

Isospin breaking effects from lattice QCD and QED

Antonin Portelli (University of Southampton)

21st of January 2014 - RPP 2014

- Motivations
- 2 Lattice QCD+QED
- 3 Isospin breaking effects on hadron masses
- 4 Epilogue

Motivations

Isospin symmetric world: up and down quark are particles with identical physical properties.

Isospin symmetric world: up and down quark are particles with identical physical properties.

	u	d
Mass [PDG 2012]	$2.3 \left(^{+0.7}_{-0.5} \right)$	$4.8 \left(^{+0.7}_{-0.3} \right)$
Charge	$\frac{2}{3}e$	$-\frac{1}{3}e$

Isospin symmetric world: up and down quark are particles with identical physical properties.

Isospin symmetry is broken because :

• up and down quark masses are differents (strong breaking)

	u	d
Mass [PDG 2012]	$2.3 \left(^{+0.7}_{-0.5} \right)$	$4.8 \left(^{+0.7}_{-0.3} \right)$
Charge	$\frac{2}{3}e$	$-\frac{1}{3}e$

Isospin symmetric world: up and down quark are particles with identical physical properties.

Isospin symmetry is broken because :

- up and down quark masses are differents (strong breaking)
- up and down quark electric charges are differents (EM breaking)

	u	d
Mass [PDG 2012]	$2.3 \left(^{+0.7}_{-0.5} \right)$	$4.8 \left(^{+0.7}_{-0.3} \right)$
Charge	$\frac{2}{3}e$	$-\frac{1}{3}e$

Isospin breaking parameters

• EM breaking parameter :

fine-structure constant $\alpha \simeq 0.0073$

Isospin breaking parameters

• EM breaking parameter :

fine-structure constant $\alpha \simeq 0.0073$

• strong breaking parameter :

light quark mass splitting over a typical QCD scale $\frac{m_d-m_u}{\Lambda_{\rm QCD}}\lesssim 0.01$

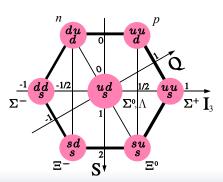
Isospin breaking parameters

• EM breaking parameter :

fine-structure constant $\alpha \simeq 0.0073$

strong breaking parameter :

light quark mass splitting over a typical QCD scale $\frac{m_d-m_u}{\Lambda_{\rm QCD}}\lesssim 0.01$


Isospin breaking effects

Sum of two little effects of the same order ($\sim 1\%$), eventually competing.

Octet baryon mass splittings

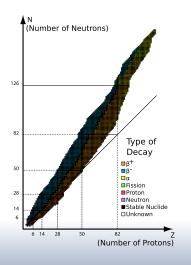
There are 3 stable baryon multiplets formed with u, d and s quarks :

Mass splittings are experimentally known [PDG 2012] :

$$\begin{split} M_p - M_n = & -1.29333214(43) \text{ MeV} \\ M_{\Sigma^+} - M_{\Sigma^-} = & -8.08(08) \text{ MeV} \\ M_{\Xi^0} - M_{\Xi^-} = & -6.85(21) \text{ MeV} \end{split}$$

Nucleon mass splitting is experimentally very well known :

$$M_p - M_n = -1.29333214(43) \text{ MeV}$$



Nucleon mass splitting is experimentally very well known :

$$M_p - M_n = -1.29333214(43) \text{ MeV}$$

 $M_p-M_n<0$ needed for hydrogen atom stability.

Nucleon mass splitting is experimentally very well known :

$$M_p - M_n = -1.29333214(43) \text{ MeV}$$

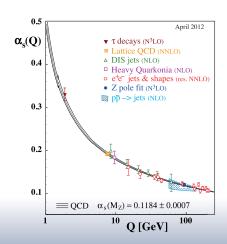
 $M_p-M_n<0$ needed for hydrogen atom stability.

It determines through β decay the stable nuclides chart.

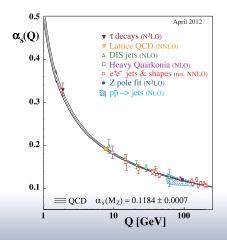
Ab-initio nucleon mass splitting prediction from QCD+QED is still an open problem.

Ab-initio nucleon mass splitting prediction from QCD+QED is still an open problem.

