## Bose Einstein condensation of Dark Matter Axions?



Martin Elmer based on: Sacha Davidson and M.E. JCAP 1312 (2013) 034

IPNL Lyon

January 21, 2014 RPP 2014, Strasbourg

## Outline

#### Axions, a reminder

Pecci-Quinn Mechanism Axion cosmology Axion parameter space

#### BEC of dark matter axions?

Sikivie's idea Gravitational thermalisation?

## Summary

#### Outline

#### Axions, a reminder

Pecci-Quinn Mechanism Axion cosmology Axion parameter space

#### BEC of dark matter axions?

Sikivie's idea Gravitational thermalisation?

#### The idea:

Observable difference between axions and WIMPS if axions are in a Bose Einstein condensate
Different galactic halo structure

## Summary

# Strong CP problem

Review on axions: Raffelt, Stars as Laboratories for Fundamental Physics

QCD contains CP violating term

$$\mathcal{L}_{\Theta} = \Theta \frac{\alpha_{s}}{8\pi} G \widetilde{G}$$

induces neutron electric dipole moment ⇒ not observed

$$\left|\Theta\right|<10^{-10}$$

# Strong CP problem

Review on axions: Raffelt, Stars as Laboratories for Fundamental Physics

QCD contains CP violating term

$$\mathcal{L}_{\Theta} = \Theta \frac{\alpha_{s}}{8\pi} G \widetilde{G}$$

induces neutron electric dipole moment ⇒ not observed

$$|\Theta| < 10^{-10}$$

strong CP problem

# Strong CP problem

Review on axions: Raffelt, Stars as Laboratories for Fundamental Physics

QCD contains CP violating term

$$\mathcal{L}_{\Theta} = \Theta \frac{\alpha_{s}}{8\pi} G \widetilde{G}$$

induces neutron electric dipole moment ⇒ not observed

$$|\Theta| < 10^{-10}$$

# strong CP problem

#### Peccei Quinn solution:

make ⊖ dynamical variable with potential min at 0

## Peccei - Quinn Mechanism Peccei Quinn, Phys. Rev. D. 16 (1977)

- new  $U(1)_{PQ}$  symmetry spontaneously broken at scale  $f_{PQ}$
- axion a(x) = Gloldstone boson, "phase" of new complex scalar field
- gluon coupling by construction  $\Rightarrow \mathcal{L}_{\Theta} o rac{\mathit{a}(x)}{\mathit{f}_{PQ}} rac{lpha_s}{8\pi} \mathit{G}\,\widetilde{\mathit{G}}$



- new  $U(1)_{PQ}$  symmetry spontaneously broken at scale  $f_{PQ}$
- axion a(x) = Gloldstone boson, "phase" of new complex scalar field
- ullet gluon coupling by construction  $\Rightarrow \mathcal{L}_\Theta o rac{\mathsf{a}(\mathsf{x})}{\mathsf{f}_{PQ}} rac{lpha_s}{8\pi} \mathsf{G} \, \widetilde{\mathsf{G}}$



- mixing with pions  $\Rightarrow$  mass  $m_a f_{PQ} \sim m_\pi f_\pi$  (after QCD phase transition)
- axion potential with minimum at a=0
- CP conservation

## Peccei - Quinn Mechanism Peccei Quinn, Phys. Rev. D. 16 (1977)

- new  $U(1)_{PQ}$  symmetry spontaneously broken at scale  $f_{PQ}$
- axion a(x) = Gloldstone boson, "phase" of new complex scalar field
- gluon coupling by construction  $\Rightarrow \mathcal{L}_{\Theta} o rac{a(x)}{f_{PQ}} rac{lpha_s}{8\pi} G\widetilde{G}$



- ullet mixing with pions  $\Rightarrow$  mass  $m_a f_{PQ} \sim m_\pi f_\pi$  (after QCD phase transition)
- axion potential with minimum at a=0
- CP conservation

 $f_{PQ}$  is the determining parameter!

(up to  $\mathcal{O}(1)$  model dependent factors)

## Axions as CDM candidates

#### "Invisible" axions

- if  $f_{PQ}>>f_{\pi}$  then axions couplings are small and  $m_a<< m_{\pi}$
- typical values

$$10\mu eV \leq m_a \leq 10meV$$

Axions are very light BSM particles!!

## Axions as CDM candidates

#### "Invisible" axions

- ullet if  $f_{PQ}>>f_{\pi}$  then axions couplings are small and  $m_{\mathsf{a}}<< m_{\pi}$
- typical values

$$10\mu eV \leq m_a \leq 10meV$$

Axions are very light BSM particles!!

