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At very high energies, parton densities may become so large that they
saturate, which means that the evolution equations become nonlinear
(BK, JIMWLK equations), and predict the emergence of a new hard,
energy-dependent, momentum scale called the saturation scale Q, .

This regime is very interesting theoretically. Parton saturation may also
have important phenomenological consequences at the LHC.
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A lot of understanding of the dipole scattering amplitude was gained at
HERA, at the border of the dense/saturation regime of QCD!

On the theoretical size, it is “easy” to formulate the QCD evolution of the

dipole amplitude with the energy as radiative corrections to the
dipole wave function.

BFKL (at low density), BK, JIMWLK equations (accounting for high-density effects)
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At a hadron collider, we need to find appropriate production processes:

% D -broadening:
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% Forward dijet azimuthal correlations:

Observe two forward jets,

% which are bacK-to-back if
C\ >< the target is dilute; this
correlation is lost if the

ﬁ target is dense (like a

high-energy nucleus)

These observables are more tricky to formulate in QCD!
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* Robustness under quantum evolution
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Formulation of pr-broadening

time t=—o t=0 t=+0o0 t=0 t=—o0
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Formulation of pr-broadening

dN
d’p
0
Sdipole<X)_
dN d2X —ipx
= € Skl X
dzp (23_':)2 dipol ( )

Intuitively: just bend the quark line in the complex conjugate amplitude
to an antiquark line to transform it to a dipole amplitude!
Zakharov (1996...)
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Formulation of dijet correlations

Large SOC<TI'(V;VX3)>

number-of-color N

< e QOC<TY(V:1VX2V:3VX4)>
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~

4 The correspondence between broadening and dipole
scattering is preserved at N(LO!

This statement is also true for the dijet/quadrupole

\_ correspondence. )
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* One and two-particle inclusive observables at the LHC are related to dipole
and quadrupole amplitudes respectively, at semi-classical level, but also when
quantum corrections are included at least to next-to-leading order.

* Interestingly enough, more generally for any semi-inclusive multijet observable, only

dipoles and quadrupoles contribute in the large number-of-color limit.
Dominguez, Marquet, Stasto, Xiao (2013)

Dipole and quadrupole amplitudes = the fundamental
universal objects to describe the LIHC small-x data?

* Can one understand more features of the quadrupole amplitude?
Dominguez, Mueller, Munier, Xiao (2011)

* Can one constrain this object experimentally?
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