{N}(\pm T_0, 2\sqrt{T_0})$

Qian et al, 1210.3651 Blennow et al, 1311.1822

Under certain conditions T is normal distributed:

 $T = \mathcal{N}(\pm T_0, 2\sqrt{T_0})$

Qian et al, 1210.3651 Blennow et al, 1311.1822

with

$$T_0^{\text{NO}}(\theta_0) = \min_{\theta \in \text{IO}} \sum_i \frac{[\mu_i^{\text{NO}}(\theta_0) - \mu_i^{\text{IO}}(\theta)]^2}{\sigma_i^2}$$

 For most experiments we simulated the Gaussian approximation is good (to excellent)
 largest deviations found for NOvA

NOvA and LBNE

T. Schwetz

Blennow, Coloma, Huber, TS, 1311.1822

Other LBL sensitivities

Atmospheric neutrinos

atmospheric neutrino fluxes

 $\phi_{\nu_{\mu}}, \phi_{\nu_{e}}, \phi_{\bar{\nu}_{\mu}}, \phi_{\bar{\nu}_{e}}$

Atmospheric neutrinos

atmospheric neutrino fluxes

 $\phi_{\nu_{\mu}}, \phi_{\nu_{e}}, \phi_{\bar{\nu}_{\mu}}, \phi_{\bar{\nu}_{e}}$

ex.: μ -like events $N_{\mu} \sim [\phi_{\nu_{\mu}} P_{\nu_{\mu} \to \nu_{\mu}} + \phi_{\nu_{e}} P_{\nu_{e} \to \nu_{\mu}}] \sigma_{\nu_{\mu}}$

Akhmedov, Maltoni, Smirnov 06

Atmospheric neutrinos

atmospheric neutrino fluxes

 $\phi_{\nu_{\mu}}, \phi_{\nu_{e}}, \phi_{\bar{\nu}_{\mu}}, \phi_{\bar{\nu}_{e}}$

ex.: μ -like events $N_{\mu} \sim [\phi_{\nu_{\mu}} P_{\nu_{\mu} \to \nu_{\mu}} + \phi_{\nu_{e}} P_{\nu_{e} \to \nu_{\mu}}] \sigma_{\nu_{\mu}}$

$$+ [\phi_{\bar{\nu}_{\mu}} P_{\bar{\nu}_{\mu} \to \bar{\nu}_{\mu}} + \phi_{\bar{\nu}_{e}} P_{\bar{\nu}_{e} \to \bar{\nu}_{\mu}}]\sigma_{\bar{\nu}_{\mu}}$$

Akhmedov, Maltoni, Smirnov 06

Atmospheric neutrinos

atmospheric neutrino fluxes

$$\phi_{\nu_{\mu}}, \, \phi_{\nu_{e}}, \, \phi_{\overline{\nu}_{\mu}}, \, \phi_{\overline{\nu}_{e}}$$

ex.: μ -like events $N_{\mu} \sim [\phi_{\nu_{\mu}} P_{\nu_{\mu} \to \nu_{\mu}} + \phi_{\nu_{e}} P_{\nu_{e} \to \nu_{\mu}}] \sigma_{\nu_{\mu}}$ $+ [\phi_{\bar{\nu}_{\mu}} P_{\bar{\nu}_{\mu} \to \bar{\nu}_{\mu}} + \phi_{\bar{\nu}_{e}} P_{\bar{\nu}_{e} \to \bar{\nu}_{\mu}}] \sigma_{\bar{\nu}_{\mu}}$

energy and angular reconstruction is crucial!

Akhmedov, Maltoni, Smirnov 06

Atmospheric neutrino experiments

- INO: magnetized iron, 50-100 kt
 µ-like events with charge ID
- PINGU / ORCA: ice/water, multi-Mt
 µ-like (+shower) events, no charge ID
- Hyper-K: water, sub-Mt
 µ-like and e-like events,
 no charge ID (maybe statistically)

PINGU

Mass ordering from a reactor experiment

$$P_{ee}^{\text{vac}} = 1 - c_{13}^4 \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right) \\ -\sin^2 2\theta_{13} \left[c_{12}^2 \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + s_{12}^2 \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)\right]$$

Petcov, Piai, hep-ph/0112074

 \overline{v}_e disappearance at intermediate baseline (40~60 km)

Mass ordering from a reactor experiment

Learned, Dye, Pakvasa, Svoboda, 06 Zhan, Wang, Cao, Wen, 08

- there are two large frequencies: Δm^2_{31} and Δm^2_{32} • θ_{12} is non-maximal and we know the sign of Δm^2_{21}
- for NO (IO) the larger (smaller) frequency dominates

Mass ordering from a reactor experiment

 good energy resolution <3% (KamLAND ~6%)
 energy scale has to be under control at % level

it has to be **BIG** :
 ~4000 GW kt yr → 20 kt
 detector (KamLAND: 1 kt)

Dwyer, McKeown, Qian, Vogel, Wang, Zhang, 1208.1551, Capozzi, Lisi, Marrone, 1309.1638 many more

Sensitivity comparison Blennow, Coloma, Huber, TS, 1311.1822

FIG. 12: The left (right) panel shows the median sensitivity in number of sigmas for rejecting the IO (NO) if the NO (IO) is true for different facilities as a function of the date. The width of the bands correspond to different true values of the CP phase δ for NO ν A and LBNE, different true values of θ_{23} between 40° and 50° for INO and PINGU, and energy resolution between $3\%\sqrt{1 \text{ MeV}/E}$ and $3.5\%\sqrt{1 \text{ MeV}/E}$ for JUNO. For the long baseline experiments, the bands with solid (dashed) contours correspond to a true value for θ_{23} of 40° (50°). In all cases, octant degeneracies are fully searched for. *T. Schwetz*

Sensitivity comparison Blennow, Coloma, Huber, TS, 1311.1822

probability to exclude wrong ordering at 3σ

Explore synergy between different experiments

combine measurements of $|\Delta m^2_{31}|$ from PINGU and JUNO

Blennow, Schwetz, arXiv:1306.3988

requires more careful investigations wrt to energy scale uncertainties - both for JUNO and PINGU!

- thanks to large θ₁₃ several options are open to determine the neutrino mass ordering
- 3σ determination likely within 5-10 years
- combined fit to several experiments may be usefull
- more significant determination will most likely require a large-scale experiment

Cosmology sensitivity to neutrino mass