#### Can this be a good DM candidate?

- thermal axion production  $\Rightarrow$  Hot dark matter!  $m_a < 0,7eV$  Hannestad et al. arXiv:1004.0695
- Non-thermal production mechanism ⇒ Cold dark matter
  - Misalignment angle mechanism
  - Cosmic string decay: ongoing discussion, Hiramatsu et al. arXiv:1202.5851, Sikivie astro-ph/0610440

# Misalignment angle mechanism

#### Misalignment mechanism Dine and Fischler, Phys Lett. B 120

- for  $T \sim f_{PQ}$ :
  - $\circ$   $U(1)_{PQ}$  spontaneously broken
  - axion field sits fixed at  $a_{init} = \theta_{init} f_{PQ}$
- after QCDPT (  $T \sim 100 Mev$  )
  - axion potential tilted ⇒ axion mass
  - axion field oscillates (classical field oscillations)
  - $\circ \Rightarrow$  cold dark matter





Raffelt @ (BLV 2013)

# Misalignment angle mechanism

#### Misalignment mechanism Dine and Fischler, Phys Lett. B 120

- for T ~ f<sub>PQ</sub>:
  - $\circ$   $U(1)_{PQ}$  spontaneously broken
  - $\circ$  axion field sits fixed at  $a_{init} = \theta_{init} f_{PQ}$
- after QCDPT ( $T \sim 100 Mev$ )
  - axion potential tilted ⇒ axion mass
  - axion field oscillates (classical field oscillations)
  - ⇒ cold dark matter
- Assuming inflation before PQ symmetry breaking

$$\Omega_a h^2 \sim 0,4 \left(rac{10 \mu eV}{m_a}
ight)^{7/6}$$

- Observed DM density:  $\Omega_{DM}h^2 = 0.12$
- good DM candidate:  $m_a \gtrsim 10 \mu eV$





Raffelt @ (BLV 2013)

# Axion constraints

axions mix with pions ⇒ coupling to photons

- ullet coupling constant  $\sim rac{1}{f_{PQ}}$
- Stability? decay is slow on cosmological time scales for  $m_a < 20 eV$



#### Axion constraints

axions mix with pions ⇒ coupling to photons

- ullet coupling constant  $\sim rac{1}{f_{PQ}}$
- Stability?

decay is slow on cosmological time scales for  $m_a < 20 eV$ 



- Constraints from astrophysics
  - axions produced in hot plasma 

    transport energy 

    lifetime (sensitive to different couplings)
  - $\circ$   $m_a < 10 meV$
- Direct detection possibilities: (probe axion photon coupling)
  - Solar axion **telescope** (CAST), probing  $m_a \sim eV$
  - Microwave cavity searching dark matter axions (ADMX), probing  $\sim \mu eV$
  - $\circ$  **Light shining through wall** (ALPS) probing  $\sim keV$

# Astrophysics and laboratory searches G. Raffelt @ (BLV2013)



### Sikivie et al's idea arxiv:0901.1106

#### Do axions behave differently than WIMPS?

(except for successful direct detection )

- If axions are in a Bose-Einstein condensate they develop a different galactic halo structure than WIMPs. (Caustics)
- BEC formation needs thermalisation
- self-interaction  $\lambda a^4$  is not enough
- gravitational interaction (Saikawa, Yamaguchi et al., arXiv:1210.7080, arXiv:1310.0167)

Do gravitational interactions thermalize cosmic axions?

# Our starting point

S.Davidson and M.E. JCAP 1312 (2013) 034; arXiv:1307.8024

- Axions are born as classical field oscillations ⇒ classical problem
- What we already know about gravity:
  - o expands the universe

leading order solutions to GR

- grows density fluctuations
- Do not contain dissipation
- Fast interaction rate is not enough for BEC formation!
- · Dissipative effects must be sub leading

How to divide gravity into deterministic and dissipative part?

# Axion viscosity estimate

#### Idea: Estimate axion viscosity

- ullet off diagonal terms of  $T_{\mu 
  u}$  not used for leading order solutions
- imperfect fluid has viscosity on its off diagonal
- viscosity damps density fluctuations on short length scales ⇒ homogenisation, BEC formation?

#### Results:

- Damping scale is always smaller than the Jeans length!!
- no effects on cosmological length scales
- No thermalisation on horizon scales found!

# Summary

- axions can solve the strong CP problem
- axions could solve the DM problem: Misalignment angle mechanism
- simple parameter space constrained by astrophysics, cosmology and experiments:

$$10\mu eV \leq m_a \leq 10meV$$

#### axions are very interesting CDM candidates

- Sikivie's idea: difference between WIMPS and axions if BEC
  - Is thermalisation provided by gravitational interaction?
    - leading order gravitational effects do not contain dissipation
    - trick: estimate axion viscosity ⇒ dumping of fluctuations on negligible small scales
  - We cannot confirm gravitational axion thermalisation!

