Searches for supersymmetry at the LHC

Nikola Makovec LAL IN2P3/CNRS Université Paris Sud

L A B O R A T O I R E DE L'ACCÉLÉRATEUR L I N É A I R E

Known biases

Exotics RPV Long Lived Non miminal SUSY Gravitino LSP Indirect searches CMS

SUSY RPC Prompt decays MSSM Neutralino LSP Direct searches ATLAS

Three Years of LHC operations

In general, the pile-up do not significantly impact tracking, nor muons, nor even electrons and photons

However, sizable impact on jets, MET and tau reconstruction as well as on trigger rates and computing

50 ns inter-bunch spacing

Jet and missing transverse energy

Impressive improvements on the baseline JES determination using in-situ techniques! But still the main experimental systematic uncertainty in SUSY searches

Missing transverse energy (MET) can indicate the presence of neutrinos or other (new?) non-interacting particles.

It is calculated as the negative of the vectorial sum of all of the objects reconstructed in the events

Jet and missing transverse energy

Impressive improvements on the baseline JES determination using in-situ techniques! But still the main experimental systematic uncertainty in SUSY searches

Missing transverse energy (MET) can indicate the presence of neutrinos or other (new?) non-interacting particles.

It is calculated as the negative of the vectorial sum of all of the objects reconstructed in the events

Jet and missing transverse energy

Impressive improvements on the baseline JES determination using in-situ techniques! But still the main experimental systematic uncertainty in SUSY searches

Missing transverse energy (MET) can indicate the presence of neutrinos or other (new?) non-interacting particles.

It is calculated as the negative of the vectorial sum of all of the objects reconstructed in the events

Standard Model measurements at the LHC

Standard Model measurements at the LHC

Measurement of Z + jets production

Search strategy

Many new particles, huge parameter space (>100 new parameters), wide range of possible signatures but they are guiding principles....

	Long- Lived				
R-Pa	arity-Conser	ving	R-Parity Violation		RPC or RPV
Strong 1 ^{st,} 2 nd gen. squarks, gluinos	3 rd gen. stop, sbottom	Weak EWK- inos, sleptons	RPC prod. RPV decays	RPV prod. RPV decays	Various ranges of lifetime

Many new particles, huge parameter space (>100 new parameters), wide range of possible signatures but they are guiding principles....

Search strategy

SUSY searches strategy driven by cross section and luminosity

Early analyses dominated by broad and inclusive searches for gluino and squark production, but right from the start also attacked experimentally challenging searches such as for long-lived particles and RPV

Increasing luminosity gave access to rarer production channels. Additional motivation from *Natural SUSY* paradigm

It was quickly realised that dedicated searches had to be developed to adequately cover the rich decay spectrum

- Jet+Met trigger ⇒ Leading jet pt>130GeV and MET>160GeV
- Veto events with electrons and muons with pT>10GeV

$$M_{eff} = H_T + E_T^{miss}$$

$$H_T = \sum_{jets \ pT > 40 GeV} p_T^{jets}$$

	Channel									
Requirement	equirement A (2-jets) B (3-jets) C		C (4-jets) D (5-jets)		E (6-jets)					
	L	М	Μ	Т	Μ	Т	-	L	Μ	Т
$\Delta \phi(\text{jet}_i, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$	0.4 (i =	= {1, 2, (3	$3 ext{ if } p_{\mathrm{T}}(j_3)$) > 40 GeV)})	$0.4 (i = \{1, 2, 3\}), 0.2 (p_T > 40 \text{ GeV jets})$					
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj) >$	0.2	_ ^a	0.3	0.4	0.25	0.25	0.2	0.15	0.2	0.25
$m_{\rm eff}({\rm incl.}) [{ m GeV}] >$	1000	1600	1800	2200	1200	2200	1600	1000	1200	1500

(a) For SR A-medium the cut on $E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj)$ is replaced by a requirement $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} > 15 {\rm ~GeV^{1/2}}$.

- Jet+Met trigger ⇒ Leading jet pt>130GeV and MET>160GeV
- Veto events with electrons and muons with pT>10GeV

					Chan					
Requirement	A (2-	-jets)	В	(3-jets)	3-jets) C (4-jets)		D (5-jets)	D (5-jets) E (6-jets))
	L	Μ	Μ	Т	Μ	Т	-	L	Μ	Т
$\Delta \phi(\text{jet}_i, \mathbf{E}_T^{\text{miss}})_{\text{min}} >$	$0.4 (i = \{1, 2, (3 \text{ if } p_T(j_3) > 40 \text{ GeV})\}) = 0.4 (i = \{1, 2, 3\}), 0.2 (p_T > 40 \text{ GeV})$								GeV jets)
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj) >$	0.2	_ ^a	0.3	0.4	0.25	0.25	0.2	0.15	0.2	0.25
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1000	1600	1800	2200	1200	2200	1600	1000	1200	1500

(a) For SR A-medium the cut on $E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj)$ is replaced by a requirement $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} > 15 {\rm ~GeV^{1/2}}$.

