

Photodetectors for the XENON1T Dark Matter Experiment

Daniel Mayani for the XENON1T Collaboration

Invisibles Workshop July 17th 2014, Paris

The XENON1T dark matter detector is currently under construction below the mountains of Gran Sasso at LNGS in Italy.

Some highlights of the construction:

XENON1T is designed to search for dark matter WIMPs by measuring simultaneously the primary scintillation (S1) and proportional scintillation from ionization electrons (S2) produced by a WIMP interaction within a two phase time projection chamber (TPC) filled with liquid xenon (LXe).

XENON1T is designed to search for dark matter WIMPs by measuring simultaneously the primary scintillation (S1) and proportional scintillation from ionization electrons (S2) produced by a WIMP interaction within a two phase time projection chamber (TPC) filled with liquid xenon (LXe).

- The **top PMTs** in GXe detect S2 and give *xy* position with mm precision.
- The **bottom PMTs** are fully immersed in LXe to efficiently detect the S1 signal.

S2

the z coordinate.

S1

XENON1T is designed to search for dark matter WIMPs by measuring simultaneously the primary scintillation (S1) and proportional scintillation from ionization electrons (S2) produced by a WIMP interaction within a two phase time projection chamber (TPC) filled with liquid xenon (LXe).

The Photomultiplier Tubes

PMT characterization at MPIK Heidelberg

Upon arrival all PMTs are tested at room temperature:

- DC rate
- HV scan (1320 1680) V
- Afterpulses
- Transit time

If all parameters OK \rightarrow cool down

MPIK setup to cool down and measure 12 PMTs simultaneously: Nitrogen vapor cooled by LN through a copper coil.

PMT characterization at MPIK Heidelberg

Figures by Meike Danisch

PMT characterization at UZH

The performance of the R11410 PMTs in LXe is tested at UZH with a dedicated experimental setup.

Double walled vacuum insulated cryostat to maintain the subzero temperatures.

Gas system to purify and circulate the Xe from its storage bottles into the detector chamber.

PMT characterization at UZH

The performance of the R11410 PMTs in LXe is tested at UZH with a dedicated experimental setup.

Double walled vacuum insulated cryostat to maintain the subzero temperatures.

Gas system to purify and circulate the Xe from its storage bottles into the detector chamber.

PMT characterization at UZH

The performance of the R11410 PMTs in LXe is tested at UZH with a dedicated experimental setup.

Xe liquefaction to ~170 K is achieved with a Pulse Tube Refrigerator

MarmotXL temperature Bottom, 14.03.13 to 15.03.13 (17 h) \leq o 0 temperature (°C) Temperature [300 -20 -40 220 -60 200 -80 180 -100 160 14(13:00)

Double walled vacuum insulated cryostat to maintain the subzero temperatures.

Gas system to purify and circulate the Xe from its storage bottles into the detector chamber.

Gain evolution during cool down

Effect of the temperature on the PMT gain:

These values include a x10 amplification factor from an external amplifier.

Long term stability tests

Thermal cycling: In order to test the stability of the PMTs in LXe, the tubes are submitted to a series of cool downs (170 K) and warm ups (room temp.) where the gain and dark count rate are monitored constantly.

Dark Current:

Thermal emission from the photocathode produces signals in the PMT.

- At room temperature the gain remains constant within 2%.
- When at LXe temperature, the gain decreased around 5%.
- The DC rate decreased by a factor 10.

Study of Afterpulses

 10^{2}

10

Afterpulses are signals that appear after the trigger signal.

It is important to have a low rate of afterpulses (**below 10%**, as specified by the producer) so that they do not interfere with the identification of S1 and S2 signals.

Three groups of afterpulses are observed:

- A1: Pulses of short delay (tens of ns), caused by elastic scattering electrons on the first dynode.
- A2: Populated mostly by dark pulses and single photoelectrons.
- A3: Pulses produced by positive ions from gas molecules within the PMT.

These afterpulses can be used as a diagnosis of the vacuum quality and identification of contaminants $(CH_4, CO_2, etc.)$ inside the tube.

PMT field simulations

In order to understand the nature of afterpulses, the PMT field and the tracks of ions and electrons have been simulated with COMSOL.

