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Geometry

Figure: A scattering process at the LHC.

Figure: Pascal lines for six points on a conic.



I will discuss scattering amplitudes in planar N = 4
super-Yang-Mills theory.

Figure: The topological classification of color flow.

The planar N = 4 theory shows signs of integrability.



Why scattering amplitudes?
In a conformal field theory one usually computes correlation
functions of conformal operators. Such quantities manifest all the
symmetries of the conformal theory.
Historically [Bern, Dixon, Dunbar, Kosower] scattering amplitudes in
N = 4 have been computed as a preparation for computing
scattering amplitudes in more complicated but more
phenomenologically relevant gauge theories.
Scattering amplitudes are kinematically simpler because of the
on-shell conditions k2

i = 0. Also they are easier to compute (using
unitarity).
However, scattering amplitudes of massless particles (like in N = 4
SYM) are IR divergent. After regularizing the IR divergences the
result is not invariant under superconformal transformations
anymore.
Surprising development [Drummond, Henn, Korchemsky, Sokatchev]:
scattering amplitudes in the limit N →∞ with g2

YMN = const have
more symmetry than correlation functions. The extra symmetry is
dual superconformal symmetry.



Statement of the problem

The `-loop scattering amplitude in N = 4 super-Yang-Mills contains
transcendental functions of transcendentality 2`.
We would like to write down the answers for scattering/Wilson-loop
in planar N = 4 SYM as explicitly as possible. (We can write the
answer in terms of integrals, but can we do better?)
Unfortunately, we are not able to do this in full generality because
of the poor mathematical understanding of the transcendental
functions involved. Nevertheless, a lot of the complexity of the
answer seems to stem not from the complicated transcendental
functions, but from their rational arguments.



Iterated integrals

Many of the functions appearing in the N = 4 scattering amplitudes
can be written in terms of iterated integrals. For example,

Lin(z) =

∫ z

0
dt

Lin−1(t)

t
,

Li1(z) = − ln(1− z).

Therefore the Lin functions can be written as an n-fold iterated
integral

Lin(z) = −
∫ z

0
d ln t1

∫ t1

0
d ln t2 . . .

∫ tn−1

0
d ln(1− tn).



Transcendentality

In general, we define a function of k variables to be of
transcendentality n if it can be written as an n-fold iterated integral
along a path in Ck

Tn(z) =

∫ z

d ln R1

∫ t1

d ln R2 . . .

∫ tn−1

d ln Rn,

where Ri are rational functions with rational coefficients.
Transcendentality is additive: the transcendentality of a product of
transcendental functions is the sum of transcendentalities of terms.
Numerical constants also have transcendentality n if they are
obtained from functions of transcendentality n evaluated at rational
points. For example, rational numbers have transcendentality zero,
π2n has transcendentality 2n since, up to a rational number it is
ζ2n = Li2n(1).



Symbols

For a function which can be written as

Tn(z) =

∫ z

d ln R1

∫ t1

d ln R2 . . .

∫ tn−1

d ln Rn,

let us focus on the rational fractions Ri and group them in a string
ordered from the innermost integral to the outermost

Rn ⊗ Rn−1 ⊗ . . .⊗ R1.

This is called the symbol of Tn.
If we know the derivatives of the function Tn, we can compute the
rational fractions Ri recursively

dTn(z) = d ln R1(z)

∫ z

d ln R2 . . . .

Then d2 = 0 imposes integrability constraints on the rational
fractions Ri .



Properties

Every transcendental function has a unique symbol, up to the
following equivalences

. . .⊗ RR ′ ⊗ . . . = . . .⊗ R ⊗ . . .+ . . .⊗ R ′ ⊗ . . . ,
. . .⊗ cR ⊗ . . . = . . .⊗ R ⊗ . . . ,

for c ∈ Q and R,R ′ rational fractions.
If two transcendental functions have the same symbol, then they
differ only by terms which are transcendental constants times
transcendental functions (lower functional transcendentality). This
can be used to prove identities between polylogarithms.



Li2 example
We have

S(Lin(x)) = −(1− x)⊗ x .