- Main background:
 - Z→vv+jets: irreducible background, dominant at low jet multiplicity
 - W+jets: mainly coming from $W \rightarrow \tau v$ decay
 - Top: mainly coming from $W \rightarrow \tau v$ decay, dominant at high jet multiplicity
 - Diboson: small (<10%)
 - Multijets: negligible thanks to harsh cuts to reject it

$$N_{Z\nu\nu}^{pred} = N_{Z\nu\nu}^{MC}$$

$$meff' = met' + H_T = met + p_T^{Zll} + H_T$$

$$N_{Z\nu\nu}^{pred} = N_{Z\nu\nu}^{MC} \times \frac{N_{Zll}^{data}}{N_{Zll}^{MC}}$$

- Renormalize the MC to data in dedicated control regions
- Control regions are orthogonal to the SR (by inverting cuts) but have kinematical cuts close to SR
- Systematic uncertainties which are correlated between CR and SR largely cancel out in the transfer factor.

$$meff' = met' + H_T = met + p_T^{Zll} + H_T$$

- Renormalize the MC to data in dedicated control regions
- Control regions are orthogonal to the SR (by inverting cuts) but have kinematical cuts close to SR
- Systematic uncertainties which are correlated between CR and SR largely cancel out in the transfer factor.

$$meff' = met' + H_T = met + p_T^{Zll} + H_T$$

$$N_{Z\nu\nu}^{pred} = N_{Z\nu\nu}^{MC} \times \frac{N_{Zll}^{data}}{N_{Zll}^{MC}}$$

- Renormalize the MC to data in dedicated control regions
- Control regions are orthogonal to the SR (by inverting cuts) but have kinematical cuts close to SR
- Systematic uncertainties which are correlated between CR and SR largely cancel out in the transfer factor.

$$N_{Z\nu\nu}^{pred} = N_{Z\nu\nu}^{MC} \times \frac{N_{\gamma+jets}^{data}}{N_{\gamma+jets}^{MC}}$$

- ZII are statistically limited to estimate accurately the Zvv
- The process γ+jets is used instead
- Larger statistics but massless boson and different couplings
- Transfer factors theoretically understood at the 10% level

CR	SR background	CR process	CR selection
CRY	$Z(\rightarrow vv)$ +jets	γ+jets	Isolated photon
CRQ	multi-jets	multi-jets	Reversed $\Delta \phi$ (jet, $\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$) _{min} and $E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(Nj)$ requirements ^a
CRW	$W(\rightarrow \ell \nu)$ +jets	$W(\rightarrow \ell \nu)$ +jets	$30 \text{ GeV} < m_T(\ell, E_T^{\text{miss}}) < 100 \text{ GeV}, b$ -veto
CRT	$t\bar{t}$ and single-t	$t\bar{t} \rightarrow bbqq'\ell\nu$	$30 \text{ GeV} < m_T(\ell, E_T^{\text{miss}}) < 100 \text{ GeV}, b\text{-tag}$

- A global likelihood fit for the normalization of each background from the 4 control regions is simultaneously performed separately for each signal region.
 - Background cross contamination in control regions automatically taken into account
- Validation regions:
 - VRZ, CRWT with lepton treated as invisible, VRTau, VRQ
- Systematics:
 - Cancellation of the main systematics thanks to semi data driven technics
 - JES, JER: few %
 - Theory: 10 to 20%

$$N_{Z\nu\nu}^{pred} = N_{Z\nu\nu}^{MC} \times \frac{N_{\gamma+jets}^{data} - N_{other\,bkg}}{N_{\gamma+jets}^{MC}}$$

- A global likelihood fit for the normalization of each background from the 4 control regions is simultaneously performed separately for each signal region.
 - Background cross contamination in control regions automatically taken into account
- Validation regions:
 - VRZ, CRWT with lepton treated as invisible, VRTau, VRQ
- Systematics:
 - Cancellation of the main systematics thanks to semi data driven technics
 - JES, JER: few %
 - Theory: 10 to 20%

CR	SR background	CR process	CR selection
CRY	$Z(\rightarrow \nu\nu)$ +jets	γ+jets	Isolated photon
CRQ	multi-jets	multi-jets	Reversed $\Delta \phi$ (jet, $\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$) _{min} and $E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(Nj)$ requirements ^a
CRW	$W(\rightarrow \ell \nu)$ +jets	$W(\rightarrow \ell \nu)$ +jets	$30 \text{ GeV} < m_T(\ell, E_T^{\text{miss}}) < 100 \text{ GeV}, b\text{-veto}$
CRT	$t\bar{t}$ and single-t	$t\bar{t} \rightarrow bbqq'\ell\nu$	$30 \text{ GeV} < m_T(\ell, E_T^{\text{miss}}) < 100 \text{ GeV}, b\text{-tag}$

