Sterile Neutrinos: Cosmology vs Short BaseLine experiments

Invisibles workshop, July 2014, Paris Maria Archidiacono

invisibles neutrinos, dark matter & dark energy physics

What can we really measure with cosmology?

If sub-eV!

$$\begin{split} \Omega_{v}h^{2} &= \left(\sum_{i=1}^{3} m_{v_{i}} + m_{eff}^{sterile}\right) / 93.14 \ eV \\ m_{sterile}^{eff} &= (T_{s} / T_{v}) m_{sterile}^{thermal} = \left(\Delta N_{eff}\right)^{3/4} m_{sterile}^{thermal} \\ N_{eff} &= 3.046 + \Delta N_{eff} \end{split}$$

How can we measure N_{eff} with cosmological data?

Friedmann equation:
$$\left(\frac{H}{H_0}\right)^2 = \frac{\Omega_M}{a^3} + \frac{\Omega_{\gamma}}{a^4} + \frac{\Omega_{\nu}}{a^4} + \Omega_{\Lambda} + \frac{\Omega_{DR}}{a^4}$$

increase of the expansion rate. Earlier freeze-out! Impact on primordial abundances

How can we measure the neutrino mass with cosmological data?

Neutrino mass effects on CMB

Neutrino mass effects on MPK

Free-streaming: Effects on matter power spectrum: Suppression on scales smaller than the scale of the horizon at the nonrelativistic transition.

Lesgourgues & Pastor (2012)

Cosmological constraints on neutrino number and mass after BICEP-2

	СМВ	CMB+all	MA, Fornengo, Gariazzo, Giunti, Hannestad, Lavader (2014)
ΔN_{eff}	0.82 _{-0.57} +0.40	0.89 _{-0.37} +0.34	2.0 1.6 1.4 1.4 1.4 1.4 1.2012 1.6
m _s (eV)	<0.85 (95%cl)	0.44 _{-0.16} +0.11	$\begin{array}{c} \begin{array}{c} & & & & \\ $
			$m_s[eV]$

	СМВ	CMB+all
ΔN_{eff}	0.82 _{-0.57} +0.40	0.89 _{-0.37} +0.34
m_s (eV)	<0.85 (95%cl)	0.44 _{-0.16} +0.11

Combining Cosmology and SBL...

	СМВ	CMB+all	MA, Fornengo, Gariazzo, Giunti, Hannestad, Lavader (2014)
ΔN_{eff}	0.82 _{-0.57} +0.40	$0.89_{-0.37}^{+0.34}$	$SBL+Planck+WP+high-\ell+BICEP2(9b)+LSS+H_0+CFHTLenS+PSZ$ SBL+Planck+WP+high-\ell+BICEP2(9b)+LSS+H_0+CFHTLenS+PSZ SBL+Planck+WP+high-\ell+BICEP2(9b)+LSS+H_0+CFHTLenS+PSZ 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
m _s (ev)	(95%cl)	0.44 _{-0.16}	
	CMB +SBL	CMB+all +SBL	
ΔN_{eff}	<0.63 (95%cl)	<0.42 (95%cl)	
m_s (eV)	1.21 _{-0.13} +0.14	1.19 _{-0.12} +0.15	
$\Omega_s h^2 = \frac{(\Delta N_{eff})^{3/4} m_s}{94 eV}$			1eV sterile neutrino is ruled out by cosmology, unless

Solutions:

How can cosmology face SBL? Partial thermalization:

- Non-standard interactions MA, Hannestad, Hansen, Tram (2014); Hannestad, Hansen, Tram (2013); Dasgupta, Kopp (2013)
- Lepton asymmetry Mirizzi, Saviano, Miele, Serpico (2012); Hannestad, Tamborra, Tram (2012)
- Low reheating temperature Rehagen, Gelimini (2014)
- Non-standard expansion rate at MeV scale

Non-standard interactions

$$G_X = \frac{g_X^2}{M_X^2}$$

 $M_X > 100 MeV$

Hannestad, Hansen, Tram (2013)

Non-standard interactions

Future perspectives?

Euclid

Euclid produces a legacy dataset with images and photometry of more than a billion galaxies and several million spectra, out to high redshifts z > 2.

Basse, Bjaelde, Hamann, Hannestad, Wong (2013)

Conclusions

- Despite the progress of precision cosmology, N_{eff} is still an open question.
- The tension between cosmology and Short BaseLine exacerbates the debate: light sterile neutrinos are too massive for cosmology
- \checkmark Solutions \rightarrow tension with BBN
- Euclid: final answer on the mass sum, but not on the single mass eigenstate