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Motivations

  In a bottom-up approach, one should determine on physical grounds the scale 
above which a theory is not valid

  To do that, one should be able to extract a typical energy/momentum scale from 
the calculation of physical observables

  These scales should not be mixed up with (spurious) scales originating from the 
divergence of (ill-defined) bare amplitudes

  One should look for schemes which lead to completely finite bare amplitudes 
from the very beginning (without any limit to perform at the end of the day!)

  The Taylor-Lagrange regularization scheme

P. Grangé and E. Werner, J. Phys. A: Math. Theor. 44 (2011) 385402 



Construction of the 
physical fields

❑  Definition of the physical fields 

  Fields should be considered as distributions 

  Functional       with respect to a test function

  Physical field             by means of the translation operator 

❑  Properties of the test functions 

  belongs to the Schwartz space       of fast decrease functions 

➥ decrease at infinity faster than any power of x, as well as 
all its derivatives

➥ property conserved by Fourier transform

N. Bogoliubov, 1950’s
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  in momentum space

  decomposition of the physical field
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❑  Physical interpretation of the test function
               : average  over the initial field with a weight 

➥ if      has a space-time extension  a : average over a volume a4  
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  to recover a “local” field theory, one should investigate the limit

  scale invariance inherent to this limit since also                   with

so that a priori                                      and
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  for the Fourier transform of   

  it is sufficient to consider 

➥ Poincaré group equations invariant without 
renormalization of the fields

  calculation of any amplitude

with a one dimensional variable X for simplicity

ex.:                          ,             arbitrary scale

             
 :  singular distribution :           divergent if no test functions                      
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❑  Explicit construction of the test function
 we shall first consider a sequence of test functions              
     with compact support

     ,  with
so that

         chosen as a partition of unity  (PU)
➥            independent of the particular choice of a PU

  construction of a PU
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  in a given limit                             

  in this limit, one should recover the original test function

 

➥ This limit should be independent of    
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  To do that, one needs a particular construction of the test function                 

➥ Ultra-soft cut-off  (“dynamical” cut-off)    

Rem.: not at all unique example    

➥ upper limit of         defined by

                     

  the Taylor-Lagrange regularization scheme  
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Construction of (finite) 
extended bare amplitudes

❑  Extension in the ultra-violet domain

  Apply the Lagrange formula for the Taylor remainder of 

    intrinsic scale    ex.:

 one should thus calculate 

 by integration by part after use of the Lagrange formula
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 In the limit                         ,                                            with      

  because of the derivatives in                , the amplitude is now completely 
finite             

➥ depends on the arbitrary scale 

➥ if  

❑  Extension in the infra-red domain
  Typical distribution                                             with no intrinsic scale

  extended distribution
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Application to radiative 
corrections in the Higgs sector

➥ usual interpretation in a cut-off scheme  

➥ For          very large, fine-tuning between         and         to get            

➥  Mixing of physical scales with spurious (mathematical) scales from
an ill-defined integral

➥  Calculation in the Taylor-Lagrange regularization scheme

➥  Equivalent to dimensional regularization (once renormalized) with
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 Physical interpretation in terms of physical momentum  intrinsic scale

➥   intrinsic scale        defined by 

  with

  and

➥  compared to fully renormalized self-energy (at two different        )

➥  finite typical scale in Taylor-Lagrange in the bare amplitude 
already, but not in a cut-off scheme

➥  the same finite  scale on the fully renormalized amplitude
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Final remarks

 field strengths, bare masses and coupling constants do depend on the 
arbitrary scale

 physical observables of course should not, at each order of perturbation 
theory in terms of physical coupling constants

 mass-dependent renormalization group equations 
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