- A global likelihood fit for the normalization of each background from the 4 control regions is simultaneously performed separately for each signal region.
 - Background cross contamination in control regions automatically taken into account
- Validation regions:
 - VRZ, CRWT with lepton treated as invisible, VRTau, VRQ
- Systematics:
 - Cancellation of the main systematics thanks to semi data driven technics
 - JES, JER: few %
 - Theory: 10 to 20%

CMS

α_{T} (11.7fb⁻¹)

Shape analysis using the 59 bins based on:

- Jet multiplicity ([2,3],≥4)
- bJet multiplicity
- HT
- $\boldsymbol{\alpha}_{T}$: reject multijet background

$$\alpha_{T} \equiv \frac{E_{T}^{J_{2}}}{M_{T}(J_{1}J_{2})} = \frac{\sqrt{E_{T}^{J_{2}} / E_{T}^{J_{1}}}}{\sqrt{2(1 - \cos \Delta \varphi_{J_{1}J_{2}})}}$$

MHT+HT (19.5fb⁻¹)

Shape analysis using the 36bins based on:

- Jet multiplicity ([3,5],[6,7], ≥ 8)
- MHT
- HT

Interpretation

- If we consider general MSSM, there are too many parameters to scan. So we have to reduce the number of parameters.
- One approach followed to reduce the number of free parameters is to assume specific breaking models at the GUT scale, i.e.:
 - mSUGRA/CMSSM (Higgs-aware)
 - GMSB
 - mAMSB
- The alternative approach is to focus on one or few production processes and decay chains (with fixed branching ratio (BR)), extracting only the 'essence' of a certain model:
 - This is what we call simplified model
 - Reasonably well suited to natural SUSY spectra
- The third approach is the phenomenological MSSM one, with choices of weak scale parameters agnostic of what happens at GUT scale
 - Understand LHC results in a broader framework
 - Interplay with other constraints (ex: DM)
 - Discover signatures that LHC analyses may not be covering.
 - Tom Rizzo et al., arXiv:1206:5800, arXiv:1206.4321

Simplified models

Higgs-aware mSugra

Tree-level: Higgsino < ~350 GeV

One loop: stop < ~1 TeV

Two loops: gluino < ~2 TeV

Large spectrum of possible stop decays.

Effort so far concentrated on simplified models with 100% BRs to chosen final state.

B-tagging

b-tagging algorithms exploit the b-hadron properties:

- relative long life time
- displaced tracks/decay vertices
- relatively large B-hadron masses
- semileptonic decays

Advanced Neural Net based algorithms (MV1), combine several information to improve the performance.

Performance in-situ using in particular top pair events !⁺, q W

Nikola Makovec

v, ā'

h

Gluino-mediated stop

If gluinos are light, they are produced in pairs and decay through stops

Nikola Makovec

Electroweak production

Largest cross section for

wino-like $\tilde{\chi}$'s. Smaller if

3-lepton final state if light

If sleptons heavy, reduced

branching ratio to leptons

chargino pair production:

no-slepton case produces

Equivalent picture for

WW + MET final state

higgsino (then also mass-

degenerate with LSP)

sleptons

- Low cross-section processes but if squark/gluinos too heavy may be only discovery window at the LHC
- Concentrate on multilepton decays without jet activity
- Low SM backgrounds, dominated by multiple gauge bosons production: WW, WZ, ZZ

p

p

p

ATLAS 3 leptons (e/µ) + 0 b-jets + MET

- 6 SRs targeting C1N2 production (including Z enriched/depleted)
- b-jet veto to reject top, main background WZ
- Signal interpretation assumes wino-like N2 and C1, bino-like N1