Define a sequence an recursively by an+1 = 1−an
an−1

. This is periodic
with periodicity 5. Now compute the following combination

S

(
5∑

n=1

Li2(an)

)
=

5∑
n=1

−(1−an)⊗an = −
5∑

n=1

(an−1an+1)⊗an =

−
5∑

n=1

(an−1 ⊗ an + an ⊗ an−1) = S

(
−

5∑
n=1

ln an−1 ln an

)
.

The left-over “subleading functional transcendentality part” turns
out to be a constant, ζ(2) = π2

6 , so we get

5∑
n=1

(Li2(an) + ln an−1 ln an) =
π2

6
.



So the symbol is a canonical way of representing transcendental
functions (we can rewrite the transcendental functions by using
identities, but the symbol remains unchanged).
However, the symbol does not contain information about the
subleading functional transcendentality or the position of the branch
cuts (the branch points are at the positions of the zeros or poles of
the rational functions Ri ).
Nevertheless, using analyticity, integrability of the symbol and some
physical input (collinear limits, OPE, Regge limits), one can get very
far.



Conformal ratios on a line

Take x1, . . . , x4 ∈ C. The conformal group SL(2) acts on these
points by xi → axi+b

cxi+d , with
(
a b
c d

)
∈ SL(2).

The points x1, . . . , x4 can be
identified with lines in C2. The
group SL(2) acts linearly on the
lines passing through the origin,
but non-linearly (see above) on
the intersection coordinates
x1, . . . , x4.
This construction also suggests a
compactification, by adding a
point at infinity (corresponding to
a line parallel to the y axis.

0
1

x1

x2

x3

x4



Conformal transformations in Minkowski space

The case of four-dimensional Minkowski space is similar to the case
of the line. This time the (complexified) conformal group is SL(2),
which acts on these points by x → (ax + b)(cx + d)−1, where
x , a, b, c, d are 2× 2 matrices and

(
a b
c d

)
∈ SL(4).

The points x in Minkowski space
can be identified with planes in
C4. The group SL(4) acts linearly
on the planes passing through the
origin, but non-linearly (see
above) on the intersection
coordinates x .
In this case the compactification
is more complicated. It is the
Grassmannian space G2(4) of
two-planes in four dimensions.

0
1
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Momentum twistors

C4

0

Complexified compactified
Minkowski space C̃M ∼= G2(4). In
some coordinate patch (a top cell)
we can describe points in G2(4)
by a 2× 4 matrix

M =

(
1 0 x11 x12
0 1 x21 x22

)
.

Then the equation of the plane is
C2 3 λ 7→ λTM∈ C4.



Momentum twistors

C4

0

Projecting to CP3 a point in
G2(4) corresponds to a projective
line in CP3.

C4

0

Two null separated points
correspond to two planes
intersecting in a line. Upon
projection, this becomes a point
in CP3.



Configurations of points

Space-time kinematics to “momentum twistor” space:
momenta {ki}i=1,...,n with k2

i = 0 →
dual space {xi}i=1,...,n with xi − xi+1 = ki →
two-planes in C4 intersecting pairwise →
n points in CP3 with a cyclic ordering.
We denote by Confn(CPk) the space of configurations of n points in
CPk with a cyclic ordering. Therefore, the kinematics can be
described as configurations of points in CP3. There is also a
supersymmetric extension as configurations of points in CP3|4.



Projective geometry

From now on, we will express all the kinematics in twistor space.
Since this is a projective space we are studying a projective
geometry.
Projective geometry is in some sense simpler than the more familiar
Euclidean geometry.

I no notion of length or angle

I no parallelism; all the lines in a plane intersect

I no notion of “between”.

A special feature of projective geometry is that every statement has
a dual. In two dimensions points are dualized to lines and lines are
dualized to points. This duality is related to the parity
transformation in N = 4.



Spinors and twistors

We have seen that we can represent the kinematics in terms of the
points Zi ∈ CP3. The conformal group is SL(4) and it preserves
volumes. Therefore, 〈i , j , k , l〉 = εabcdZiaZjbZkcZld are invariant.
It is also easy to show that

x2
ij = (xi − xj)

2 =
〈i , i + 1, j , j + 1〉
〈i , i + 1〉〈j , j + 1〉

,

where 〈ab〉 = 〈Iab〉 and I is rank two and antisymmetric. It breaks
the conformal symmetry by singling out a point at infinity.



