The cosmic ray positron excess :

the revenge of orthodoxy
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1) Observations — evidence for primary CR positrons

610 MHz 1412 MHz

The Radio Continuum Halo in NGC 4631
R. D. Ekers and R. Sancisi
Astron. Astrophys. 54, 973—974 (1977)



Milky—Way seen by a cosmic-ray physicist

Cosmic rays propagate inside a diffusive halo

Courtesy Philipp Mertsch

— KAy + 9p{b*™(E) ¢} = q(x, E) where b*(E) = — and 75 ~ 1010 s
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Mostly sensitive to the local region
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Secondary positron source term

Interactions of CR protons and He nuclei on the ISM

T. Delahaye et al. (2008)
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J. Lavalle et al. for the GPhyS workshop of June 21, 2010 at IAP
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Confirmation by AMS02 of the positron excess

First Result from the Alpha Magnetic Spectrometer on the International Space Station:
Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV
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2) Is it the first hint for DM particles in space 7

Weakly Interacting Massive particles — WIMPs — may be the major
component of the haloes of galaxies. Their mutual annihilations
would produce an indirect signature of high—energy cosmic rays :

X+x—=q@, WW~, ... >, D, e|&V's
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Antimatter 18 already manufactured inside the galactic disk



Annihilating DM particles and the positron excess
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A few remarks are in order

(i) The WIMP mass m,, is expected to be of order 1 TeV — hence the excitement.

(ii) But the annihilation rate needs to be considerably enhanced.

e Thermal freeze—out cross section (ov) = 3 x 10726 cm? s~

e Local et production means DM density given by p. = 0.3 GeV cm ™

2

my = 1 TeV needs Typy = 3 (00) X '0—); boosted by B = 10°
my

(iii) DM species are leptophilic and ¢ channels are suppressed.



Thermodynamical equilibrium production
d X+ X=f+Ff
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Figure 3: Prediction for Qg h? as in Figure 1. The solid line is the case for B(! alone,
and the dashed and dotted lines correspond to the case in which there are one (three)
flavors of nearly degenerate eg). For each case, the black curves (upper of each pair)
denote the case A = 0.01 and the red curves (lower of each pair) A = 0.05.



Annihilating DM particles and the positron excess
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A few remarks are in order

(i) The WIMP mass m,, is expected to be of order 1 TeV — hence the excitement.

(ii) But the annihilation rate needs to be considerably enhanced.

e Thermal freeze—out cross section (ov) = 3 x 10726 cm? s~

e Local et production means DM density given by p. = 0.3 GeV cm ™
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my

(iii) DM species are leptophilic and ¢ channels are suppressed.



(iii) DM species are leptophilic and ¢ channels are suppressed
M. Cirelli et al., Nucl. Phys. B 813 (2009) 1

Constraints on WIMP Dark Matter from the High Energy PAMELA p/p data

F. Donato, D. Maurin, P. Brun, T. Delahaye & P. Salati (2008)
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FIG. 3: The fiducial case of a 1 TeV LSP annihilating into a W™ W ™ pair is featured. In the left panel, the positron signal
which this DM species yields has been increased by a factor of 400, hence the solid curve and a marginal agreement with the
PAMELA data. Positron fraction data are from HEAT [18], AMS-01 [5, 22] and PAMELA [2]. If the so—called Sommerfeld
effect [7] is invoked to explain such a large enhancement of the annihilation cross section, the same boost applies to antiprotons
and leads to an unacceptable distortion of their spectrum as indicated by the red solid line of the right panel.