Electroweak production: summary

Electroweak production: summary

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

	Model	e, μ, τ, γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	-1]	Mass limit		Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q Q (\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\ell \text{ NLSP}) \\ \text{GMSB} (\ell \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GRAUTION LSP} \\ \text{GRAUTION LSP}$	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1-2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 2-4 jets 0-2 jets - 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 5.8 10.5	q. ĝ g. ĝ ĝ. ĝ. ĝ ĝ. ĝ. ĝ. ĝ. ĝ ĝ. ĝ	1.7 T 1.2 TeV 1.1 TeV 740 GeV 1.3 TeV 1.3 TeV 1.3 TeV 1.18 TeV 1.12 TeV 1.24 TeV 1.24 TeV 1.07 TeV 619 GeV 900 GeV 690 GeV	eV $m(\tilde{q})=m(\tilde{g})$ any $m(\tilde{q})$ any $m(\tilde{q})$ $m(\tilde{\chi}_{1}^{0})=0$ GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV $m(\tilde{\chi}_{1}^{1})<200$ GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV $\tan\beta < 15$ $\tan\beta < 18$ $m(\tilde{\chi}_{1}^{0})>50$ GeV $m(\tilde{\chi}_{1}^{0})>50$ GeV $m(\tilde{\chi}_{1}^{0})>200$ GeV $m(\tilde{\chi}_{1}^{0})>200$ GeV $m(\tilde{H})>200$ GeV $m(\tilde{g})>10^{-4}$ eV	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
g med.	$\widetilde{g} \rightarrow b \overline{b} \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{1}$ $\widetilde{g} \rightarrow b \overline{t} \widetilde{\chi}_{1}^{1}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	80 80 80 80	1.2 TeV 1.1 TeV 1.34 TeV 1.34 TeV 1.3 TeV	$\begin{array}{l} \mathfrak{m}(\tilde{\chi}_{1}^{0}){<}600~{\rm GeV} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}){<}350~{\rm GeV} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}){<}400~{\rm GeV} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}){<}300~{\rm GeV} \end{array}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{split} & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{v}_1^0 \\ & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{v}_1^1 \\ & \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow b \tilde{v}_1^1 \\ & \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow b \tilde{v}_1^0 \\ & \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow t \tilde{v}_1^0 \\ & \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow t \tilde{v}_1^0 \\ & \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow t \tilde{v}_1^0 \\ & \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \tilde{t}_1 \rightarrow t \tilde{v}_1^0 \\ & \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \tilde{t}_1 \rightarrow t \tilde{v}_1^0 \\ & \tilde{t}_1 \tilde{t}_1 (\text{neatural GMSB}) \\ & \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{split} $	$\begin{array}{c} 0\\ 2\ e,\mu\ ({\rm SS})\\ 1\mathchar`-2\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 0\\ 3\ e,\mu\ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b 1 ono-jet/c-1 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \begin{array}{c} \tilde{b}_1 \\ \tilde{b}_1 \\ \tilde{t}_1 \\ \tilde{t}_2 \end{array} $	100-620 GeV 275-430 GeV 110 <mark>-167 GeV</mark> 130-220 GeV 225-525 GeV 200-610 GeV 320-660 GeV 90-200 GeV 500 GeV 271-520 GeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) < 90 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 2 m(\tilde{\chi}_{1}^{0}) \\ m(\tilde{\chi}_{1}^{0}) = 55 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 55 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 15 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 55 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 55 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 150 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 150 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = m(\tilde{\chi}_{1}^{0}) + 180 \text{GeV} \\ \end{array}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,\mathbf{R}}\tilde{\ell}_{L,\mathbf{R}}, \tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\nu}\nu(\tau\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{1}\nu\tilde{\ell}_{1}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{1}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}Z\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ 1 e, μ	0 0 - 0 2 <i>b</i>	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$ \tilde{\tilde{L}}_{\vec{X}_{1}^{\pm},\vec{X}_{2}^{0}}^{\vec{\ell}} \\ \tilde{\tilde{X}}_{1}^{\pm},\tilde{\tilde{X}}_{1}^{\pm},\tilde{\tilde{X}}_{2}^{0} \\ \tilde{\tilde{X}}_{1}^{\pm},\tilde{\tilde{X}}_{2}^{0} \\ \tilde{\tilde{X}}_{1}^{\pm},\tilde{\tilde{X}}_{2}^{0} \\ \end{array} $	85-315 GeV 125-450 GeV 180-330 GeV 600 GeV m(315 GeV 285 GeV	$\begin{array}{l} \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 0 \; \text{GeV} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 0 \; \text{GeV}, \; \mathfrak{m}(\tilde{\ell}, \tilde{r}) = 0.5(\mathfrak{m}(\tilde{\chi}_{1}^{+}) + \mathfrak{m}(\tilde{\chi}_{1}^{0})) \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 0 \; \text{GeV}, \; \mathfrak{m}(\tilde{\ell}, \tilde{r}) = 0.5(\mathfrak{m}(\tilde{\chi}_{1}^{+}) + \mathfrak{m}(\tilde{\chi}_{1}^{0})) \\ \tilde{\chi}_{1}^{+}) = \mathfrak{m}(\tilde{\chi}_{2}^{0}), \; \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 0, \; \mathfrak{m}(\tilde{\ell}, \tilde{r}) = 0.5(\mathfrak{m}(\tilde{\chi}_{1}^{+}) + \mathfrak{m}(\tilde{\chi}_{1}^{0})) \\ \mathfrak{m}(\tilde{\chi}_{1}^{+}) = \mathfrak{m}(\tilde{\chi}_{2}^{0}), \; \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 0, \; \text{sleptons decoupled} \\ \mathfrak{m}(\tilde{\chi}_{1}^{+}) = \mathfrak{m}(\tilde{\chi}_{2}^{0}), \; \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 0, \; \text{sleptons decoupled} \end{array}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}, \tilde{\chi}_1^0 \rightarrow q q \mu$ (RPV)	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - -	Yes Yes Yes	20.3 22.9 15.9 4.7 20.3	$ \begin{array}{c} \tilde{\chi}_{1}^{\pm} \\ \tilde{g} \\ \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{0} \\ \tilde{q} \end{array} $	270 GeV 832 GeV 475 GeV 230 GeV 1.0 TeV	$\begin{array}{l} m(\tilde{\chi}_1^{0})\!-\!m(\tilde{\chi}_1^{0})\!=\!160\;MeV,\; r(\tilde{\chi}_1^{\pm})\!=\!0.2\;ns\\ m(\tilde{\chi}_1^{0})\!=\!100\;GeV,\; 10\;\mus\!<\!r(\tilde{g})\!<\!1000\;s\\ 10\!<\!tan\beta\!<\!50\\ 0.4\!<\!r(\tilde{\chi}_1^{0})\!<\!2\;ns\\ 1.5<\!cr\!<\!156\;mm,\;BR(\mu)\!=\!1,\;m(\tilde{\chi}_1^{0})\!=\!108\;GeV\\ \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear RPV CMSSM \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow e \widetilde{v}_{\mu}, e \mu \widetilde{v} \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow \tau \tau \widetilde{v}_e, e \tau \widetilde{v}, \\ \widetilde{g} \rightarrow q q \\ \widetilde{g} \rightarrow \widetilde{t}_1 t, \widetilde{t}_1 \rightarrow b s \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ \vdots \\ e \\ 4 \ e, \mu \\ \tau \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (SS) \end{array}$	- 7 jets - 6-7 jets 0-3 <i>b</i>	Yes Yes Yes Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7	$ \begin{array}{c} \tilde{\nu}_{\tau} \\ \tilde{\nu}_{\tau} \\ \tilde{\eta}_{\tau} \\ \tilde{g}_{\tau} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{g}_{\tau} \\ \tilde{g} \\ \tilde{g} \end{array} $	1.61 Te 1.1 TeV 1.2 TeV 760 GeV 350 GeV 916 GeV 880 GeV	$\begin{array}{c} \checkmark & \lambda_{311}'=0.10, \lambda_{132}\!=\!0.05 \\ \lambda_{311}'=\!0.10, \lambda_{1(2)33}\!=\!0.05 \\ m(\tilde{q})\!=\!m(\tilde{g}), cr_{LSP}\!<\!1 \mathrm{mm} \\ m(\tilde{V}_1^0)\!\!>\!\!300 \mathrm{GeV}, \lambda_{121}\!\!>\!0 \\ m(\tilde{X}_1^0)\!\!>\!\!80 \mathrm{GeV}, \lambda_{133}\!\!>\!0 \\ \mathrm{BR}(t)\!=\!\mathrm{BR}(b)\!=\!\mathrm{BR}(c)\!\!=\!0\% \end{array}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-096 ATLAS-CONF-2013-091 ATLAS-CONF-2013-097
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> , <i>µ</i> (SS) 0	4 jets 1 <i>b</i> mono-jet	Yes Yes	4.6 14.3 10.5	sgluon sgluon M* scale	100-287 GeV 800 GeV 704 GeV	incl. limit from 1110.2693 $m(\chi) {<} 80~{\rm GeV}, {\rm limit~of} {<} 887~{\rm GeV} {\rm for~D8}$	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8 \text{ TeV}$	√s = full	8 TeV data			10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

