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X@ The XENONI1T experiment

XENON

Matter Project

The XENONI1T dark matter detector is currently
under construction below the mountains of Gran
Sasso at LNGS in Italy.
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AT Some highlights of the construction:
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PEE] The XENONLT experiment

XENON

Matter Project

XENONLIT is designed to search for dark matter
WIMPs by measuring simultaneously the primary
scintillation (S1) and proportional scintillation from
lonization electrons (S2) produced by a WIMP
interaction within a two phase time projection
chamber (TPC) filled with liquid xenon (LXe).

Drift Time defines
the z coordinate.




PEE] The XENONLT experiment

XENON

Matter Project

XENONLIT is designed to search for dark matter
WIMPs by measuring simultaneously the primary
scintillation (S1) and proportional scintillation from
lonization electrons (S2) produced by a WIMP
interaction within a two phase time projection
chamber (TPC) filled with liquid xenon (LXe).

e The top PMTs in GXe detect S2 and give
Xy position with mm precision.

e The bottom PMTs are fully immersed in
LXe to efficiently detect the S1 signal.

Drift Time deffnes
the z cogpdinate.
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Matter Project

The XENONIT experiment

XENONLIT is designed to search for dark matter
WIMPs by measuring simultaneously the primary
scintillation (S1) and proportional scintillation from
lonization electrons (S2) produced by a WIMP
interaction within a two phase time projection
chamber (TPC) filled with liquid xenon (LXe).
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The Photomultiplier Tubes

Hamamatsu R11410-21 low radioactivity 3 inch PMTs.

Operating temperature

range: Metal casing:
-110 to 50 deg. C Cobalt free, low
radioactivity
l Ceramic

stem.
Quartz window:
Transparent to
VUV photons

TPC:

Talk by
Bialkali Y Peter Barrow
photocathode: 12 dynode stages:
Sensitive to 178 nm Average gain 3.5x10°
wavelength.

Typical QE of 32.5%

Top array: 127 PMTs.

Bottom array: 121 PMTs.



PMT characterization at MPIK Heidelberg

MPIK setup to cool down
and measure 12 PMTs
simultaneously:

Nitrogen vapor cooled by
LN through a copper coil.

Upon arrival all PMTs are tested at
room temperature:

* DC rate

« HV scan (1320 — 1680) V
 Afterpulses

 Transit time

If all parameters OK — cool down



PMT characterization at MPIK Heidelberg
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PMT characterization at UZH

The performance of the
R11410 PMTs in LXe is
tested at UZH with a
dedicated experimental

setup.

Double walled vacuum insulated

cryostat to maintain the subzero Gas system to purify and
temperatures. circulate the Xe from its

storage bottles into the
detector chamber.



PMT characterization at UZH

The performance of the
R11410 PMTs in LXe is
tested at UZH with a
dedicated experimental
setup.
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Double walled vacuum insulated
cryostat to maintain the subzero Gas system to purify and
temperatures. circulate the Xe from its -
storage bottles into the

detector chamber. 7




PMT characterization at UZH

The performance of the
R11410 PMTs in LXe is
tested at UZH with a
dedicated experimental
setup.

Xe liquefactionto ~170Kis | &
achieved with a Pulse Tube
Refrigerator

MarmotXL temperature Bottom, 14.03.13 to 15.03.13 (17 h)
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Double walled vacuum insulated _
cryostat to maintain the subzero G_as system to purify and i
temperatures. circulate the Xe from its !
storage bottles into the

detector chamber.



Gain evolution during cool down

Effect of the temperature on the PMT gain:
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Long term stabillity tests

Thermal cycling: In order to test the stability Dark Current:
of the PMTs in LXe, the tubes are submitted Thermal emission from the
to a series of cool downs (170 K) and warm photocathode produces signals
ups (room temp.) where the gain and dark In the PMT.
count rate are monitored constantly.
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« At room temperature the gain remains constant within 2%.
 When at LXe temperature, the gain decreased around 5%.
 The DC rate decreased by a factor 10.

L. Baudis et al. JINST 8 P04026 (2013)



Afterpulse size [pe]

Study of Afterpulses
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Afterpulses are signals that appear after the
trigger signal.

It is important to have a low rate of
afterpulses (below 10%, as specified by the
producer) so that they do not interfere with
the identification of S1 and S2 signals.

Three groups of afterpulses are
observed:
e Al: Pulses of short delay (tens of

ns), caused by elastic scattering
electrons on the first dynode.

AZ2: Populated mostly by dark pulses
and single photoelectrons.

A3: Pulses produced by positive
lons from gas molecules within the
PMT.

These afterpulses can be used as a
diagnosis of the vacuum quality and
identification of contaminants
(CH,,CO,, etc.) inside the tube.
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PMT field simulations

In order to understand the nature of
afterpulses, the PMT field and the tracks of

lons and electrons have been simulated with
COMSOL.
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Simulated photo-electrons have a drift
S time of around 46 ns, with a collection
PN AR efficiency of 95%.