# Backup

## Dynamics determined by

- Einstein equations  $G_{\mu 
  u} = 8 \pi G T_{\mu 
  u}$
- Energy momentum conservation  $T^{\mu\nu}_{;\nu}=0$

## Dynamics determined by

- Einstein equations  $G_{\mu\nu}=8\pi G T_{\mu\nu}$
- Energy momentum conservation  $T^{\mu\nu}_{;\nu}=0$

Metric

Stress energy tensor

#### Dynamics determined by

- Einstein equations  $G_{\mu\nu}=8\pi G T_{\mu\nu}$
- Energy momentum conservation  $T^{\mu\nu}_{;\nu}=0$

Metric in Newtonian gauge

$$ds^2 = (1+2\psi)dt^2 - R^2(t)(1-2\phi)\delta_{ij}dx^idx^j$$

#### Stress energy tensor

- scalar field  $T^{\mu}_{\nu}=\partial^{\mu}a\partial_{\nu}a-\frac{1}{2}(\partial_{\alpha}a\partial^{\alpha}a-m^{2}a^{2})\delta^{\mu}_{\nu}$
- ullet in a homogeneous and isotropic Universe  $T^{\mu}
  u={\sf diag}(ar
  ho,ar
  ho,ar
  ho,ar
  ho)$
- adding scalar perturbations:

$$\overline{
ho}(t) o \overline{
ho}(t) + \delta 
ho(\vec{k}, t) , \ \overline{P}(t) o \overline{P}(t) + \delta P(\vec{k}, t)$$

$$ik_j \delta T_j^0 = (\overline{
ho} + \overline{P}) \theta(\vec{k}, t) , \ (\hat{k}_i \hat{k}_j - \frac{1}{3} \delta_{ij}) \delta T_j^i = -(\overline{
ho} + \overline{P}) \sigma(\vec{k}, t)$$

(0-0) Einstein equation (in Fourier space inside the horizon):

$$\frac{|\vec{p}|^2}{R^2(t)}\widetilde{\phi}(\vec{p},t) \simeq 4\pi G_N \delta \widetilde{\rho}(\vec{p},t)$$

Poisson equation for density perturbations!

The evolution equation leading order  $(\delta \equiv \frac{\delta \widetilde{
ho}(ec{p},t)}{\overline{
ho}(t)})$ 

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G \overline{\rho} \delta + c_s^2 \frac{p^2}{R^2(t)} \delta = 0$$

- describes growth of fluctuations on cosmological scales
- fluctuations oscillate below Jean length  $\lambda_{Jeans} \sim 1/\sqrt{H(t)m}$
- T<sub>i</sub> off diagonal terms of no importance
- no dissipation!

# Viscosity estimate

scalar field:

$$T_j^i(ec{x},t) = -rac{1+2\phi}{R^2(t)}\partial_i a\partial_j a^i$$

imperfect fluid:

$$T_j^i(\vec{x},t) = -\eta(t)(\partial_j U^i(\vec{x},t) + \partial^i U_j(\vec{x},t))$$

 $\eta=$  viscosity,  $U_{\mu}=$  fluid velocity,  $\phi=$  Newtonian potential

# Viscosity estimate

scalar field:

$$T_j^i(ec{x},t) = -rac{1+2\phi}{R^2(t)}\partial_i a\partial_j a$$

imperfect fluid:

$$T_j^i(\vec{x},t) = -\eta(t)(\partial_j U^i(\vec{x},t) + \partial^i U_j(\vec{x},t))$$

 $\eta = \text{viscosity}, U_{\mu} = \text{fluid velocity}, \phi = \text{Newtonian potential}$ 

⇒ estimate viscosity

$$\frac{\eta(t)}{n_{a}(t)} \sim -2\pi G \sum_{p} \frac{\delta \widetilde{\rho}(p,t) R^{2}(t)}{|\vec{p}|^{2}}$$

Source of gravitational interactions  $\delta\widetilde{\rho}(p,t)$  can be dominated by axions or photons!

# Viscosity impact

Decay rate for perturbation (comoving size  $1/|\vec{p}|$ ) due to viscosity dumping

$$\Gamma_{g} \sim rac{\eta(t)|ec{p}|^2}{R^2(t)\overline{
ho}(t)} \sim rac{Gm_a^2n_a(t)}{H_{QCD}^2}rac{p^2}{m_a^2}rac{R(t)}{R_{eq}}$$

Comparing  $\Gamma_g \sim H$  gives damping scale:  $\ell_{damp}^2(t=1/H)$  Results:

- Damping scale is always smaller than the Jeans length!!
- no effects on cosmological length scales
- No thermalisation on horizon scales found!

# Picture of gravitational thermalisation

- Leading order solutions of GR:
  - Homogeneous part of axion energy density drives expansion
  - Density perturbations grow at leading order
- Dissipation cannot be obtained from time-reversal invariant classical field equations at leading order

# Picture of gravitational thermalisation

- Leading order solutions of GR:
  - Homogeneous part of axion energy density drives expansion
  - Density perturbations grow at leading order
- Dissipation cannot be obtained from time-reversal invariant classical field equations at leading order
- · Dissipative effects of gravity must be suppressed
- estimation of axion viscosity gives negligible effects on cosmological scales
- No claim that our estimate is leading order dissipative process