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 In general, the pile-up do not 
significantly impact tracking, 
nor muons, nor even electrons 
and photons

 However, sizable impact on jets, 
MET and tau reconstruction as 
well as on trigger rates and 
computing



Jet and missing transverse energy
Missing transverse energy (MET) can indicate the 
presence of neutrinos or other (new?) non-
interacting particles. 
It is calculated as the negative of the vectorial sum 
of all of the objects reconstructed in the events

Impressive improvements on the
baseline JES determination

using in-situ techniques!
But still the main experimental systematic

uncertainty in SUSY searches
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Standard Model measurements at the LHC

Nikola Makovec 7

SUSY down here somewhere?



Standard Model measurements at the LHC
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Measurement of Z + jets productionMeasurement of fiducial jet multiplicity in 
tt production (lepton+jets)



Search strategy

Many new particles, huge parameter space (>100 new parameters), wide 
range of possible signatures but they are guiding principles….
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Search strategy
 SUSY searches strategy driven by cross section and luminosity

Early analyses dominated by broad 
and inclusive searches for gluino
and squark production,  but right from 
the start also attacked experimentally 
challenging searches such as for long-lived 
particles and RPV

Increasing luminosity gave access 
to rarer production channels. 
Additional motivation from Natural 
SUSY paradigm

It was quickly realised that 
dedicated searches had to be 
developed to adequately cover the 
rich decay spectrum 

8TeV
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ATLAS 0lepton analysis
 Jet+Met trigger  Leading jet pt>130GeV and MET>160GeV
 Veto events with electrons and muons with pT>10GeV
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ATLAS 0lepton analysis
 Jet+Met trigger  Leading jet pt>130GeV and MET>160GeV
 Veto events with electrons and muons with pT>10GeV

 Main background:
 Z+jets: irreducible background, dominant at low jet multiplicity
 W+jets: mainly coming from  W decay
 Top: mainly coming from  W decay, dominant at high jet multiplicity
 Diboson: small (<10%)
 Multijets: negligible thanks to harsh cuts to reject it
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ATLAS 0lepton analysis
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ATLAS 0lepton analysis
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ATLAS 0lepton analysis
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 Renormalize the MC to data in dedicated control regions
 Control regions are orthogonal to the SR (by inverting cuts) 

but have kinematical cuts close to SR 
 Systematic uncertainties which are correlated between CR 

and SR largely cancel out in the transfer factor.

Zll+2jets



ATLAS 0lepton analysis
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ATLAS 0lepton analysis
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 Zll are statistically limited to estimate accurately the Z
 The process +jets is used instead
 Larger statistics but massless boson and different couplings
 Transfer factors theoretically understood at the 10% level

Zll+2jets

+2jets



ATLAS 0lepton analysis

 A global likelihood fit for the normalization of each background from the 4 
control regions is simultaneously performed separately for each signal region.
 Background cross contamination in control regions automatically taken 

into account

 Validation regions:
 VRZ, CRWT with lepton treated as invisible,

VRTau, VRQ

 Systematics:
 Cancellation of the main systematics 

thanks to semi data driven technics
 JES, JER: few %
 Theory: 10 to 20%
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CMS
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MHT+HT (19.5fb-1)

Shape analysis using the 36bins based on:
 Jet multiplicity ([3,5],[6,7],  8)
 MHT
 HT

T (11.7fb-1)

Shape analysis using the 59 bins based on:
 Jet multiplicity ([2,3],4)
 bJet multiplicity
 HT
T : reject multijet background
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Interpretation
 If we consider general MSSM, there are too many parameters to scan. 

So we have to reduce the number of parameters.

 One approach followed to reduce the number of free parameters is to 
assume specific breaking models at the GUT scale, i.e.: 
 mSUGRA/CMSSM (Higgs-aware) 
 GMSB 
 mAMSB

 The alternative approach is to focus on one or few production 
processes and decay chains (with fixed branching ratio (BR)), 
extracting only the ‘essence’ of a certain model: 
 This is what we call simplified model
 Reasonably well suited to natural SUSY spectra

 The third approach is the phenomenological MSSM one, with choices of 
weak scale parameters agnostic of what happens at GUT scale 
 Understand LHC results in a broader framework 
 Interplay with other constraints (ex: DM)
 Discover signatures that LHC analyses may not be covering.
 Tom Rizzo et al., arXiv:1206:5800, arXiv:1206.4321
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Simplified models
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Higgs-aware mSugra
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Natural SUSY
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Direct stop pair production
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Large spectrum of possible stop decays. 
Effort so far concentrated on simplified models with 100% BRs to chosen final state. 