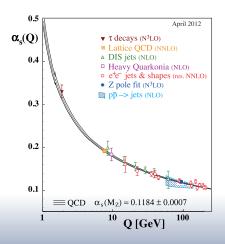
Lattice QCD could give a way to solve numerically this problem.

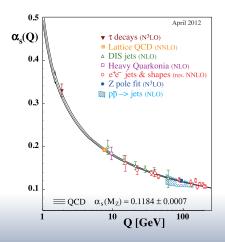

Ab-initio nucleon mass splitting prediction from QCD+QED is still an open problem.

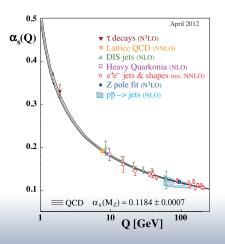
Lattice QCD could give a way to solve numerically this problem.


Predicting a 1% effect through lattice simulation is a considerable computational challenge.

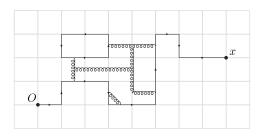
Lattice QCD+QED




• At nuclear energies ($\sim 1~{\rm GeV}$) the strong coupling constant becomes large.

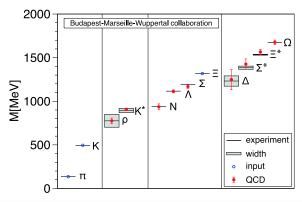

- At nuclear energies ($\sim 1~{\rm GeV}$) the strong coupling constant becomes large.
- Perturbation theory cannot describe anymore the observed physics.

- At nuclear energies ($\sim 1~{\rm GeV}$) the strong coupling constant becomes large.
- Perturbation theory cannot describe anymore the observed physics.
- Domination of non-perturbative phenomena such as color confinement.



- At nuclear energies ($\sim 1~{\rm GeV}$) the strong coupling constant becomes large.
- Perturbation theory cannot describe anymore the observed physics.
- Domination of non-perturbative phenomena such as color confinement.
- Non-perturbative framework needed for hadronic QCD.

Lattice QCD



Numerical Monte-Carlo evaluation of QCD path integral :

$$\langle O \rangle = \frac{1}{\mathscr{Z}} \int D U_{\mu} O_{\text{Wick}}[D^{-1}] \det(D) \exp(-S_{\text{gauge}})$$

Light QCD isospin spectrum solved

[BMWc 2008, Science, hep-lat/0906.3599]

QED: no mass gap

Periodic and finite volume: momentum quantization

QED: no mass gap

Periodic and finite volume: momentum quantization

$$\int \frac{\mathrm{d}^4 k}{k^2} \cdots \longmapsto \frac{1}{V} \sum_k \frac{1}{k^2} \cdots$$

QED: no mass gap

Periodic and finite volume: momentum quantization

$$\int \frac{\mathrm{d}^4 k}{k^2} \cdots \longmapsto \frac{1}{V} \sum_k \frac{1}{k^2} \cdots$$

may have IR divergences, does not affect physical | infinite in any case amplitudes

QED: no mass gap

Periodic and finite volume: momentum quantization

$$\int \frac{\mathrm{d}^4 k}{k^2} \cdots \longmapsto \frac{1}{V} \sum_k \frac{1}{k^2} \cdots$$

may have IR divergences, does not affect physical infinite in any case amplitudes

Possible solution: remove the zero mode of A_{μ} from d.o.f.

QED: no mass gap

Periodic and finite volume: momentum quantization

$$\int \frac{\mathrm{d}^4 k}{k^2} \cdots \longmapsto \frac{1}{V} \sum_k \frac{1}{k^2} \cdots$$

may have IR divergences, does not affect physical | infinite in any case amplitudes

Possible solution: remove the zero mode of A_{μ} from d.o.f. Infinite volume limit is correct.

Power-like finite size effects expected.

• Quenched QED: no EM vacuum polarization.

- Quenched QED: no EM vacuum polarization.
- Why doing that?

- Quenched QED: no EM vacuum polarization.
- Why doing that?
 Because one can re-use previously generated QCD fields.

- Quenched QED: no EM vacuum polarization.
- Why doing that?
 Because one can re-use previously generated QCD fields.
- What is the error?

