Lepton Flavor violation

Low energy modes

$$\mu \to e\gamma, \quad \mu \to eee,$$

$$\mu^{-} + A \to e^{-} + A, \quad \mu^{-} + A \to e^{+} + A', \quad \mu^{+}e^{-} \to \mu^{-}e^{+}$$

$$\tau \to e\gamma, \quad \tau \to \mu\gamma, \quad \tau \to eee,$$

$$\tau \to \mu\mu\mu, \quad \tau^{+} \to e^{+}\mu^{+}\mu^{-}, \quad \tau^{+} \to \mu^{+}e^{+}e^{-},$$

$$\tau \to \mu\pi, \quad \tau \to e\pi, \quad \tau \to \mu K_S, \quad K_L^0 \to \mu e$$

No new physics at LHC

- Signals at LFV rare decays
- For example $\mu \to eee$ $\mu^- + A \to e^- + A,$
- What can we learn from pattern of LFV processes?

New physics at LHC

- Signals at LFV rare decays
- lacktriangle For example $\mu o 0$

$$\mu^- + A \rightarrow e^- + A$$
,

- What can we learn from pattern of LFV processes?
- SUSY discovered.

$$\mu \to eee$$
 $\mu \to e\gamma$

R-parity violation

New physics at LHC

no Signals at LFV

Minimal flavor violation?

Nightmare scenario

No new physics at LHC no LFV

- Minimal flavor violation?
- Increasing scale? (naturalness)
- (g-2) of muon and electron

NSI in neutrinos

- Some model independent connection between NSI in neutrino oscillation
- Experiments?
- Implications of Signal for NSI in neutrino oscillation

High statisctics in LFV

- Plarized initial state
- Helicity structure
- CP violation

Radiative neutrino mass generation

LFV signals in low energy and LHC

Ways to establish the model

Discriminate between models

Backup

Limits (slide by Stephane Lavignac)

Prospects for CLFV experiments

$\mu \rightarrow e \gamma$:

MEG update should reach 5×10^{-14} in 3 years of acquisition time

$\mu \rightarrow eee$:

Mu3e proposal at PSI aims at $\mathcal{O}(10^{-16})$ (improvement by 4 orders of magn.)

$\mu \rightarrow e$ conversion in nuclei :

The projects mu2e at FNAL and COMET aim at a sensitivity below 10^{-16} More ambitious projects under study at FNAL and J-PARC $\mathcal{O}(10^{-18})$

T decays:

The upgraded LHCb experiment should reach a few 10^{-9} on $au \to \mu\mu\mu$ Future B factories (KEKB, SuperB) should probe the $10^{-9}-10^{-10}$ level

Examples of constraints:

$$\underline{\mu \rightarrow e \gamma :} \qquad \frac{C_{\mu e \gamma}^{M}}{\Lambda_{NP}^{2}} \langle H^{0} \rangle \, \bar{e} \sigma^{\mu \nu} P_{M} \mu \, F_{\mu \nu} + \text{h.c.} \qquad (M = L,R)$$

The exp. upper bound BR $(\mu \to e \gamma) < 5.7 \times 10^{-13}$ translates into

$$\Lambda_{NP} > \begin{cases}
7.8 \times 10^4 \,\text{TeV} & (C=1) \\
400 \,\text{TeV} & (C=\frac{\alpha_W}{4\pi})
\end{cases}$$

$$\underline{\mu \rightarrow \text{e e e :}} \qquad \frac{C_{eee\mu}^{MN}}{\Lambda_{NP}^2} \ (\bar{e}\gamma^{\mu}P_Me) \left(\bar{e}\gamma^{\mu}P_N\mu\right) \ + \ \text{h.c.} \qquad \text{(M,N = L,R)}$$

The exp. upper bound ${
m BR}\,(\mu \to eee)\,<\,10^{-12}$ translates into

$$\Lambda_{NP} > \begin{cases}
210 \,\text{TeV} & (C=1) \\
11 \,\text{TeV} & (C=\frac{\alpha_W}{4\pi})
\end{cases}$$

→ CLFV starts to be sensitive to scales comparable to kaon physics:

$$\Lambda_{\rm NP} \gtrsim \begin{cases}
2 \times 10^4 \,\text{TeV} & (C=1) \\
2 \times 10^3 \,\text{TeV} & \left(C = \frac{\alpha_S}{4\pi}\right)
\end{cases}$$

$$\frac{C}{\Lambda_{\rm NP}^2} (\bar{s}d)(\bar{s}d)$$