B-tagging

b-tagging algorithms exploit the b-hadron properties: 
 relative long life time
 displaced tracks/decay vertices
 relatively large B-hadron masses
 semileptonic decays 
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Advanced Neural Net based algorithms 
(MV1), combine several information to 
improve the performance.

Performance in-situ using in particular top 
pair events



Gluino-mediated stop 
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If gluinos are light, they are produced in pairs and decay through stops 

C

C



Direct stop pair production
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Direct stop pair production
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Hbb



Direct stop pair production
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c-tagging Loose Medium

c efficiency 95% 20%

b rejection 2 5

l rejection - 140



Direct stop pair production
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Electroweak production

 Low cross-section processes but if squark/gluinos too 
heavy may be only discovery window at the LHC

 Concentrate on multilepton decays without jet 
activity

 Low SM backgrounds, dominated by multiple gauge 
bosons production: WW, WZ, ZZ
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ATLAS 3 leptons (e/) + 0 b-jets + MET
 6 SRs targeting C1N2 production (including Z enriched/depleted)
 b-jet veto to reject top, main background WZ
 Signal interpretation assumes wino-like N2 and C1, bino-like N1
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Electroweak production: summary
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Electroweak production: summary
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b,W,Z,

b,W,Z,
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Conclusion
 ATLAS and CMS have searched for supersymmetry in a large 

variety of final states but nothing exciting so far!
 We are finalizing our search with 7/8 TeV datasets
 We are also preparing our searches for the harsher 

conditions of the 2015 LHC run: more pileup, larger PDF 
uncertainties, but also … higher collision energy !
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Back 
Up
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Part of the material presented were borrowed to:  
D. Coté, M. Kado, A. Hoecker, A. Marzin, G. Polesello,
C. Potter and T. Yamanaka



RPV multijets
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RPV multijets
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Long-lived gluino R-hadrons

 Voir Potter

 Long-lived gluino R-hadrons can get stuck in the 
detector and decay much later

 Search for hadronic calorimeter activity in out-of-time 
LHC collisions (using empty bunches)

 Background dominated by beam-halo
 (measured in unpaired bunches) and cosmics
 (measured in low-lumi runs)
 Strong model dependence in signal stopping fraction
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Long-lived gluino R-hadrons
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pMSSM CMS
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Sub System ATLAS CMS

Design

Magnet(s)
Solenoid (within EM Calo) 2T

3 Air‐core Toroids
Solenoid 3.8T

Calorimeters Inside

Inner Tracking
Pixels, Si‐strips, TRT
PID w/ TRT and dE/dx

Pixels and Si‐strips
PID w/ dE/dx

EM Calorimeter
Lead‐Larg Sampling

w/ longitudinal segmentation
Lead‐Tungstate Crys. Homogeneous
w/o longitudinal segmentation

Hadronic Calorimeter
Fe‐Scint. & Cu‐Larg (fwd)      Brass‐scint.                    & Tail Catcher

Muon Spectrometer System
Acc. ATLAS 2.7 & CMS 2.4

Instrumented Air Core (std. alone) Instrumented Iron return yoke

4
11

ATLAS and CMS in a nutshell
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Motivation for supersymmetry

 SUSY has many theoretical virtues:
 Non trivial extension of the poincarré group in QFT which relates 

fermions to bosons
 Incorpore gravity is SUSY is made local
 Appears naturally in superstrings theories

 Phenomenological and most compelling arguments for 
weak scale SUSY:
 unification of gauge coupling constant
 provide a dark matter candidate

 Consequence of the R-parity conservation to preserve the stability of 
the proton in SUSY models

 Solve the naturalness issue

 Other
 Could fix discrepancy in gμ - 2
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Direct stop pair production
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mass of the chargino is one additional 
degree of freedom
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Direct stop pair production
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Electroweak production: summary
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