- Quenched QED: no EM vacuum polarization.
- Why doing that?
 Because one can re-use previously generated QCD fields.
- What is the error? Quenching effects are **suppressed** by: SU(3) flavor and $\frac{1}{N_c}$. Typical effect:

$$\left| \frac{M_N - M_{\Sigma}}{N_c M_N} \right| \simeq 0.1$$

- Quenched QED: no EM vacuum polarization.
- Why doing that?
 Because one can re-use previously generated QCD fields.
- What is the error? Quenching effects are **suppressed** by: SU(3) flavor and $\frac{1}{N_c}$. Typical effect:

 $\left| \frac{M_N - M_\Sigma}{N_c M_N} \right| \simeq 0.1$

We assume 10% of relative quenching error on EM effects.

Isospin breaking effects on hadron masses

• tree level $O(a^2)$ improved gauge action;

- tree level $O(a^2)$ improved gauge action;
- ullet tree level $\mathrm{O}(a)$ clover improved Wilson fermions;

- tree level $O(a^2)$ improved gauge action;
- ullet tree level $\mathrm{O}(a)$ clover improved Wilson fermions;
- 2 steps of HEX smearing;

- tree level $O(a^2)$ improved gauge action;
- ullet tree level $\mathrm{O}(a)$ clover improved Wilson fermions;
- 2 steps of HEX smearing;
- ullet two degenerate u and d flavors, one strange flavor;

- tree level $O(a^2)$ improved gauge action;
- tree level O(a) clover improved Wilson fermions;
- 2 steps of HEX smearing;
- ullet two degenerate u and d flavors, one strange flavor;
- ullet five lattice spacings: from $0.12~\mathrm{fm}$ to $0.05~\mathrm{fm}$;

- tree level $O(a^2)$ improved gauge action;
- ullet tree level $\mathrm{O}(a)$ clover improved Wilson fermions;
- 2 steps of HEX smearing;
- ullet two degenerate u and d flavors, one strange flavor;
- five lattice spacings: from 0.12 fm to 0.05 fm;
- 47 sea pion masses from $\sim 600~\mathrm{MeV}$ to $128~\mathrm{MeV}$;

- tree level $O(a^2)$ improved gauge action;
- tree level O(a) clover improved Wilson fermions;
- 2 steps of HEX smearing;
- ullet two degenerate u and d flavors, one strange flavor;
- five lattice spacings: from $0.12~\mathrm{fm}$ to $0.05~\mathrm{fm}$;
- 47 sea pion masses from $\sim 600~\mathrm{MeV}$ to $128~\mathrm{MeV}$;
- 3 simulations at the physical light quark mass;

- tree level $O(a^2)$ improved gauge action;
- tree level O(a) clover improved Wilson fermions;
- 2 steps of HEX smearing;
- ullet two degenerate u and d flavors, one strange flavor;
- five lattice spacings: from $0.12~\mathrm{fm}$ to $0.05~\mathrm{fm}$;
- 47 sea pion masses from $\sim 600~\mathrm{MeV}$ to $128~\mathrm{MeV}$;
- 3 simulations at the physical light quark mass;
- sea strange quark masses bracketing the physical value;

- tree level $O(a^2)$ improved gauge action;
- tree level O(a) clover improved Wilson fermions;
- 2 steps of HEX smearing;
- ullet two degenerate u and d flavors, one strange flavor;
- five lattice spacings: from 0.12 fm to 0.05 fm;
- 47 sea pion masses from $\sim 600~\mathrm{MeV}$ to $128~\mathrm{MeV}$;
- 3 simulations at the physical light quark mass;
- sea strange quark masses bracketing the physical value;
- 16 volumes from $(2 \text{ fm})^3$ to $(6 \text{ fm})^3$ with $M_{\pi}L > 4$ (negligible QCD finite volume effects).

• Mass isospin dataset (36 points):

$$m_u^{\mathrm{val.}} = m_d^{\mathrm{val.}} = m_{ud}^{\mathrm{sea}}$$
 and α physical

Mass isospin dataset (36 points):

$$m_u^{\mathrm{val.}} = m_d^{\mathrm{val.}} = m_{ud}^{\mathrm{sea}}$$
 and α physical

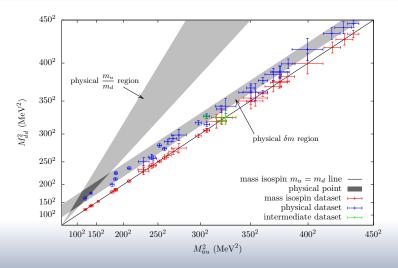
Physical dataset (31 points):

$$m_u^{\text{val.}} = m_{ud}^{\text{sea}}, \quad m_d^{\text{val.}} = m_{ud}^{\text{sea}} + \varepsilon \quad \text{and} \quad \alpha \text{ physical}$$

with ε random around the physical value;