F. Donato et al. — PRL 102 (2009) 071301



e Peculiar and ad’hoc WIMP models

Leptophilic DM particles

4

X x — Tl
or
XX — ¢¢— 1Tl through ¢ — [T~



(ii) But the annihilation rate needs to be considerably enhanced

—> Abnormally large annihilation cross sections
— Large (ov) but different thermal decoupling (quintessence)
— Large (ov) but non—thermal decoupling (gravitino decay)

— Sommerfeld effect :
a non—perturbative enhancement of (ov) at low velocity



Sommerfeld effect — a non—perturbative enhancement of o,,, at low velocity
J. Hisano, S. Matsumoto and M. M. Nojiri
M. Pospelov & A. Ritz, Phys. Lett. B671 (2009) 391

N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer & N. Weiner, Phys. Rev. D79 (2009) 015014
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e Peculiar and ad’hoc WIMP models

Leptophilic DM particles

4

X x — [T~
or
XX — ¢¢— 1Tl through ¢ — [T~

e But, strong constraints from the other messengers :
v" Final State Radiation v-rays in the absence of quarks.
XX —= Uy or ¢—1Tly

v Inverse Compton Scattering of e* on CMB and stellar light.
v' Synchrotron radio emission from e* spiraling in B.

v" Energy release in the primordial plasma — constraints from CMB.
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1110.6151v3 [hep-ph] 3 Jan 2012

arxiv

Kevork N. Abazajian® J. Patrick Harding“’b
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arXiv:1205.6474v2 [astro-ph.CO] 14 Jan 2013

CONSTRAINTS ON THE GALACTIC HALO DARK MATTER FROM FERMI-LAT DIFFUSE MEASUREMENTS
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FIG. 5: CMB power spectra for three different DM annihilation models, with power injection normalized to that of a 1 GeV
WIMP with thermal relic cross section and f = 1, compared to a baseline model with no DM annihilation. The models give
similar results for the T'T (left), TE (middle), and EE (right) power spectra. This suggests that the CMB is sensitive to only
one parameter, the average power injected around recombination. All curves employ the WMAP5 fiducial cosmology: the

effects of DM annihilation can be compensated to a large degree by adjusting ns and os [4].
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(ii) But the annihilation rate needs to be considerably enhanced

—> A consequence of a clumpy DM distribution

DM substructures have (p?) > (p)?.

— A statistical analysis is necessary to compute the signal enhancement
BMﬂky Way < 20 In ACDM

— How probable is a single nearby clump 7



The cosmic ray lepton puzzle in the light of cosmological N-body simulations

P. Brun, T. Delahaye, J. Diemand, S. Profumo & P. Salati, arXiv:0904.0812
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e Peculiar and ad’hoc WIMP models

Leptophilic DM particles

4

X x — Tl
or
XX — ¢¢— 1Tl through ¢ — [T~

e But, strong constraints from the other messengers :
v" Final State Radiation v-rays in the absence of quarks.
XX —= Uy or ¢—1Tly

v Inverse Compton Scattering of e* on CMB and stellar light.
v' Synchrotron radio emission from e* spiraling in B.

v" Energy release in the primordial plasma — constraints from CMB.
e Precise measurements from AMS02.

x X — [T~ excluded
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Dark matter and pulsar origins of the rising cosmic ray positron fraction in light of
new data from AMS

Ilias Cholis'** and Dan HooperL?’T
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FIG. 6: The same as in Figs. 1, 2, 4 and 5 but for a diffusion zone half-width of L = 8 kpc, and for broken power-law spectrum
of electrons injected from cosmic ray sources (dN,— /dE,- o« E;%°% below 85 GeV and dN,- /dE.- « E_.*3 above 85 GeV).
The cross sections are the same as given in the caption of Fig. 5. With this cosmic ray background, we show the dark matter
models compared to the measurements of the cosmic ray positron fraction and the overall leptonic spectrum. Even with the
presence of a break, there is a preference towards models with softer injection e spectra; with the 1.6 TeV to e™, ,ui, 7t case
providing the best x?/d.o.f. fit to the AMS (Fermi) lepton data of 0.82(0.51). The 2.5 TeV to 2u™ 2u~, gives a x?/d.o.f. fit
of 1.32(1.07) and the 3.0 TeV to 27" 27~ a fit of 1.00(1.03). We remind that in the Fermi error-bars we do not include an

overall shift from the energy resolution uncertainty.