	Model	e, μ, τ, γ	Jets	E ^{miss} T	q	5% CI	ovelusio	hng	for (be	oct)
sarches	MSUGRA/CMSSM MSUGRA/CMSSM MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_1^0$	0 1 e, μ 0 0 0 1 e, μ	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets	Yes Yes Yes Yes Yes Yes	n	nassle	ss LSP so	cen	arios:	-30)
clusive Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu)\tilde{\chi}_1^0$ GMSB ($\tilde{\ell}$ NLSP) GMSB ($\tilde{\ell}$ NLSP) GGM (bino NLSP)	2 e, μ 2 e, μ 1-2 τ 2 γ	0-3 jets 2-4 jets 0-2 jets	Yes Yes Yes			$m(\tilde{g})$	<	1300 0	юV
Ч	GGM (wino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) Gravitino LSP	$1 e, \mu + \gamma$ γ $2 e, \mu (Z)$ 0	1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes	_		m(q̃)	<	1400 0	ieV
3 rd gen. ẽ med.	$ \begin{split} \tilde{g} &\rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} &\rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} &\rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} &\rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{split} $	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes			m(ĥ)	<	650 C	ieV
ks on	$ \vec{b}_1 \vec{b}_1, \vec{b}_1 \rightarrow \vec{b} \vec{\chi}_1^0 \vec{b}_1 \vec{b}_1, \vec{b}_1 \rightarrow \vec{t} \vec{\chi}_1^\pm \vec{z}, \vec{z}, (light) z$	0 2 e, μ (SS) 1-2 e μ	2 b 0-3 b 1-2 b	Yes Yes Voc	-		m(t)	<	680 C	ieV
en. squar t producti	$\tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow \mathcal{W}t_{1}^{1}$ $\tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow \mathcal{W}b\tilde{t}_{1}^{0}$ $\tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow t\tilde{t}_{1}^{0}$ $\tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow b\tilde{t}_{1}^{0}$ $\tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \tilde{t}_{1} \rightarrow t\tilde{t}_{1}^{0}$	2 e, μ 2 e, μ 2 e, μ 0 1 e, μ	0-2 jets 2 jets 2 b 1 b	Yes Yes Yes Yes			$m(\tilde{\ell}_L)$	<	300 0	ъV
3 rd g direc	$ \begin{array}{l} \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{natural GMSB}) \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{array} $	0 0 m 2 e, μ (Z) 3 e, μ (Z)	2 <i>b</i> nono-jet/ <i>c</i> -ta 1 <i>b</i> 1 <i>b</i>	Yes ag Yes Yes Yes	n	$\eta(\chi^{\pm} =$	$\chi^{0})_{light\; \widetilde{\ell}}$	<	650 C	ъV
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}Z\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ 1 e, μ	0 0 - 0 2 <i>b</i>	Yes Yes Yes Yes Yes Yes	m	$(\chi^{\pm} = \chi)$	$\chi^0)_{heavy \tilde{\ell}}$	<	340 0	ieV
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_+ \tau(e$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 (μ) 1-2 μ 2 γ 1 μ, displ. vt	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$ \begin{array}{c} \tilde{\chi}_1^{\pm} \\ \tilde{g} \\ \tilde{\chi}_1^{0} \\ \tilde{\chi}_1^{0} \\ \tilde{q} \end{array} $	270 GeV 230 GeV	475 Ge	832 GeV 2V 1.0 TeV	
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \widetilde{x}_1^+ \widetilde{x}_1^-, \widetilde{x}_1^+ \rightarrow W \widetilde{x}_1^0, \widetilde{x}_1^0 \rightarrow ee\widetilde{v}_{\mu}, e\mu \widetilde{v}, \\ \widetilde{x}_1^+ \widetilde{x}_1^-, \widetilde{x}_1^+ \rightarrow W \widetilde{x}_1^0, \widetilde{x}_1^0 \rightarrow ev \widetilde{v}_{\tau}, ev \widetilde{v}_{\tau}, \\ \widetilde{g} \rightarrow qqq \\ \widetilde{g} \rightarrow \widetilde{t}_1 t, \ \widetilde{t}_1 \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ e \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \end{array}$	- 7 jets - - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.7 20.7 20.7 20.3 20.7	$ \begin{array}{c} \tilde{v}_{\tau} \\ \tilde{v}_{\tau} \\ \tilde{q}_{\tau} \\ \tilde{g} \\ \tilde{\chi}_{\tau}^{\dagger} \\ \tilde{\chi}_{\tau}^{\dagger} \\ \tilde{\chi}_{\tau}^{\dagger} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \end{array} $	350 G	ieV	1.1 Te\ 1.2 T 760 GeV 916 GeV 880 GeV	1.61 TeV / ev
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 e, µ (SS) 0	4 jets 1 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon sgluon M* scale	100-287 GeV		800 GeV 704 GeV	
	√s = 7 TeV full data	/s = 8 TeV artial data	√s = 8 full c	3 TeV lata		1 0⁻	-1		1	

