

One loop structure of effective non-linear Lagrangian with light dynamical Higgs

B. Gavela, KK, P. Machado, S. Rigolin, S. Saa in preparation presented by Kirill Kanshin

Chiral perturbation theory at one loop

Expansion of terms of energy $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_2 + \mathcal{L}_4$ (physical) amplitudes are renormalizable order by order

 $\mathcal{L}_0 + \mathcal{L}_2$ used at loop level, \mathcal{L}_4 as counterterm source

Renormalization of off-shell processes: -Define running of physical parameters -Consistency check of the \mathcal{L}_4

Setup

1. Only longitudinal components of gauge fields ("pions")

2.Boson sector only, including light higgs

3.No custodial breaking terms

4.Renormalization of processes with up to 4 external legs

5. General U-matrix parameterization

6. Off-shell amplitudes renormalization, div parts only.

General U-matrix parameterization

Three would-be goldstones analogous to pions in QCD $oldsymbol{\pi} = \{\pi_1, \pi_2, \pi_3\}$

Represented by matrix $\mathbf{U}(\boldsymbol{\pi})$, transforming linearly

 $\mathbf{U}' = L\mathbf{U}R^{\dagger}$ under $SU(2)_L \times SU(2)_R$

We define a general parameterization of $\mathbf{U}(\boldsymbol{\pi}),$

$$\mathbf{U} = 1 - \frac{\pi^2}{2v^2} - \left(\frac{\eta}{1} + \frac{1}{8}\right)\frac{\pi^4}{v^4} + \frac{i\boldsymbol{\tau}\boldsymbol{\pi}}{v}\left(1 + \frac{\eta}{v^2}\frac{\pi^2}{v^2}\right) + O(\boldsymbol{\pi}^5)$$

$$\eta = 0 \Rightarrow \mathbf{U} = \sqrt{1 - \pi^2 / v^2} + i \boldsymbol{\tau} \boldsymbol{\pi} / v$$
$$\eta = -1/6 \Rightarrow \mathbf{U} = e^{i \boldsymbol{\tau} \boldsymbol{\pi} / v}$$

All the physical quantities are η independent

Weinberg '68

Lagrangian set

$$\mathcal{L}_0 = -\lambda_1 v^3 h - \frac{1}{2} m_h^2 h^2 - \frac{\lambda_3}{3!} v h^3 - \frac{\lambda_4}{4!} h^4$$

$$\mathcal{L}_2 = \frac{v^2}{4} \operatorname{Tr}[\partial_{\mu} \mathbf{U} \partial^{\mu} \mathbf{U}^{\dagger}] \mathcal{F}_C(h) + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h \ \mathcal{F}_H(h)$$

$$\mathcal{L}_{4} = (\mathrm{Tr}[\mathbf{V}_{\mu}\mathbf{V}^{\mu}])^{2} c_{6}\mathcal{F}_{6}(h) + (\mathrm{Tr}[\mathbf{V}_{\mu}\mathbf{V}_{\nu}])^{2} c_{11}\mathcal{F}_{11}(h) + \mathrm{Tr}[\mathcal{D}_{\mu}\mathbf{V}^{\mu}\mathcal{D}_{\nu}\mathbf{V}^{\nu}]c_{9}\mathcal{F}_{9}(h) + \mathrm{Tr}[\mathbf{V}_{\nu}\mathcal{D}_{\mu}\mathbf{V}^{\mu}] \frac{\partial^{\nu}h}{v} c_{10}\mathcal{F}_{10}(h) + \frac{\partial_{\nu}h\partial^{\nu}h}{v^{2}} c_{20}\mathcal{F}_{20}(h) + \mathrm{Tr}[\mathbf{V}_{\mu}\mathbf{V}_{\nu}] \frac{\partial^{\mu}h\partial^{\nu}h}{v^{2}} c_{8}\mathcal{F}_{8}(h) + \frac{\partial_{\mu}h\partial^{\mu}h}{v^{3}} c_{h2}\mathcal{F}_{h2}(h) + \frac{(\partial_{\mu}h\partial^{\mu}h)^{2}}{v^{4}} c_{DH}\mathcal{F}_{DH}(h) + \frac{\partial_{\mu}h\partial^{\mu}h}{v^{3}} c_{h2}\mathcal{F}_{h2}(h) + \frac{(\partial_{\mu}h\partial^{\mu}h)^{2}}{v^{4}} c_{DH}\mathcal{F}_{DH}(h) + \frac{\mathcal{V}_{\mu}}{\mathcal{F}_{i}(h)} = 1 + 2a_{i}h/v + b_{i}h^{2}/v^{2} \quad \text{Alonso, Gavela, Merlo, Rigolin, and Yepes '12$$

Kanshin K. University of Padova / INFN

Higgs/pion scatterings renormalization off mass shell

Pion scattering amplitudes in non linear sigma model has been extensively studied in the past.