Mass isospin dataset (36 points):

$$m_u^{\mathrm{val.}} = m_d^{\mathrm{val.}} = m_{ud}^{\mathrm{sea}}$$
 and α physical


Physical dataset (31 points):

$$m_u^{\mathrm{val.}} = m_{ud}^{\mathrm{sea}}, \quad m_d^{\mathrm{val.}} = m_{ud}^{\mathrm{sea}} + \varepsilon \quad \text{and} \quad \alpha \text{ physical}$$

with ε random around the physical value;

• 3 additional points: unphysical values for α .

For each quantity: 256 fits possibles (combination of different fit ranges, cuts in data, inputs, models, ...).

For each quantity: 256 fits possibles (combination of different fit ranges, cuts in data, inputs, models, ...).

Construct the distribution \mathscr{D} of the 256 results weighted by the p-values of the fits.

For each quantity: 256 fits possibles (combination of different fit ranges, cuts in data, inputs, models, ...).

Construct the distribution \mathscr{D} of the 256 results weighted by the p-values of the fits.

ullet central value: mean of ${\mathscr D}$

For each quantity: 256 fits possibles (combination of different fit ranges, cuts in data, inputs, models, ...).

Construct the distribution \mathscr{D} of the 256 results weighted by the p-values of the fits.

- ullet central value: mean of ${\mathscr D}$
- ullet statistical error: standard deviation of the mean of ${\mathscr D}$

For each quantity: 256 **fits** possibles (combination of different fit ranges, cuts in data, inputs, models, ...).

Construct the distribution \mathscr{D} of the 256 results weighted by the p-values of the fits.

- ullet central value: mean of ${\mathscr D}$
- ullet statistical error: standard deviation of the mean of ${\mathscr D}$
- ullet systematic error: standard deviation of ${\mathscr D}$

For each quantity: 256 fits possibles (combination of different fit ranges, cuts in data, inputs, models, ...).

Construct the distribution \mathscr{D} of the 256 results weighted by the p-values of the fits.

- ullet central value: mean of ${\mathscr D}$
- ullet statistical error: standard deviation of the mean of ${\mathscr D}$
- ullet systematic error: standard deviation of ${\mathscr D}$
- total error: sum in quadrature of all errors

For each quantity: 256 fits possibles (combination of different fit ranges, cuts in data, inputs, models, ...).

Construct the distribution \mathscr{D} of the 256 results weighted by the p-values of the fits.

- ullet central value: mean of ${\mathscr D}$
- ullet statistical error: standard deviation of the mean of ${\mathscr D}$
- ullet systematic error: standard deviation of ${\mathscr D}$
- total error: sum in quadrature of all errors

Additionally there is O(10%) of quenching error on EM splittings.

Preliminary results: quark masses

Kaon splitting is strongly related to δm :

$$\Delta M_K^2 = M_{K^+}^2 - M_{K^0}^2 = B\delta m + \Delta_{\rm QED} M_K^2 + \dots$$

Preliminary results: quark masses

Kaon splitting is strongly related to δm :

$$\Delta M_K^2 = M_{K^+}^2 - M_{K^0}^2 = B\delta m + \Delta_{\rm QED} M_K^2 + \dots$$

Using the experimental value of $M_{K^+}^2-M_{K^0}^2$ and B and m_{ud} from others BMWc project:

$$m_u = 2.28(6)(5) \text{ MeV}$$
 and $m_d = 4.64(6)(5) \text{ MeV}$

 $(\overline{\rm MS} \ {\sf scheme} \ {\sf at} \ 2 \ {\rm GeV})$

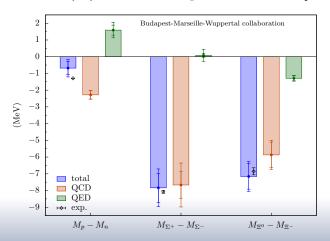
Preliminary results: quark masses

Kaon splitting is strongly related to δm :