Cross-ratios

Cross-ratios can be easily written in twistor space.

uij ≡
x2
i ,j+1x2

i+1,j

x2
ijx

2
i+1,j+1

=
〈i , i + 1, j + 1, j + 2〉〈i + 1, i + 2, j , j + 1〉
〈i , i + 1, j , j + 1〉〈i + 1, i + 2, j + 1, j + 2〉

.

Using the Plücker identity

〈abxy〉〈abzt〉+ 〈abxz〉〈abty〉+ 〈abxt〉〈abyz〉 = 0,

we can write, for example,

1− uij =
〈i , i + 1, i + 2, j + 1〉〈i + 1, j , j + 1, j + 2〉
〈i , i + 1, j , j + 1〉〈i + 1, i + 2, j + 1, j + 2〉

.

If we drop the common twistors i + 1 and j + 1 from all the
four-brackets we get relations between cross-ratios as simple as in
2D CFT.



Example of application

Del Duca, Duhr and Smirnov computed the the non-trivial part of
the 6-point MHV scattering amplitude (AKA the remainder
function) in terms of a special class of transcendental functions
called Goncharov polylogs.
This result is complicated, but its symbol is much simpler. Due to
the dual conformal symmetry the result depends only on three
cross-ratios

u1 =
s12s45

s123s345
, u2 =

s23s56
s234s123

, u3 =
s34s61

s345s234
.

It turns out that the entries of the symbol are algebraic, not rational.



There is one expression appearing with a square root

√
∆ =

√
(u1 + u2 + u3 − 1)2 − 4u1u2u3.

But when transforming to twistor space we obtain

√
∆ = ±〈1234〉〈3456〉〈5612〉 − 〈2345〉〈4561〉〈6123〉

〈1245〉〈2356〉〈3461〉
,

so all the square roots disappear. In the end, the symbol can be
written as

〈·, ·, ·, ·〉 ⊗ 〈·, ·, ·, ·〉 ⊗ 〈·, ·, ·, ·〉 ⊗ 〈·, ·, ·, ·〉,

where the four-brackets are of special form 〈i , i + 1, j , j + 1〉 and
〈i , j − 1, j , j + 1〉.



Integration

Since the symbol is simple, we can hope to find a simple function
with that symbol. This is the problem of “integrating” a symbol,
which is in general non-trivial.
But for six-point two-loop MHV this turns out to be easy, because
only classical polylogs are necessary. The final result is (Goncharov,
Spradlin, CV, Volovich):

1

2
Li4

(
−〈1456〉〈2356〉
〈1256〉〈3456〉

)
+

1

2
Li4

(
−〈1234〉〈2356〉
〈1236〉〈2345〉

)
− 1

16
Li4

(
〈1246〉〈1345〉
〈1234〉〈4561〉

)
+ cyclic permutations+

products of lower transcendentality functions.



Beyond six-point MHV

If we go to higher-point amplitudes two complications arise

I the answers are not expressible in terms of classical
polylogarithms

I more complicated entries appear in the symbol, like
〈ab(ijk) ∩ (lmn)〉 ≡ 〈aijk〉〈blmn〉 − 〈bijk〉〈almn〉.

So we have two questions

I What kind of entries can appear in the symbol?

I What kind of polylogarithms appear in the answer?

The second question is hard. We can not answer it fully, but instead
we answer it by partially integrating, up to terms of
transcendentality two and three.



Cluster algebras

We find that the arguments appearing in the partial integration of
the symbol are (minus) cluster X coordinates for various cluster
algebras.
Cluster algebras are commutative algebras

1. constructed from distinguished generators (called cluster
variables)

2. which are grouped into non-disjoint sets of constant cardinality
(called clusters),

3. which are constructed recursively by an operation called
mutation from an initial cluster.

The number of variables in a cluster is called the rank of the cluster
algebra.



