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Motivations

  In a bottom-up approach, one should determine on physical grounds the scale 
above which a theory is not valid

  To do that, one should be able to extract a typical energy/momentum scale from 
the calculation of physical observables

  These scales should not be mixed up with (spurious) scales originating from the 
divergence of (ill-defined) bare amplitudes

  One should look for schemes which lead to completely finite bare amplitudes 
from the very beginning (without any limit to perform at the end of the day!)

  The Taylor-Lagrange regularization scheme
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Construction of the 
physical fields

❑  Definition of the physical fields 

  Fields should be considered as distributions 

  Functional       with respect to a test function

  Physical field             by means of the translation operator 

❑  Properties of the test functions 

  belongs to the Schwartz space       of fast decrease functions 

➥ decrease at infinity faster than any power of x, as well as 
all its derivatives

➥ property conserved by Fourier transform

N. Bogoliubov, 1950’s
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  in momentum space

  decomposition of the physical field
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❑  Physical interpretation of the test function
               : average  over the initial field with a weight 

➥ if      has a space-time extension  a : average over a volume a4  
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  to recover a “local” field theory, one should investigate the limit

  scale invariance inherent to this limit since also                   with

so that a priori                                      and
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  for the Fourier transform of   

  it is sufficient to consider 

➥ Poincaré group equations invariant without 
renormalization of the fields

  calculation of any amplitude

with a one dimensional variable X for simplicity

ex.:                          ,             arbitrary scale

             
 :  singular distribution :           divergent if no test functions                      
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❑  Explicit construction of the test function
 we shall first consider a sequence of test functions              
     with compact support

     ,  with
so that

         chosen as a partition of unity  (PU)
➥            independent of the particular choice of a PU

  construction of a PU
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  in a given limit                             

  in this limit, one should recover the original test function

 

➥ This limit should be independent of    
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  To do that, one needs a particular construction of the test function                 

➥ Ultra-soft cut-off  (“dynamical” cut-off)    

Rem.: not at all unique example    

➥ upper limit of         defined by

                     

  the Taylor-Lagrange regularization scheme  
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Construction of (finite) 
extended bare amplitudes

❑  Extension in the ultra-violet domain

  Apply the Lagrange formula for the Taylor remainder of 

    intrinsic scale    ex.:

 one should thus calculate 

 by integration by part after use of the Lagrange formula
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 In the limit                         ,                                            with      

  because of the derivatives in                , the amplitude is now completely 
finite             

➥ depends on the arbitrary scale 

➥ if  

❑  Extension in the infra-red domain
  Typical distribution                                             with no intrinsic scale

  extended distribution
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Application to radiative 
corrections in the Higgs sector

➥ usual interpretation in a cut-off scheme  

➥ For          very large, fine-tuning between         and         to get            

➥  Mixing of physical scales with spurious (mathematical) scales from
an ill-defined integral

➥  Calculation in the Taylor-Lagrange regularization scheme

➥  Equivalent to dimensional regularization (once renormalized) with
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 Physical interpretation in terms of physical momentum  intrinsic scale

➥   intrinsic scale        defined by 

  with

  and

➥  compared to fully renormalized self-energy (at two different        )

➥  finite typical scale in Taylor-Lagrange in the bare amplitude 
already, but not in a cut-off scheme

➥  the same finite  scale on the fully renormalized amplitude
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Final remarks

 field strengths, bare masses and coupling constants do depend on the 
arbitrary scale

 physical observables of course should not, at each order of perturbation 
theory in terms of physical coupling constants

 mass-dependent renormalization group equations 
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