Mueller-Navelet jets at the LHC with optimal renormalization

Bertrand Ducloué

Laboratoire de Physique Théorique d'Orsay

Strasbourg, 21 January 2014

in collaboration with

L. Szymanowski (NCBJ Warsaw), S. Wallon (UPMC & LPT Orsay)

- B. D, L. Szymanowski, S. Wallon, JHEP 1305 (2013) 096 [arXiv:1302.7012]
- B. D. L. Szymanowski, S. Wallon, arXiv:1309.3229 (to appear in PRL)

Motivations

- One of the important longstanding theoretical questions raised by QCD is its behaviour in the perturbative Regge limit $s \gg -t$
- Based on theoretical grounds, one should identify and test suitable observables in order to test this peculiar dynamics

hard scales: $M_1^2,\,M_2^2\gg\Lambda_{QCD}^2$ or $M_1'^2,\,M_2'^2\gg\Lambda_{QCD}^2$ or $t\gg\Lambda_{QCD}^2$ where the t-channel exchanged state is the so-called hard Pomeron

The different regimes of QCD

Resummation in QCD: DGLAP vs BFKL

Small values of α_S (perturbation theory applies due to hard scales) can be compensated by large logarithmic enhancements.

 \Rightarrow resummation of $\sum_{n} (\alpha_S \ln A)^n$ series

When \sqrt{s} becomes very large, it is expected that a BFKL description is needed to get accurate predictions

How to test QCD in the perturbative Regge limit?

What kind of observables?

- perturbation theory should be applicable: selecting external or internal probes with transverse sizes $\ll 1/\Lambda_{QCD}$ or by choosing large t in order to provide the hard scale
- governed by the *soft* perturbative dynamics of QCD

and not by its collinear dynamics
$$m=0$$

$$m=0$$

$$m=0$$

$$m=0$$

 \Rightarrow select semi-hard processes with $s\gg p_{T\,i}^2\gg \Lambda_{QCD}^2$ where $p_{T\,i}^2$ are typical transverse scale, all of the same order

The specific case of QCD at large s

QCD in the perturbative Regge limit

The amplitude can be written as:

this can be put in the following form :

Higher order corrections

- Higher order corrections to BFKL kernel are known at NLL order (Lipatov Fadin; Camici, Ciafaloni), now for arbitrary impact parameter $\alpha_s \sum_n (\alpha_s \ln s)^n$ resummation
- impact factors are known in some cases at NLL
 - $\gamma^* \to \gamma^*$ at t=0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao; Balitski, Chirilli)
 - forward jet production (Bartels, Colferai, Vacca; Caporale, Ivanov, Murdaca, Papa, Perri; Chachamis, Hentschinski, Madrigal, Sabio Vera)
 - inclusive production of a pair of hadrons separated by a large interval of rapidity (Ivanov, Papa)
 - ullet $\gamma_L^* o
 ho_L$ in the forward limit (Ivanov, Kotsky, Papa)

Mueller-Navelet jets: Basics

Mueller-Navelet jets

- Consider two jets (hadrons flying within a narrow cone) separated by a large rapidity, i.e. each of them almost fly in the direction of the hadron "close" to it, and with very similar transverse momenta
- in a pure LO collinear treatment, these two jets should be emitted back to back at leading order: $\Delta\phi-\pi=0$ ($\Delta\phi=\phi_1-\phi_2=$ relative azimuthal angle) and $k_{\perp 1}=k_{\perp 2}$. There is no phase space for (untagged) emission between them

Master formulas

k_T -factorized differential cross section

It is convenient to define the coefficients \mathcal{C}_n as

$$\mathcal{C}_{\boldsymbol{n}} \equiv \int d\phi_{J1} d\phi_{J2} \cos \left(\boldsymbol{n} (\phi_{J1} - \phi_{J2} - \pi) \right)$$

$$\times \int d^2 \mathbf{k}_1 d^2 \mathbf{k}_2 \, \Phi(\mathbf{k}_{J1}, x_{J1}, -\mathbf{k}_1) \, G(\mathbf{k}_1, \mathbf{k}_2, \hat{s}) \, \Phi(\mathbf{k}_{J2}, x_{J2}, \mathbf{k}_2)$$

• $n = 0 \implies$ differential cross-section

$$C_0 = \frac{\mathrm{d}\sigma}{\mathrm{d}|\mathbf{k}_{J1}|\,\mathrm{d}|\mathbf{k}_{J2}|\,\mathrm{d}y_{J1}\,\mathrm{d}y_{J2}}$$

• $n > 0 \implies$ azimuthal decorrelation

$$\frac{C_n}{C_0} = \langle \cos \left(n(\phi_{J,1} - \phi_{J,2} - \pi) \right) \rangle \equiv \langle \cos(n\varphi) \rangle$$

• sum over $n \implies$ azimuthal distribution

$$\frac{1}{\sigma} \frac{d\sigma}{d\varphi} = \frac{1}{2\pi} \left\{ 1 + 2 \sum_{n=1}^{\infty} \cos\left(n\varphi\right) \left\langle \cos\left(n\varphi\right) \right\rangle \right\}$$