What happens if singlet scalar is added? $\mathcal{F}_i(h) = 1 + 2a_ih/v + b_ih^2/v^2$

3 point functions are new and are possible because higgs is not exact goldstone boson of global symmetry group breakdown

 $\lambda_1^{
m bare} = \delta \lambda_1 ~~{
m to~cancel~divergences} \ \lambda_1^{
m ren} = 0 ~~{
m for~vacuum~stability}$

Self energies

renormalization of $\Box h \Box h$ is induced

Kanshin K	, .•	
University	of Padova	/ INFN

3,4-point functions

On shell calculations of these types:

Delgado, Dobado, and Llanes-Estrada '13 Espriu, Mescia, Yencho '13 Delgado, Dobado, Herrero, and Sanz-Cillero '14

. . .

3,4-point functions

- 1. $L_{0,2,4}$ parameters renormalized as $x_b = x_{ren} + \delta x$ and δx is independent on η .
- 2. Off-shell **non-chiral-invariant divergences** are generated!!!
- 3. They cannot be absorbed into $L_{0,2,4}$ parameters.
- 4. No impact on-shell.

Non-invariant divergences

In nonlinear sigma model:

1. Using modified Feynman rules (non-covariant)

Gerstein, Jackiw, Weinberg, and Lee '71

2. Modified background field method

Honerkamp '72 Kazakov, Pervushin, and Pushkin '76

3. Field redefinition Appelquist, Bernard '81

$$\pi_{i} \to \pi_{i} \left(1 + \frac{\alpha_{1}}{v^{4}} \pi \Box \pi + \frac{\alpha_{2}}{v^{4}} \partial_{\mu} \pi \partial^{\mu} \pi + \frac{\beta}{v^{3}} \Box h + \frac{\tilde{\gamma}_{1}}{v^{4}} h \Box h + \frac{\gamma_{2}}{v^{4}} \partial_{\mu} h \partial^{\mu} h \right) + \frac{\alpha_{3}}{v^{4}} \Box \pi_{i} (\pi \pi) + \frac{\alpha_{4}}{v^{4}} \partial_{\mu} \pi_{i} (\pi \partial^{\mu} \pi),$$

$$\begin{aligned} \pi_i \to \pi_i \left(1 + \frac{\alpha_1}{v^4} \pi \Box \pi + \frac{\alpha_2}{v^4} \partial_\mu \pi \partial^\mu \pi + \frac{\beta}{v^3} \Box h + \frac{\tilde{\gamma}_1}{v^4} h \Box h + \frac{\gamma_2}{v^4} \partial_\mu h \partial^\mu h \right) + \\ &+ \frac{\alpha_3}{v^4} \Box \pi_i (\pi \pi) + \frac{\alpha_4}{v^4} \partial_\mu \pi_i (\pi \partial^\mu \pi), \\ \Delta \mathcal{L} &= -\pi \Box \pi \left(\frac{\alpha_1}{v^4} \pi \Box \pi + \frac{\alpha_2}{v^4} \partial_\mu \pi \partial^\mu \pi + \frac{\beta}{v^3} \Box h + \frac{\gamma_1}{v^4} h \Box h + \frac{\gamma_2}{v^4} \partial_\mu h \partial^\mu h \right) - \\ &- \frac{\alpha_3}{v^4} (\Box \pi \Box \pi) (\pi \pi) - \frac{\alpha_4}{v^4} (\Box \pi \partial_\mu \pi) (\pi \partial^\mu \pi) - \frac{2a_C\beta}{v^4} \pi \partial_\mu \pi \partial^\mu h \Box h, \end{aligned}$$

$$\pi_{i} \to \pi_{i} \left(1 + \frac{\alpha_{1}}{v^{4}} \pi \Box \pi + \frac{\alpha_{2}}{v^{4}} \partial_{\mu} \pi \partial^{\mu} \pi + \frac{\beta}{v^{3}} \Box h + \frac{\tilde{\gamma}_{1}}{v^{4}} h \Box h + \frac{\gamma_{2}}{v^{4}} \partial_{\mu} h \partial^{\mu} h \right) + \frac{\alpha_{3}}{v^{4}} \Box \pi_{i} (\pi \pi) + \frac{\alpha_{4}}{v^{4}} \partial_{\mu} \pi_{i} (\pi \partial^{\mu} \pi),$$

$$\Delta \mathcal{L} = -\pi \Box \pi \left(\frac{\alpha_{1}}{v^{4}} \pi \Box \pi + \frac{\alpha_{2}}{v^{4}} \partial_{\mu} \pi \partial^{\mu} \pi + \frac{\beta}{v^{3}} \Box h + \frac{\gamma_{1}}{v^{4}} h \Box h + \frac{\gamma_{2}}{v^{4}} \partial_{\mu} h \partial^{\mu} h \right) - \frac{\alpha_{3}}{v^{4}} (\Box \pi \Box \pi) (\pi \pi) - \frac{\alpha_{4}}{v^{4}} (\Box \pi \partial_{\mu} \pi) (\pi \partial^{\mu} \pi) - \frac{2a_{C}\beta}{v^{4}} \pi \partial_{\mu} \pi \partial^{\mu} h \Box h,$$

$$\pi \to \pi + \delta \pi, \qquad \mathcal{L} \to \mathcal{L} + \delta \pi \left(\frac{\delta \mathcal{L}}{\delta \pi} - \partial_{\mu} \frac{\delta \mathcal{L}}{\delta \partial_{\mu} \pi} \right)$$

Field redifenition generate additional piece in Lagrangian, which is proportional to EOM. It vanish if EOM is satisfied.