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

Reference

$\begin{split} &n(\tilde{q}) = m(\tilde{g}) \\ & \text{any } m(\tilde{q}) \\ & \text{any } m(\tilde{q}) \\ & n(\tilde{x}_1^0) = O GeV \\ & n(\tilde{x}_1^0) = O GeV \\ & n(\tilde{x}_1^0) = O GeV \\ & n(\tilde{x}_1^0) < 200 GeV, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_1^0) + m(\tilde{g})) \\ & n(\tilde{\chi}_1^0) = O GeV \\ & an\beta < 15 \\ & an\beta > 18 \\ & an\tilde{\chi}^{(\tilde{v})} > EO CeV \end{split}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 1209.0753
$\begin{array}{l} (\tilde{\chi}_{1}^{0}) > 50 \; \mathrm{GeV} \\ \mathfrak{n}(\tilde{\chi}_{1}^{0}) > 220 \; \mathrm{GeV} \\ \mathfrak{n}(\tilde{H}) > 220 \; \mathrm{GeV} \\ \mathfrak{n}(\tilde{g}) > 10^{-4} \; \mathrm{eV} \end{array}$	ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
$\begin{array}{l} \mathfrak{n}(\tilde{x}_{1}^{0}) < \!\! 600 \mathrm{GeV} \\ \mathfrak{n}(\tilde{x}_{1}^{0}) < \!\! 350 \mathrm{GeV} \\ \mathfrak{n}(\tilde{x}_{1}^{0}) < \!\! 400 \mathrm{GeV} \\ \mathfrak{n}(\tilde{x}_{1}^{0}) < \!\! 300 \mathrm{GeV} \end{array}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
$\begin{split} &n(\tilde{k}_{1}^{0}){<}90~\text{GeV} \\ &n(\tilde{k}_{1}^{0}){=}2~m(\tilde{k}_{1}^{0}) \\ &m(\tilde{k}_{1}^{0}){=}55~\text{GeV} \\ &n(\tilde{k}_{1}^{0}){=}m(\tilde{t}_{1}){-}m(W){-}50~\text{GeV}, ~m(\tilde{t}_{1}){<}{<}m(\tilde{k}_{1}^{+}) \\ &n(\tilde{k}_{1}^{0}){=}0~\text{GeV} \\ &n(\tilde{k}_{1}^{0}){=}0~\text{GeV} \\ &n(\tilde{k}_{1}^{0}){=}0~\text{GeV} \\ &n(\tilde{k}_{1}^{0}){=}0~\text{GeV} \\ &n(\tilde{k}_{1}^{0}){=}0~\text{GeV} \\ &n(\tilde{k}_{1}^{0}){=}150~\text{GeV} \\ &m(\tilde{k}_{1}^{0}){=}150~\text{GeV} \\ &m(\tilde{t}_{1}){=}m(\tilde{k}_{1}^{0}){+}180~\text{GeV} \end{split}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-026 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
$\begin{array}{l} n(\tilde{\chi}_{1}^{0}) = \!\! 0 \; GeV \\ n(\tilde{\chi}_{1}^{0}) = \!\! 0 \; GeV \; m(\tilde{\ell}, \tilde{\nu}) = \!\! 0.5(m(\tilde{\chi}_{1}^{\pm}) \!\! + \!\! m(\tilde{\chi}_{1}^{0})) \\ n(\tilde{\chi}_{1}^{0}) = \!\! 0 \; GeV, \; m(\tilde{\tau}, \tilde{\nu}) = \!\! 0.5(m(\tilde{\chi}_{1}^{\pm}) \!\! + \!\! m(\tilde{\chi}_{1}^{0})) \\ \tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) = \!\! 0, \; m(\tilde{\ell}, \tilde{\nu}) = \!\! 0.5(m(\tilde{\chi}_{1}^{\pm}) \!\! + \!\! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{\pm}) = \!\! m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) \!\! = \!\! 0, \; sleptons \; decoupled \\ m(\tilde{\chi}_{1}^{\pm}) \!\! = \!\! m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) \!\! = \!\! 0, \; sleptons \; decoupled \end{array}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
$\begin{array}{l} m(\tilde{\chi}_1^*) \text{-}m(\tilde{\chi}_1^0) \text{=} 160 \; MeV, \tau(\tilde{\chi}_1^*) \text{=} 0.2 \; \mathrm{ns} \\ m(\tilde{\chi}_1^0) \text{=} 100 \; GeV, \; 10 \; \mu \text{s} {<} \tau(\tilde{g}) \text{<} 1000 \; \text{s} \\ 10 {<} \tan \! \beta \text{<} 50 \\ 0.4 {<} \tau(\tilde{\chi}_1^0) \text{<} 2 \; \mathrm{ns} \\ 1.5 {<} c\tau \text{<} 156 \; \mathrm{mm}, \; BR(\mu) \text{=} 1, \; m(\tilde{\chi}_1^0) \text{=} 108 \; GeV \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
$\begin{array}{l} \lambda_{311}'=0.10, \lambda_{132}=0.05 \\ \lambda_{311}'=0.10, \lambda_{1(2)33}=0.05 \\ \mathfrak{m}(\vec{\alpha})=\mathfrak{m}(\vec{g}), c\tau_{LSP}<1 \mathrm{mm} \\ \mathfrak{m}(\vec{\lambda}_1^0)>300 \mathrm{GeV}, \lambda_{121}>0 \\ \mathfrak{m}(\vec{k}_1^0)=\mathrm{BR}(o)=\mathrm{BR}(c)=0\% \end{array}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
incl. limit from 1110.2693 $\mathrm{m}(\chi){<}80~\mathrm{GeV}, \mathrm{limit}~\mathrm{of}{<}687~\mathrm{GeV}~\mathrm{for}~\mathrm{D8}$	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147

Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Conclusion

- ATLAS and CMS have searched for supersymmetry in a large variety of final states but nothing exciting so far!
- We are finalizing our search with 7/8 TeV datasets
- We are also preparing our searches for the harsher conditions of the 2015 LHC run: more pileup, larger PDF uncertainties, but also ... higher collision energy !

