Large BSM effects in Higgs Physics @ the LHC

Cédric Delaunay

LAPTh – Annecy-le-vieux, France

CD, G.Perez, H. de Sandes & W. Skiba [arXiv:1308.4930] CD, T. Golling, G. Perez & Y. Soreq [arXiv:1310.7029]

a light Higgs has been found \longrightarrow $W_LW_L \rightarrow W_LW_L$ unitary up to E>TeV which so far looks like the SM Higgs

yet, a light Higgs means small couplings $(y_b^{SM}=0.02)$ so there is *a priori* plenty of room for relatively large BSM effects

this talk = two examples of Higgs non-Standardness at the LHC:

- Higgs CPV in hVV interactions
 - → up/down asymmetry in WH

- Charming the Higgs
 - → implications of an enhanced H-charm coupling

Higgs CPV in hVV

$$H-V_{\mu}-V_{\nu}$$
: $-ig_V m_V \left[A_V \eta_{\mu\nu} + B_V p_{1\nu} p_{2\mu} + C_V \epsilon_{\mu\nu\alpha\beta} p_1^{\beta} p_2^{\alpha}\right]$

CP-odd

Lorentz invariance $\rightarrow A_1B_1C$ = general functions of p^2

- in the SM: $A_W = A_Z = I$ (at tree-level)
 - \mathcal{B}_{\vee} , \mathcal{C}_{\vee} only loop induced ≈ \mathcal{O}

$$H-V_{\mu}-V_{\nu}: \quad -ig_V m_V \left[A_V \eta_{\mu\nu} + B_V p_{1\nu} p_{2\mu}\right] + \left(V \epsilon_{\mu\nu\alpha\beta} p_1^{\beta} p_2^{\alpha}\right]$$

CP-odd

Lorentz invariance $\rightarrow A_1B_1C$ = general functions of p^2

- in the SM: $A_W = A_Z = I$ (at tree-level)
 - \mathcal{B}_{\vee} , \mathcal{C}_{\vee} only loop induced ≈ \mathcal{O}
- going BSM with d=6 operators:

$$\mathcal{O}_{DH} = H^{\dagger} H |D_{\mu} H|^{2}, \ \mathcal{O}_{H} = |H^{\dagger} D_{\mu} H|^{2},$$

$$\mathcal{O}_{WW} = \frac{g^{2}}{2} H^{\dagger} H W_{\mu\nu}^{a} W^{\mu\nu \, a}, \ \mathcal{O}_{BB} = \frac{g'^{2}}{2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu},$$

$$\mathcal{O}_{WB} = g g' H^{\dagger} \sigma^{a} H W_{\mu\nu}^{a} B^{\mu\nu}, \tag{14}$$

$$\widetilde{\mathcal{O}}_{WW} = \frac{g^2}{2} H^{\dagger} H W^a_{\mu\nu} \widetilde{W}^{\mu\nu a} , \ \widetilde{\mathcal{O}}_{BB} = \frac{g'^2}{2} H^{\dagger} H B_{\mu\nu} \widetilde{B}^{\mu\nu} ,$$

$$\widetilde{\mathcal{O}}_{WB} = g g' H^{\dagger} \sigma^a H W^a_{\mu\nu} \widetilde{B}^{\mu\nu} . \tag{15}$$

$$H - V_{\mu} - V_{\nu} : \quad -ig_V m_V \left[A_V \eta_{\mu\nu} + B_V p_{1\nu} p_{2\mu} + \left(v \epsilon_{\mu\nu\alpha\beta} p_1^{\beta} p_2^{\alpha} \right) \right]$$

CP-odd

Lorentz invariance $\rightarrow A_1B_1C$ = general functions of p^2

- in the SM: $A_W = A_Z = I$ (at tree-level)
 - \mathcal{B}_{\vee} , \mathcal{C}_{\vee} only loop induced ≈ \mathcal{O}
- going BSM with d=6 operators:

$$\mathcal{O}_{DH} = H^{\dagger} H |D_{\mu} H|^{2}, \ \mathcal{O}_{H} = |H^{\dagger} D_{\mu} H|^{2},$$

$$\mathcal{O}_{WW} = \frac{g^{2}}{2} H^{\dagger} H W_{\mu\nu}^{a} W^{\mu\nu\,a}, \ \mathcal{O}_{BB} = \frac{g'^{2}}{2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu},$$

$$\mathcal{O}_{WB} = g g' H^{\dagger} \sigma^{a} H W_{\mu\nu}^{a} B^{\mu\nu}, \tag{14}$$

not crucial here, let's ignore them

$$\widetilde{\mathcal{O}}_{WW} = \frac{g^2}{2} H^{\dagger} H W^a_{\mu\nu} \widetilde{W}^{\mu\nu a} , \ \widetilde{\mathcal{O}}_{BB} = \frac{g'^2}{2} H^{\dagger} H B_{\mu\nu} \widetilde{B}^{\mu\nu} ,$$

$$\widetilde{\mathcal{O}}_{WB} = g g' H^{\dagger} \sigma^a H W^a_{\mu\nu} \widetilde{B}^{\mu\nu} . \tag{15}$$

$$H - V_{\mu} - V_{\nu} : \quad -ig_V m_V \left[A_V \eta_{\mu\nu} + B_V p_{1\nu} p_{2\mu} + \left(v \epsilon_{\mu\nu\alpha\beta} p_1^{\beta} p_2^{\alpha} \right) \right]$$