Ostrogradskiy 1850; Grosse-Knetter '94; Scherer, Fearing '94; Arzt '95

Kanshin Universi

К.		One loop structure of effective non-linear
ty of Padova / INFN	Page 13	Lagrangian with light dynamical Higgs

$$\pi_{i} \to \pi_{i} \left(1 + \frac{\alpha_{1}}{v^{4}} \pi \Box \pi + \frac{\alpha_{2}}{v^{4}} \partial_{\mu} \pi \partial^{\mu} \pi + \frac{\beta}{v^{3}} \Box h + \frac{\tilde{\gamma}_{1}}{v^{4}} h \Box h + \frac{\gamma_{2}}{v^{4}} \partial_{\mu} h \partial^{\mu} h \right) + \frac{\alpha_{3}}{v^{4}} \Box \pi_{i} (\pi \pi) + \frac{\alpha_{4}}{v^{4}} \partial_{\mu} \pi_{i} (\pi \partial^{\mu} \pi),$$

$$\begin{aligned} \alpha_1 &= \left(9\eta^2 + 5\eta + \frac{3}{4}\right)\Delta_{\varepsilon} & \gamma_1 &= \left(5\eta + \frac{3}{2}\right)\left(2a_C^2 - b_C\right)\Delta_{\varepsilon} \\ \alpha_2 &= \left[\left(a_C^2 + 4\right)\eta + \frac{a_C^2}{2} + 1\right]\Delta_{\varepsilon} & \gamma_2 &= \left(5\eta + \frac{3}{2}\right)\left(a_C^2 - b_C\right)\Delta_{\varepsilon} \\ \alpha_3 &= 2\eta^2\Delta_{\varepsilon} & \beta &= -\left(5\eta + \frac{3}{2}\right)a_C\Delta_{\varepsilon} \end{aligned}$$

$$\begin{aligned} \alpha_4 &= 2(a_C^2 - 1)\eta\Delta_{\varepsilon} & \beta &= -\left(5\eta + \frac{3}{2}\right)a_C\Delta_{\varepsilon} \end{aligned}$$

Only non physical divergences depend on η.

Kanshin K	, .•	
University	of Padova	/ INFN

$$\begin{aligned} \pi_i \to \pi_i \left(1 + \frac{\alpha_1}{v^4} \pi \Box \pi + \frac{\alpha_2}{v^4} \partial_\mu \pi \partial^\mu \pi + \frac{\beta}{v^3} \Box h + \frac{\tilde{\gamma}_1}{v^4} h \Box h + \frac{\gamma_2}{v^4} \partial_\mu h \partial^\mu h \right) + \\ &+ \frac{\alpha_3}{v^4} \Box \pi_i(\pi \pi) + \frac{\alpha_4}{v^4} \partial_\mu \pi_i(\pi \partial^\mu \pi), \end{aligned}$$

$$\begin{aligned} \alpha_1 &= \left(9\eta^2 + 5\eta + \frac{3}{4}\right)\Delta_{\varepsilon} & \gamma_1 &= \left(5\eta + \frac{3}{2}\right)\left(2a_C^2 - b_C\right)\Delta_{\varepsilon} \\ \alpha_2 &= \left[\left(a_C^2 + 4\right)\eta + \frac{a_C^2}{2} + 1\right]\Delta_{\varepsilon} & \gamma_2 &= \left(5\eta + \frac{3}{2}\right)\left(a_C^2 - b_C\right)\Delta_{\varepsilon} \\ \alpha_3 &= 2\eta^2\Delta_{\varepsilon} & \beta &= -\left(5\eta + \frac{3}{2}\right)a_C\Delta_{\varepsilon} \\ \alpha_4 &= 2(a_C^2 - 1)\eta\Delta_{\varepsilon} & \beta &= -\left(5\eta + \frac{3}{2}\right)a_C\Delta_{\varepsilon} \end{aligned}$$

η = -3/10 eliminate parameters of pion-through-higgs field redefinition.
 (to our knowledge) it does not correspond to any known U-matrix
 parameterization.

Kanshin K.		One loop structure of effective non-linear
University of Padova / INFN	Page 15	Lagrangian with light dynamical Higgs

Summary

- off shell 1 loop structure of non-linear effective theory for dynamical higgs is analyzed
- complete set of operators needed is identified e.g.
- Some of parameters may have significantly large coefficients of beta-functions -> RGE

• Non-chiral-invariant divergences have been found. It has been shown that they do not have impact on on-shell quantities and can be eliminated by proper field redefinition