Part of the material presented were borrowed to: D. Coté, M. Kado, A. Hoecker, A. Marzin, G. Polesello, C. Potter and T. Yamanaka

That's all Folks

RPV multijets

Consider gluino or neutralino LSP decaying to jets

Searching for resonances is difficult due to combinatorics

Search for events with ≥ 6 or 7 high p_{τ} jets

0-2 b-tagged jets to estimate BR to heavy flavour guarks

Signal regions optimised for many different models Jet $p_{\tau} \ge 80-220$ GeV, Njet $\ge 6-7$, Nbjet 0-2No significant excess seen

SM multijet background normalised to data in lower jet multiplicity regions

ATLAS Preliminary

10¹

Nikola Makovec (slide from C. Potter)

RPV multijets

Long-lived gluino R-hadrons

Beam halo background from unpaired crossings No significant excess seen

Stopped gluino R-hadrons excluded up to 832 GeV for 10 μ s < τ (gl~) < 1000 s and 100 GeV LSP Longest lifetime excluded: 2 years!

Gluino Mass (Gev)

Leading Jet Energy [GeV]

Long-lived gluino R-hadrons

A beam-halo candidate event during an unpaired bunch crossing in data.

A cosmic ray muon candidate event during an empty bunch crossing in data

A candidate event display from 2011 data passing all selections

energy deposits in TileCal cells fraction of red area indicates the amount of energy in the cell

histogram of total energy in projective TileCal towers

Muon segments are drawn but not reconstructed

The bigger picture — more involved (realistic?) models CMS reinterpreted 7 TeV and 8 TeV searches within 19-parameter pMSSM

CMS references (8 / 7 TeV): PAS-SUS-12-024 (1305.2390), PAS-SUS-12-030

pMSSM points selected to be compatible with LEP exclusions and flavour physics results

Bayesian sampling of parameter ensembles (sparticle masses < 3 TeV); constrained by H_T + MET + *b*-jets search

Posterior distributions: each entry corresponds to a particular pMSSM point; the black histogram represents all the pMSSM points considered in the analysis, the red (blue) displays the points (not) excluded at 95% CL by CMS

Similar analyses regularly performed by various phenomenological groups using approximate detector simulations

ATLAS and CMS in a nutshell

Sub System	ATLAS	CMS
Design	erection of the second se	g 22 m
Magnet(s)	Solenoid (within EM Calo) 2T 3 Air-core Toroids	Solenoid 3.8T Calorimeters Inside
Inner Tracking	Pixels, Si-strips, TRT PID w/ TRT and dE/dx $\sigma_{p_T}/p_T\sim 5 imes 10^{-4}p_T\oplus 0.01$	Pixels and Si-strips PID w/ dE/dx $\sigma_{p_T}/p_T \sim 1.5 imes 10^{-4} p_T \oplus 0.005$
EM Calorimeter	Lead-Larg Sampling w/ longitudinal segmentation $\sigma_E/E \sim 10\%/\sqrt{E} \oplus 0.007$	Lead-Tungstate Crys. Homogeneous w/o longitudinal segmentation $\sigma_E/E\sim 3\%/\sqrt{E}\oplus 0.5\%$
Hadronic Calorimeter	Fe-Scint. & Cu-Larg (fwd) $\gtrsim 11\lambda_0$ $\sigma_E/E\sim 50\%/\sqrt{E}\oplus 0.03$	Brass-scint. $\gtrsim 7\lambda_0$ Tail Catcher $\sigma_E/E \sim 100\%/\sqrt{E} \oplus 0.05$
Muon Spectrometer System Acc. ATLAS 2.7 & CMS 2.4	Instrumented Air Core (std. alone) $\sigma_{p_T}/p_T \sim 4\% \text{ (at 50 GeV)}$ $\sim 11\% \text{ (at 1 TeV)}$ Nikola Makovoc	Instrumented Iron return yoke $\sigma_{p_T}/p_T \sim 1\% \ ({ m at} \ 50 { m GeV})$ $\sim 10\% \ ({ m at} \ 1 { m TeV})$

Motivation for supersymmetry

- SUSY has many theoretical virtues:
 - Non trivial extension of the poincarré group in QFT which relates fermions to bosons
 - Incorpore gravity is SUSY is made local
 - Appears naturally in superstrings theories
- Phenomenological and most compelling arguments for weak scale SUSY:
 - unification of gauge coupling constant
 - provide a dark matter candidate
 - Consequence of the R-parity conservation to preserve the stability of the proton in SUSY models
 - Solve the naturalness issue
- Other
 - Could fix discrepancy in g_μ 2

Summary of CMS SUSY Results* in SMS framework

SUSY 2013

Electroweak production: summary