Example of cluster algebra

The A2 cluster algebra is defined by the following data:

I cluster variables: xm, m ∈ Z
I clusters: {xm, xm+1}
I initial cluster: {x1, x2}
I rank: 2

I exchange relations: xm−1xm+1 = 1 + xm
I mutation: {xm−1, xm} → {xm, xm+1}.

This algebra has appeared before in the five-term dilogarithm
identity, with xm → −am!



Quivers

These cluster algebras are defined by a quiver: a finite oriented
graph without loops (arrows with the same origin and target) and
two-cycles (pairs of arrows going in opposite directions between two
vertices).
For example,

are forbidden.



Cluster algebras of geometric type

To each vertex i we associate cluster A coordinates xi . We also
define a skew-symmetric matrix

bij = (#arrows i → j)− (#arrows j → i).

Since only one of the terms above is nonvanishing, bij = −bji .
A mutation at vertex k is obtained by applying the following
operations on the initial quiver:

I for each path i → k → j we add an arrow i → j

I reverse all the arrows on the edges incident with k

I remove all the two-cycles that may have formed.

It is an involution; when applied twice in succession we obtain the
initial cluster.



Mutation of cluster A coordinates

The mutation at k changes xk to x ′k defined by

aka′k =
∏

i |bik>0

abiki +
∏

i |bik<0

a−biki ,

and leaves the other cluster variables unchanged. (An empty
product is set to one.)
Example: the A2 cluster algebra can be expressed by a quiver
a1 → a2. Then, a mutation at a1 replaces it by a′1 = 1+a2

a1
≡ a3 and

reverses the arrow. A mutation at a2 replaces it by a′2 = 1+a1
a2
≡ a5

and reverses the arrow.



Grassmannian cluster algebras
According to [Gekhtman, Shapiro, Vainshtein], the initial quiver for
the Gk(n) cluster algebra is given by1

f1l · · · f13 f12 f11

f2l · · · f23 f22 f21

...
...

...
...

...

fkl · · · fk3 fk2 fk1

//

��

__?????

// //

��

__?????

//

��

__????

//

��

// //

��
__??????

//

��
__??????

�� ��

__?????
__????? ��

where

fij =

{ 〈i+1,...,k,k+j ,...,i+j+k−1〉
〈1,...,k〉 , i ≤ l − j + 1,

〈1,...,i+j−l−1,i+1,...,k,k+j ,...,n〉
〈1,...,k〉 , i > l − j + 1

.

1Here we are presented a flipped version of the quiver and with the arrows
reversed with respect to the quivers of that ref.



A duality for configurations of points

Let us assume that the n points in CPk are in a generic position (no
three points on a line, no four points on a plane, etc.).
Let us group the homogeneous coordinates of the n points in a
(k + 1)× n matrix. By the action of the PSL(k + 1) group and
rescaling of the coordinates we can put this matrix in a special form

(1k+1,Yk+1,n−k−1) .

From this we can make a (n − k − 1)× n matrix(
1n−k−1, (Y T )n−k−1,k+1

)
,

which can be obtained by the action of PSL(n − k − 1) on an
arbitrary (n − k − 1)× n matrix.
Therefore, we have an isomorphism
Confn(CPk) ∼= Confn(CPn−k−2).



G3(7) or Conf7(CP2) ∼= Conf7(CP3)

The cluster X coordinates are defined by

xi =
∏
j

a
bij
j .

267 367 467 567

456

345234

346236

123

126

127

167

//
__?????��

��?
??

?

//
__?????��

//
__????

��
//

__????��
__????

//

��

//
__????��

Goncharov’s triple ratio is a
cluster X coordinate

〈345〉〈236〉〈467〉
〈234〉〈367〉〈456〉

.



Parity transformation

〈1235〉

〈1245〉

〈1345〉

〈1236〉

〈1256〉

〈1456〉

〈1234〉

〈1237〉

〈1267〉

〈1567〉

〈4567〉〈3456〉〈2345〉

��

//
__???????????

��?
??

?

��

//
__???????????

//
__??????????��

��

//

��

//

__??????????

__??????????

//
__??????????��

〈1257〉

〈1256〉

〈2567〉

〈1247〉

〈1245〉

〈2456〉

〈1267〉

〈1237〉

〈1234〉

〈2345〉

〈3456〉〈4567〉〈1567〉

��

//
__???????????