Mueller-Navelet jets: LL vs NLL

NLL BFKL

Results for a symmetric configuration

In the following we show results for

- $\quad \bullet \ \sqrt{s} = 7 \ {\rm TeV}$
- $35 \,\mathrm{GeV} < |\mathbf{k}_{J1}|, |\mathbf{k}_{J2}| < 60 \,\mathrm{GeV}$
- $0 < y_1, y_2 < 4.7$

These cuts allow us to compare our predictions with the first experimental data on azimuthal correlations of Mueller-Navelet jets from the LHC presented by the CMS collaboration (CMS-PAS-FSQ-12-002)

Results: azimuthal correlations

Azimuthal correlation $\langle \cos \varphi \rangle$

$$35 \,\text{GeV} < |\mathbf{k}_{J1}| < 60 \,\text{GeV}$$

 $35 \,\text{GeV} < |\mathbf{k}_{J2}| < 60 \,\text{GeV}$

 $0 < y_1 < 4.7$ $0 < y_2 < 4.7$

- NLL BFKL predicts a too small decorrelation
- The NLL BFKL calculation is still rather dependent on the scales, especially the renormalization / factorization scale

Azimuthal correlation $\langle \cos 2\varphi \rangle$

$$35 \,\mathrm{GeV} < |\mathbf{k}_{J1}| < 60 \,\mathrm{GeV}$$

 $35 \,\mathrm{GeV} < |\mathbf{k}_{J2}| < 60 \,\mathrm{GeV}$

- $0 < y_1 < 4.7$
- $0 < y_2 < 4.7$

- ullet The agreement with data is a little better for $\langle\cos2arphi
 angle$ but still not very good
- This observable is also very sensitive to the scales

Azimuthal correlation $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$

$$35 \,\text{GeV} < |\mathbf{k}_{J1}| < 60 \,\text{GeV}$$

 $35 \,\text{GeV} < |\mathbf{k}_{J2}| < 60 \,\text{GeV}$

$$0 < y_1 < 4.7
0 < y_2 < 4.7$$

- This observable is more stable with respect to the scales than the previous ones
- \bullet The agreement with data is good across the full Y range

Results: azimuthal distribution

Azimuthal distribution

The azimuthal distribution $\frac{1}{\sigma}\frac{d\sigma}{d\varphi}$ has also been measured by the CMS collaboration. It can be written as

$$\frac{1}{\sigma} \frac{d\sigma}{d\varphi} = \frac{1}{2\pi} \left\{ 1 + 2 \sum_{n=1}^{\infty} \cos(n\varphi) \langle \cos(n\varphi) \rangle \right\}$$

Azimuthal distribution: comparison to CMS data

- Our calculation predicts a too large value of $\frac{1}{\sigma}\frac{d\sigma}{d\varphi}$ for $\varphi\lesssim\frac{\pi}{2}$ and a too small value for $\varphi\gtrsim\frac{\pi}{2}$
- ullet For large values of arphi, the distribution even becomes negative

- The agreement of our calculation with the data for $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$ is good and very stable with respect to the scales
- The agreement for $\langle \cos n \varphi \rangle$ and $\frac{1}{\sigma} \frac{d\sigma}{d\varphi}$ is not very good and very sensitive to the choice of the renormalization scale μ_R
- An all-order calculation would be independent of the choice of μ_R . This feature is lost if we truncate the perturbative series
 - ⇒ How to choose the renormalization scale? 'Natural scale': sometimes the typical momenta in a loop diagram are different from the natural scale of the process

The Brodsky-Lepage-Mackenzie (BLM) procedure resums the self-energy corrections to the gluon propagator at one loop into the running coupling. These contributions are formally of higher-order but they are proportional to $\beta_0 = \frac{11N_c - 2N_f}{2} \simeq 7.67$

Azimuthal correlation $\langle \cos \varphi \rangle$

Using the BLM scale setting, the scale uncertainty is reduced and the agreement with data becomes much better $\,$

Azimuthal correlation $\langle \cos 2\varphi \rangle$

Using the BLM scale setting, the scale uncertainty is reduced and the agreement with data becomes much better

Azimuthal correlation $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$

Because it is much less dependent on the scales, the observable $\langle\cos2\varphi\rangle/\langle\cos\varphi\rangle$ is almost not affected by the BLM procedure and is still in very good agreement with the data

Azimuthal distribution: comparison to CMS data

With the BLM scale setting the azimuthal distribution no longer reaches negative values and is in good agreement with the data across the full φ range.

Conclusions

- We studied Mueller-Navelet jets at full (vertex + Green's function) NLL accuracy and compared our results with the first data from the LHC
- The observables $\langle \cos n \varphi \rangle$ and $\frac{1}{\sigma} \frac{d\sigma}{d\varphi}$ are very dependent on the choice of the scales and don't agree very well with data when using a 'natural' scale
- The agreement with CMS data is greatly improved by using the BLM scale fixing procedure
- For the observable $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$:
 - NLL BFKL predictions are much more stable with respect to the scales
 - the data is well described by BFKL
 - in our opinion this would be a good observable to distinguish between BFKL and other scenarios in the future