Simulated photo-electrons have a drift time of around 46 ns, with a collection efficiency of 95%.

The paths of ions produced in the volume of the PMT are also simulated.

Simulation and experiment

Outlook

- The construction of XENON1T has started at LNGS.
- MPIK and UZH will continue testing the R11410 PMTs before their final installation in XENON1T.
- Data taking will start in 2015 and over the next few years a sensitivity of 2x10⁻⁴⁷ cm² will be achieved.

Direct detection with LXe

indirect detection

Why Xe?

- Large atomic mass, high stopping power.
- Self shielding.
- No long lived radioisotopes.
- Efficient scintillator.
- ✓ Scalable.

The photon emission principle

The **S2/S1** ratio allows to distinguish WIMPs (nuclear recoils) from the main backgrounds (electronic recoils).

XENON1T PMT map

PMT Spectrum and Gain

Afterpulse Peak ID

Consider the arrival time:

$$t = \int_{s_0}^{L} \frac{1}{v} ds = \sqrt{\frac{m}{2q}} \int_{s_0}^{L} [V(s_0) - V(s)]^{-1/2} ds,$$

where m and q are the mass and charge of the ion, s_o is the position of ionization and V(s) is the electric potential.

The field in a hemispherical PMT can be approximated as quadratic:

17/)	T.7	1.	$s \rangle^2$
V(s) =	V_0	(1-	$\overline{L})$

So the arrival time calculated from the integral gives:

$$t = rac{4}{\pi} \sqrt{rac{2m}{qV_0}} L_t$$

The mass/charge of the ion producing an afterpulse at time *t* is:

The mass/charge of the ion is then proportional to t^2 :

$$\frac{M}{Q} = \left(\frac{\pi t}{4L}\right)^2 \frac{V_0}{2} \frac{q_p}{m_p}$$

$$\frac{M}{Q} = A \, t^2$$

PMT radioactivity and XENON1T background

XENON100 and XENON1T PMTs Radioactivity evolution

(values normalized per optical window area)

Nuclide	R8520	R11410	R11410-MOD	R11410-21
²³⁸ U [mBq/cm ²]	< 1.1	1.6(6)	< 0.6	0.25(3)
226 Ra [mBq/cm ²]	0.029(2)	0.19(2)	< 0.02	0.016(3)
²²⁸ Ra [mBq/cm ²]	0.0197(7)	< 0.08	< 0.09	0.016(3)
228 Th [mBq/cm ²]	0.026(2)	0.09(2)	0.06(2)	0.016(2)
40 K [mBq/cm ²]	0.36(2)	1.6(2)	0.053(9)	0.040(6)
⁶⁰ Co [mBq/cm ²]	1.6(2)	0.26(2)	0.13(1)	0.0221(9)

Expected XENON1T background from MC simulations with GEANT4:

Gamma background: Single scatter, 1 ton fiducial volume, [2-12] keVee, 99.75% ER rejection. 0.05 ev/y Mainly from the Cryostat (50%), PMTs (30%) and TPC components (< 10%) Neutron background: Single scatter, 1 ton fiducial volume, [5-50] keVr, 50% NR acceptance 0.2 ev/y Mainly from Cryostat (30%), PMT +Bases (30%) and PTFE (20%).

Information from F. Piastra and A. Kish

HV divider base

The base placed at the pins of the PMT provides the voltage difference over the PMT dynodes. It has been developed and optimized at UZH for:

- Linearity. Up to 50k PE (approx. 1 MeV particle energy).
- Low heat dissipation (total under 10W).
- Sub-zero temperature performance
- Good P/V ratio and high gain

Screening results with Gator:

Units: mBq	²³⁸ U	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	²³⁵ U	⁴⁰ K	⁶⁰ Co	¹³⁷ Cs
PMT only	< 13	0.50 +- 0.10	0.50 +- 0.10	0.50 +- 0.06	0.37 +- 0.05	13 +- 2	0.71 +- 0.03	< 0.19
PMT + base	< 16	0.95 +- 0.07	0.70 +- 0.10	0.60 +- 0.06	0.43 +- 0.05	13 +- 2	0.72 +- 0.03	< 0.21