(ii) But the annihilation rate needs to be considerably enhanced

—> Abnormally large annihilation cross sections
— Large (ov) but different thermal decoupling (quintessence)
— Large (ov) but non—thermal decoupling (gravitino decay)

— Sommerfeld effect :
a non—perturbative enhancement of (ov) at low velocity

—> A consequence of a clumpy DM distribution

DM substructures have (p?) > (p)?.

— A statistical analysis is necessary to compute the signal enhancement
BMﬂky Way < 20 in ACDM

— How probable is a single nearby clump 7

— May be a combination of both effects



Cosmic ray positron excess
May also be an indication that DM species decay in the MW.

2

Py Px
Fann — <0"U> X _2 i Fann — Fdec X -
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(ov) =3x 107 cm® s p, = 0.3 GeV em ™ & m, =1 TeV

4

[gee ~ 10726 g1

i

1 TeV : MGUT !
27
Taec ~ 107 56 { My } {1016 GeV

dim 6 operator in GUT theories for instance

v The lifetime needs to be fine—tuned though — a factor of 2 matters !
v Leptophilic DM species from antiproton measurements

v" Decaying DM mildly passes the astrophysical tests as 'unn ¢ py
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CONSTRAINTS ON THE GALACTIC HALO DARK MATTER FROM FERMI-LAT DIFFUSE MEASUREMENTS
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Supernova
Interstellar Material Blast Wave

and Swept-up

pulsar

courtesy Solene Le Corre

e Misaligned magnetized neutron stars accelerate electrons which interact
with photons — light and magnetic field — to initiate an electromagnetic

cascade. Pulsars inject electrons and positrons exclusively, not protons or
nuclei.
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1 , .
Ex = =M R*Q)* translates into 10" ergs for a 10 ms pulsar
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positron propagation for a transient source
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Pulsars provide a |
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M. Boudaud, S. Caroff, S. Le Corre & P. Salati (2013 preliminary)

C T T T T L II T T T T L Il T T T T L Il T 7]
- total AMS02 ICRC 2013 e
Fo-— == secondaries MASS 91 o
_ | —— local pulsars HEAT 94+95 4
: . CAPRICE 94 =
@ MED propagation model
) =60 S
9 F = \'\
S T : A\
9] i _ // /‘—‘\\ \
% i =T a /_/'/ '\)\ /”\\_\ B
4L SIS /7 MONOGEM VELA \\
IS @7 AN
. I T N ./A / \ \
"9'0 _i& - 7 ~ ‘7// / \ \
Ea / /|5~ / \ \
E / /./ N / \\ \
e / ; /"’%\ f/ ) ]
g / /// \\\.7/\' \
5 I /| 7| cEMINca ™) N \ \
k%) / / / \\ K \ \
o / // / \\ \
A, / ; \\
/ /0 LS |
. | \ o~
10-4 / / / f i h \
B ’ [ \ N | 1
- /7 \ ~
i /7] | N
i 1 1 1 //I 1 ll/ 1 1 1 1 111 II ‘/" 1 1 1 1 -1 11 II ‘ I\
10 100 1000
TOA positron energy E [GeV]
Pulsars Modele X2 fWO (Geminga) fWOéMonogem) fWO (Vela) Y Ec
(10°° GeV) VGeV) (10°° GeV) (TeV)
Geminga + Monogem + Vela | med | 0.66 7.755 4.265 0.59 1.9 1.0
mazx 0.26 36.5 45.5 9.5 2.4 1.0