��?
??

?

��

//
__???????????

//
__??????????��

��

//

��

//

__??????????

__??????????

//
__??????????��



Finite and infinite cluster algebras

An Bn,Cn Dn E6 E7 E8 F4 G2
1

n+2

(2n+2
n+1

) (2n
n

)
3n−2
n

(2n−2
n−1

)
833 4160 25080 105 8

Table: The number of clusters for cluster algebras of finite type.

The only cluster algebras with a finite number of clusters arise from
G2(n) and G3(6), G3(7) and G3(8). Starting at eight-point the
cluster algebras are of infinite type!
Confn+3(CP1) ∼= An, Conf7(CP2) ∼= D4, Conf7(CP2) ∼= E6,
Conf8(CP2) ∼= E8.



Seven-point results

The Λ2B2 part of the seven-point two-loop MHV remainder function
is

−
{
− 〈2× 3, 4× 6, 7× 1〉

〈167〉〈234〉

}
2
∧
{
− 〈7× 1, 2× 3, 4× 5〉

〈127〉〈345〉

}
2

−
{
− 〈2× 3, 4× 6, 7× 1〉

〈167〉〈234〉

}
2
∧
{
− 〈234〉〈456〉
〈246〉〈345〉

}
2

−
{
− 〈2× 3, 4× 6, 7× 1〉

〈167〉〈234〉

}
2
∧
{
− 〈146〉〈567〉
〈167〉〈456〉

}
2

−
{
− 〈2× 3, 4× 6, 7× 1〉

〈167〉〈234〉

}
2
∧
{
− 〈5× 6, 7× 1, 2× 3〉

〈123〉〈567〉

}
2

+ · · ·

In four-bracket language the entries with cross-products correspond
to composite four-brackets 〈ij(klm) ∩ (npq)〉.
Is there anything special about these terms?



Poisson structure

The entries of B2 elements are minus cluster coordinates. But more
surprisingly, the terms {x}2 ∧ {y}2 are such that a certain Poisson
bracket vanishes: {ln x , ln y}PB = 0.
It is sufficient to define the Poisson bracket of two X in the same
cluster. We take {ln xi , ln xj}PB = bij . This definition is compatible
with mutations in the sense that {ln x ′i , ln x ′j}PB = b′ij where the
primed variables are obtained by mutation.
We also computed the B2 ∧ B2 of the n-point two-loop MHV
amplitudes and checked that all the Poisson brackets of {x}2 ∧ {y}2
terms vanish.
For NMHV, we also get simple answers, ±1.



The associahedron



An interesting byproduct
We have found the first 40-term trilogarithm identity of cluster type:{
−〈125〉〈134〉
〈123〉〈145〉

}
3

+

{
−〈126〉〈145〉
〈124〉〈156〉

}
3

+

{
−〈126〉〈145〉〈234〉
〈123〉〈146〉〈245〉

}
3

+

1

3

{
−〈136〉〈145〉〈235〉
〈123〉〈156〉〈345〉

}
3

+ signed dihedral permutations = 0.

It is possible to associate {x}3 → function(x) such that the identity
is satisfied. Mathematicians use

L3(z) := <
(

Li3(z)− Li2(z) log |z | − 1

3
log2 |z | log(1− z)

)
, z ∈ C,

which satisfy “clean” functional equations. However, these functions
are only real analytic, not complex analytic. We can find functions
which are complex analytic instead. For Li2 we have

L2(x+, x−) = Li2(x+)+Li2(x−)−1

2
log(x+x−)(Li1(x+)+Li1(x−))−

1

2
log

x+

x−
(Li1(x+)− Li1(x−))− 1

6
log2

x+

x−
.



Conclusions

I The notion of symbol of a transcendental function is useful in
understanding and simplifying scattering amplitudes.

I Cluster coordinates seem to play an important role, but the
interplay with supersymmetry is not completely understood.

I Transcendentality four functions are poorly understood
mathematically, but explicit answers arising in physics can help
to build and guide mathematical intuition.

I Geometrical thinking is a very powerful guide.



Thank you!