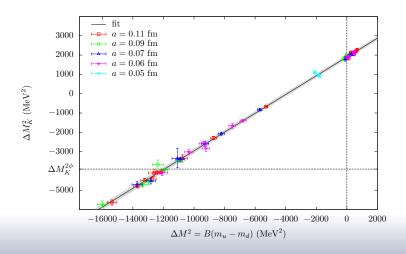
$$\Delta M_K^2 = M_{K^+}^2 - M_{K^0}^2 = B\delta m + \Delta_{\mathrm{QED}} M_K^2 + \dots$$

Using the experimental value of ${\cal M}_{K^+}^2-{\cal M}_{K^0}^2$ and ${\cal B}$ and m_{ud} from others BMWc project:

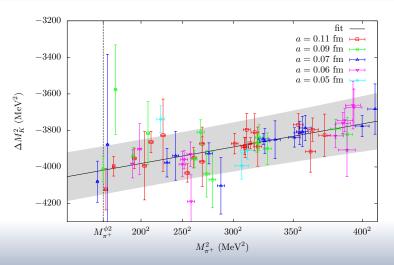
$$m_u = 2.28(6)(5) \text{ MeV}$$
 and $m_d = 4.64(6)(5) \text{ MeV}$


 $(\overline{\rm MS} \ {\sf scheme} \ {\sf at} \ 2 \ {\rm GeV})$

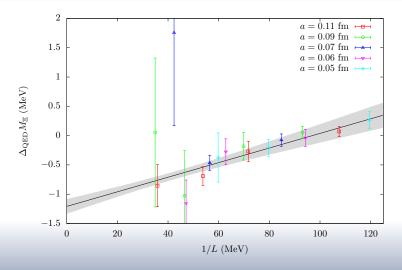
Improvement of the PDG precision by a factor ~ 8


Baryon octet splittings

[BMWc, PRL 111(25), p. 252001, hep-lat/1306.2287]



ΔM_K^2 fit example



ΔM_K^2 fit example

ΔM_{Ξ} FV effects

Epilogue

 We can compute isospin breaking effects using lattice QCD+(quenched)QED;

- We can compute isospin breaking effects using lattice QCD+(quenched)QED;
- First encouraging determination of the isospin corrections to the octet baryon masses;

- We can compute isospin breaking effects using lattice QCD+(quenched)QED;
- First encouraging determination of the isospin corrections to the octet baryon masses;
- Precise determination of the individual light quark masses;

- We can compute isospin breaking effects using lattice QCD+(quenched)QED;
- First encouraging determination of the isospin corrections to the octet baryon masses;
- Precise determination of the individual light quark masses;
- m_u is ~ 10 sigmas away from 0!

- We can compute isospin breaking effects using lattice QCD+(quenched)QED;
- First encouraging determination of the isospin corrections to the octet baryon masses;
- Precise determination of the individual light quark masses;
- m_u is ~ 10 sigmas away from 0!
- Large power-like FV effects;

- We can compute isospin breaking effects using lattice QCD+(quenched)QED;
- First encouraging determination of the isospin corrections to the octet baryon masses;
- Precise determination of the individual light quark masses;
- m_u is ~ 10 sigmas away from 0!
- Large power-like FV effects;
- For some important quantities, electro-quenching may already be the dominant source of uncertainty.

Perspectives

 QED should be unquenched to have a complete control of uncertainties.

Perspectives

- QED should be unquenched to have a complete control of uncertainties.
- Our result for the β -decay existence $(M_n-M_p-m_e>0)$ has only a 1.3σ significance. Reaching the 5σ : **ab-initio** proof of the stability of nuclear matter.

Perspectives

- QED should be unquenched to have a complete control of uncertainties.
- Our result for the β -decay existence $(M_n-M_p-m_e>0)$ has only a 1.3σ significance. Reaching the 5σ : **ab-initio** proof of the stability of nuclear matter.
- More generally: lattice QCD+QED is an important step toward complete simulations of the Standard Model at low energies.

Thank you.

BMWc Collaboration

Budapest (Eötvös University)
S.D. Katz

Marseille (CPT)

J. Frison (now Univ. of Edinburgh), L. Lellouch, A. Portelli (now Univ. of Southampton), A. Ramos (now NIC DESY Zeuthen) and A. Sastre

Wuppertal (Bergische Universität)

Sz. Borsanyi, S. Dürr, Z. Fodor, C. Hölbling, S. Krieg, Th. Kurth, Th. Lippert and K. Szabo