M. Boudaud, S. Caroff, S. Le Corre & P. Salati (2013 preliminary)

C T T T T L II T T T T L I] T T T T T 11 II T 7]
- total AMS02 ICRC 2013 e A
Fo-— == secondaries MASS 91 o A
_ | —— local pulsars HEAT 94+95 4
: . CAPRICE 94 =
@ MAX propagation model %
— ) .
c\II(/) ¢F‘ =500} & ool T /_.\\
E T DOr1Lr 1LlE L . [ '\.
3 R oS A\
o 103 7* l’)',} il _/// - I \ —
T [ e [0 + 7 VELA D\ :
'2‘ i - /'/ —T T T T ‘\\. -
A AT IMONOGEM / T\ A\ ]
© / - . . / \. \
g AT AL LS / \ i
S AR 5 .
5 ‘ /'/ ' = / \ \
= I / / \\ / \ \\ 7
o / / Y \
S !/ AN \ \
-~ B / / . \ \ .
% / / ~ . |
o / / /' \\ \
a¥ Iy Lt — . \
/ - GEMINGA ~ S o \
104 _f/ Ve AN \ *{
; \
i 1 1 1 1 11 lll 1 /‘"I 1 1 111 I] 1 I\ 1 1 111 II \ I\
10 100 1000
TOA positron energy E [GeV]
Pulsars Modele X2 fWO (Geminga) fWOéMonogem) fWO (Vela) Y Ec
(10°° GeV) VGeV) (10°° GeV) (TeV)
Geminga + Monogem + Vela | med | 0.66 7.755 4.265 0.59 1.9 1.0
mazx 0.26 36.5 45.5 9.5 2.4 1.0




0.1

Positron Fraction
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Positron sky map @ different energies — Mathieu Boudaud Ph.D. thesis
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Positron sky map @ different energies — Mathieu Boudaud Ph.D. thesis
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Positron sky map @ different energies — Mathieu Boudaud Ph.D. thesis
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Positron sky map @ different energies — Mathieu Boudaud Ph.D. thesis
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4) CR acceleration and spallation at the same time

FIGURE 3.11: Restes de la SN de Tycho (1572)

e Supernova driven shock waves accelerate the elements of the interstellar
medium through a first order Fermi mechanism. Nuclei and electrons are
injected.



On cosmic ray acceleration in supernova remnants and the FERMI/PAMELA data

Markus Ahlers, Philipp Mertsch, and Subir Sarkar
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The origin of the positron excess in cosmic rays

Pasquale Blasi

Acceleration and spallation in SN shock waves
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Philipp Mertsch — CASPAR 2013, DESY, Hamburg
Antiproton-to-proton Ratio
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Philipp Mertsch — CASPAR 2013, DESY, Hamburg
Nuclear Secondary-to-Primary Ratios
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Philipp Mertsch — CASPAR 2013, DESY, Hamburg
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5) The revenge of orthodoxy

New limits on dark matter annihilation from AMS cosmic ray positron data

Lars Bergstrom,'>* Torsten Bringmann,? T Ilias Cholis,? ¥ Dan Hooper,**'$ and Christoph Weniger®:

In this study, we do not make any attempt to explain
the origin of the rise in the positron fraction. Instead,
we focus on using the AMS data to derive limits on
subdominant exotic contributions to the observed CR
positron spectrum, in particular from DM with masses
below ~300 GeV. While positrons have been used in the
past to probe DM annihilation or decay [28-33], we ex-
ploit here for the first time the extremely high quality
of the AMS data to search for pronounced spectral fea-
tures in the positron flux predicted in some DM models

arXiv:1306.3983v1 [astro-ph.HE] 17 Jun 2013
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New limits on dark matter annihilation from AMS cosmic ray positron data

Lars Bergstrom,'>* Torsten Bringmann,? T Ilias Cholis,? ¥ Dan Hooper,®*'$ and Christoph Weniger®:
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Conclusions and perspectives

e Annihilating DM species can still explain the CR positron excess. But a quite
ad hoc model with Sommerfeld enhancement and possibly substructure effects are
needed.

Beware of the EGGR background

e Decaying DM is also an option but 7 exceedingly large. The existence of dim 6
operators would make it natural though.

e Pulsars provide a natural explanation but it is difficult to define which sources are
responsible for the CR positron excess. Interesting framework.

e Spallations in the acceleration sites are also an appealing possibility.

Several probes are needed

e A rise of B/C and p/p would rule out the pulsar and DM explanations.

e Otherwise, anisotropies in the positron sky would help make the difference between
DM and pulsars.

[s that really true 7
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The situation before the PAMELA measurements
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