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Motivations

Isospin symmetry breaking

Isospin symmetric world: up and down quark are particles with
identical physical properties.

Isospin symmetry is broken because :

up and down quark masses are differents (strong breaking)

up and down quark electric charges are differents (EM breaking)
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Motivations

Isospin breaking parameters

EM breaking parameter :

fine-structure constant α ' 0.0073

strong breaking parameter :

light quark mass splitting over a typical QCD scale md−mu
ΛQCD

. 0.01

Isospin breaking effects
Sum of two little effects of the same order (∼ 1%), eventually
competing.
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Motivations

Octet baryon mass splittings

There are 3 stable baryon multiplets formed with u,d and s quarks :

pn

, 3

Mass splittings are experimentally
known [PDG 2012] :

Mp −Mn =−1.29333214(43) MeV
MΣ+ −MΣ− =−8.08(08) MeV
MΞ0 −MΞ− =−6.85(21) MeV
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Motivations

Nucleon mass splitting

Nucleon mass splitting is experimentally
very well known :

Mp −Mn = −1.29333214(43) MeV

Mp −Mn < 0 needed for hydrogen
atom stability.

It determines through β decay the
stable nuclides chart.
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Motivations

Nucleon mass splitting

Ab-initio nucleon mass splitting prediction from QCD+QED is still
an open problem.

Lattice QCD could give a way to solve numerically this
problem.

Predicting a 1h effect through lattice simulation is a
considerable computational challenge.
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Lattice QCD+QED

QCD at low energies

At nuclear energies (∼ 1 GeV) the
strong coupling constant becomes
large.

Perturbation theory cannot
describe anymore the observed
physics.

Domination of non-perturbative
phenomena such as color
confinement.

Non-perturbative framework
needed for hadronic QCD.
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Lattice QCD+QED

Lattice QCD

Numerical Monte-Carlo evaluation of QCD path integral :

〈O〉 = 1
Z

∫
DUµOWick[D−1] det(D) exp(−Sgauge)
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Lattice QCD+QED

Light QCD isospin spectrum solved

[BMWc 2008, Science, hep-lat/0906.3599]
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Lattice QCD+QED

QED in finite volume

QED: no mass gap
Periodic and finite volume: momentum quantization

∫ d4k
k2 · · · 7−→ 1

V
∑

k

1
k2 · · ·

may have IR divergences,
does not affect physical
amplitudes

infinite in any case

Possible solution: remove the zero mode of Aµ from d.o.f.
Infinite volume limit is correct.
Power-like finite size effects expected.
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Lattice QCD+QED

Quenched QED

Quenched QED: no EM vacuum polarization.

Why doing that?

Because one can re-use previously generated QCD fields.

What is the error?

Quenching effects are suppressed by: SU(3) flavor and 1
Nc

. Typical
effect: ∣∣∣∣MN −MΣ

NcMN

∣∣∣∣ ' 0.1

We assume 10% of relative quenching error on EM effects.
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Isospin breaking effects on
hadron masses
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Isospin breaking effects on hadron masses

BMWc simulations

tree level O(a2) improved gauge action;

tree level O(a) clover improved Wilson fermions;

2 steps of HEX smearing;

two degenerate u and d flavors, one strange flavor;

five lattice spacings: from 0.12 fm to 0.05 fm;

47 sea pion masses from ∼ 600 MeV to 128 MeV;

3 simulations at the physical light quark mass;

sea strange quark masses bracketing the physical value;

16 volumes from (2 fm)3 to (6 fm)3 with MπL > 4
(negligible QCD finite volume effects).
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Isospin breaking effects on hadron masses

Valence masses

Mass isospin dataset (36 points):

mval.
u = mval.

d = msea
ud and α physical

Physical dataset (31 points):

mval.
u = msea

ud , mval.
d = msea

ud + ε and α physical

with ε random around the physical value;

3 additional points: unphysical values for α.
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Isospin breaking effects on hadron masses

Valence masses
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Isospin breaking effects on hadron masses

Final error estimation

For each quantity: 256 fits possibles (combination of different fit
ranges, cuts in data, inputs, models, . . . ).

Construct the distribution D of the 256 results weighted by the
p-values of the fits.

central value: mean of D

statistical error: standard deviation of the mean of D

systematic error: standard deviation of D

total error: sum in quadrature of all errors

Additionally there is O(10%) of quenching error on EM splittings.
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Isospin breaking effects on hadron masses

Preliminary results: quark masses

Kaon splitting is strongly related to δm:

∆M 2
K = M 2

K+ −M 2
K0 = Bδm + ∆QEDM 2

K + . . .

Using the experimental value of M 2
K+ −M 2

K0 and B and mud from
others BMWc project:

mu = 2.28(6)(5) MeV and md = 4.64(6)(5) MeV

(MS scheme at 2 GeV)

Improvement of the PDG precision by a factor ∼ 8

20 / 28
Isospin breaking effectsfrom lattice QCD and QED

N



pn

, 3

Isospin breaking effects on hadron masses

Preliminary results: quark masses

Kaon splitting is strongly related to δm:

∆M 2
K = M 2

K+ −M 2
K0 = Bδm + ∆QEDM 2

K + . . .

Using the experimental value of M 2
K+ −M 2

K0 and B and mud from
others BMWc project:

mu = 2.28(6)(5) MeV and md = 4.64(6)(5) MeV

(MS scheme at 2 GeV)

Improvement of the PDG precision by a factor ∼ 8

20 / 28
Isospin breaking effectsfrom lattice QCD and QED

N



pn

, 3

Isospin breaking effects on hadron masses

Preliminary results: quark masses

Kaon splitting is strongly related to δm:

∆M 2
K = M 2

K+ −M 2
K0 = Bδm + ∆QEDM 2

K + . . .

Using the experimental value of M 2
K+ −M 2

K0 and B and mud from
others BMWc project:

mu = 2.28(6)(5) MeV and md = 4.64(6)(5) MeV

(MS scheme at 2 GeV)

Improvement of the PDG precision by a factor ∼ 8
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Baryon octet splittings
[BMWc, PRL 111(25), p. 252001, hep-lat/1306.2287]

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

Mp −Mn MΣ+ −MΣ− MΞ0 −MΞ−

(M
eV

)

Budapest-Marseille-Wuppertal collaboration

total
QCD
QED
exp.

21 / 28
Isospin breaking effectsfrom lattice QCD and QED

N



pn

, 3

Isospin breaking effects on hadron masses

∆M 2
K fit example
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∆M 2
K fit example
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∆MΞ FV effects
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Conclusion

We can compute isospin breaking effects using lattice
QCD+(quenched)QED;

First encouraging determination of the isospin corrections to the
octet baryon masses;

Precise determination of the individual light quark masses;

mu is ∼ 10 sigmas away from 0!

Large power-like FV effects;

For some important quantities, electro-quenching may already be
the dominant source of uncertainty.
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Perspectives

QED should be unquenched to have a complete control of
uncertainties.

Our result for the β-decay existence (Mn −Mp −me > 0) has only
a 1.3σ significance. Reaching the 5σ: ab-initio proof of the
stability of nuclear matter.

More generally: lattice QCD+QED is an important step toward
complete simulations of the Standard Model at low energies.
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Thank you.
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