<+— The paths of ions produced in the

volume of the PMT are also simulated.
Simulations by Peter Barrow.
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Relative count

Simulation and experiment

CH, drift time from simulation:
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Outlook

e The construction of XENONI1T has started at
LNGS.

e MPIK and UZH will continue testing the
R11410 PMTs before their final installation in
XENONLIT.

e Data taking will start in 2015 and over the
next few years a sensitivity of 2x104” cm? will
be achieved.
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Rate [evis/keVr/kg/day]

Direct detection with LXe

Why Xe?
v Large atomic mass, high stopping
power.
v Self shielding.
v No long lived radioisotopes.
v Efficient scintillator. indirect detection
"
v Scalable.
% DM SM
Search for WIMP elastic scattering =
off nuclei. =
=
S
WIMP Scattering Rates Q
- P © DM SM
- 18 evts/100-kg/year Xe (A=131) _ j
E (En=5 keVr) Ge (A=73) ——
i 8 evts/100-kg/year | Ar (A=40) production at colliders

308 (En=15 ke Vr)
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Using large mass detectors with a

i dense target material.
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<¥— Nuclear recoil spectrum with

M, =100 GeV,05_p = 107*cm .
exponential shape.

IlIIIIJIlllllllllIJIIIIIIIILILJIAIIIIJ
10 20 30 40 50 60 70 80

Recoil Energy [keVr]

—
o
-~
o



The photon emission principle

Wimp
' on '
Interactio Some electrons drift to the anode

1onizabi ) i
T | —— 208, Xett e and produce the S2 signal, while
others recombine with Xe ions.
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The S2/S1 ratio allows to distinguish WIMPs (nuclear recoils) from the
main backgrounds (electronic recoils).



XENONI1T PMT map

WT Door Side

Top Building Side Bottom

127 PMTs 121 PMTs



PMT Spectrum and Gain

Example event:
Photon signal from LED.

KB0130 gain = 2.03e+07

The PMT gain is
estimated from the
spectrum by identifying
the single photo-electron
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Afterpulse Peak ID

Consider the arrival time:

%x10°%

e Ay

0.1

where m and q are the mass and charge of the ion, s _is the

position of ionization and V(s) is the electric potential.

(B The field in a hemispherical PMT can be approximated as
\\ qguadratic:

V(s)=Vp (1- I)

So the arrival time calculated from the integral gives:

i 4 [2m
= = © n\ gV
The mass/charge of the ion M ( ) Vo 4p
producing an afterpulse at time t is: Q) B 2 m,

The mass/charge of the ion is
then proportional to A
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PMT radioactivity and XENON1T background
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Radioactivity evolution
(values normalized per optical window area)

‘ Nuclide R8520 R11410 R11410-MOD

| 28U [mBq/cm?] <11 1.6 (6) < 0.6
226Ra [mBq/em?] | 0.020(2) | 0.19(2) < 0.02
228Ra [ mBq/cm? | | 0.0197(7) | < 0.08 < 0.09
28T} [ mBq/em? | | 0.026(2) | 0.09(2) 0.06 (2)
9K [ mBq/em?] | 0.36(2) | 1.6(2) 0.053 (9)
0Co [mBq/em? ] | 1.6(2) | 0.26(2) 0.13(1)

R11410-21
0.25(3)
0.016 (3)
0.016 (3)
0.016 (2)
0.040 (6)

0.0221 (9)

Expected XENONIT background from MC simulations with GEANTA4:

Gamma background:
Single scatter, 1 ton fiducial volume,
[2-12] keVee, 99.75% ER rejection.

0.05 ev/y

Mainly from the Cryostat (50%), PMTs
(30%) and TPC components (< 10%)

Neutron background:

[5-50] keVr, 50% NR acceptance

0.2 ev/y

Mainly from Cryostat (30%), PMT
+Bases (30%) and PTFE (20%).

Information from F. Piastra and A. Kish

Single scatter, 1 ton fiducial volume,




HV divider base

The base placed at the pins of the PMT provides the voltage
difference over the PMT dynodes. It has been developed and
optimized at UZH for:

» Linearity. Up to 50k PE (approx. 1 MeV particle energy).
* Low heat dissipation (total under 10W).

* Sub-zero temperature performance

* Good PIV ratio and high gain

D9 (5) D10{12) D11 (8) D12 (8) P (7)

5MOhmBase_v1.3 O
Annika Behrens, behrens@physik.uzh.ch
10 51 510 51
K (20) D1 (1) D2 (18) D3 (2) D4 (15) D5 (3) D& (14) 07 {4) D8 (13)
10 nl i nF 10 n
I \

| Outside ofthe detector |

Screening results with Gator:

Units: mBg 2381 226R4 228R4 228Th 2351 a0k 60Co 137Cg

PMT only <13 0.50 0.50 0.50 0.37 13 0.71 <0.19
+-0.10 +-0.10 +- 0.06 +-0.05 +- 2 +-0.03

PMT + base <16 0.95 0.70 0.60 0.43 13 0.72 <0.21
+- 0.07 +-0.10 +- 0.06 +-0.05 +- 2 +-0.03
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