CP-odd

Lorentz invariance $\rightarrow A_1B_1C$ = general functions of p^2

CPV requires both A_V (or B_V) and $C_V \neq O \rightarrow CPV$ obs. $\propto AC$ \rightarrow interference

$$H - V_{\mu} - V_{\nu}: \quad -ig_V m_V \left[A_V \eta_{\mu\nu} + B_V p_{1\nu} p_{2\mu} + C_V \epsilon_{\mu\nu\alpha\beta} p_1^{\beta} p_2^{\alpha} \right]$$
CP over

CP-odd

Lorentz invariance $\rightarrow A_{,B_{,C}} = \text{general functions of } p^2$

CPV requires both
$$A_V$$
 (or B_V) and $C_V \neq O \rightarrow CPV$ obs. $\propto AC$ \rightarrow interference

proposed ways to probe $C_{\vee}\neq O$ in the literature:

- $H \rightarrow VV^*$ [Gao et al. PRD '10]
- azimuthal difference between 2 forward jets in VBF

[Plehn-Rainwater-Zeppenfeld PRL '02]

• WH \rightarrow (IV)(WW* \rightarrow IV99) [Desai-Ghosh-Mukhopadhyaya PRD '11]

• $H \rightarrow VV^* \rightarrow leptons$:

[Gao et al. PRD '10]

"look at angular distributions to probe $C_{\vee} \neq O$ "

$$H \rightarrow VV^* \rightarrow leptons$$
: 5 physical angles

- full kinematics accessible in $ZZ^* \rightarrow 4$

$$f_{a3} = \frac{|A_{odd}|^2}{|A_{even}|^2 + |A_{odd}|^2} < 58\% @95\%CL$$
[CMS-PAS-HIG-13-002]

- harder in $WW^* \rightarrow 2/2v$ due to missing neutrinos

drawbacks: 1) energy is fixed, effect of $O(m_h^2/\Lambda^2)$

2) poor constraint on $\mathcal{C}_{\mathcal{W}}$

azimuthal difference between 2 forward jets in VBF:

[Plehn-Rainwater-Zeppenfeld PRL '02]

see also: [Hankele PRD 'o6] [Englert et al. JHEP '13]

$$\varepsilon_{\mu\nu\rho\sigma}b_{+}^{\mu}p_{+}^{\nu}b_{-}^{\rho}p_{-}^{\sigma} = 2p_{T,+}p_{T,-}\sin(\phi_{+} - \phi_{-}) = 2p_{T,+}p_{T,-}\sin\Delta\phi_{jj}$$

- drawbacks: 1) effect suppressed by p_{T} of tagged jets
 - 2) hard to disentable NP from SM
 - 3) can't disentangle C_W from C_Z

see also in ZH: [Christensen-Han-Li PLB '10] [Englert et al. JHEP '13]

construct asymmetries in $\Delta \phi = \phi(l_1) - \phi(l_2)$

benefits: 1) asymmetries are linear in $\mathcal{C}_{\mathcal{W}}$

2) H boosted, can increase sensitivity to high scales

drawbacks: 1) *H*→*WW** only 20% in SM

2) BSM in production and decay

Consider WH→lvbb:

[CD-Perez-de Sandes-Skiba '13]

parton level process →

$$H-V_{\mu}-V_{\nu}$$
:

$$-ig_V m_V \left[A_V \eta_{\mu\nu} + B_V p_{1\nu} p_{2\mu} + C_V \epsilon_{\mu\nu\alpha\beta} p_1^{\beta} p_2^{\alpha} \right]$$

CP-even

CP-odd

$$\overrightarrow{\mathcal{E}}_{W} \cdot (\overrightarrow{H} \times \overrightarrow{u})$$

induces P-oduct triple Product

trade W for e/μ momentum*

$$t = \vec{c} \cdot (\vec{H} \times \vec{u})$$

+ **CP**-even couplings \rightarrow asymmetry in t

asymmetry in t is an up/down asymmetry in terms of l^+

VS.

$$A_{up/down} = -\frac{9\pi}{16} \sin \gamma \left(\frac{A_T A_L}{2A_T^2 + A_L^2} \right)$$

@partonic level

$$\tan \gamma = \frac{C_W \hat{s}\beta}{2A_W}$$

"weak" phase

"strong" phase: $M_{W_{\lambda} \rightarrow l^+ \nu} \propto e^{i\lambda \phi}$

pp@LHC is parity invariant

→ can't tell up from down w/out notion of left/right

pp@LHC is parity invariant

→ can't tell up from down w/out notion of left/right

standard trick: use the boost direction, cut on l+H rapidity

increase asymmetry by cutting hard on the lepton+H invariant mass

asymmetry as function of cuts

LHC@14TeV w/ $A=A_{SM}=I$, $B=B_{SM}=O$ and $C=4/\Lambda^2$

asymmetry as function of cuts

LHC@14TeV w/ $A=A_{SM}=I$, $B=B_{SM}=O$ and $C=4/\Lambda^2$

Charming the Higgs

Common lore: $H \rightarrow cc$ within the SM is not visible @LHC:

- BR(
$$H \to cc$$
) ~ $\frac{m_c^2}{m_b^2}$ BR($H \to bb$) ~ 1/16 x 60% ~ 4%

- hard to resolve charm jets→ huge QCD dijet bkg

but there is hope as:

- Hcc cpl. could be significantly larger due to BSM physics:

$$\mathcal{L}_{\mathrm{EFT}} \supset \lambda_{ij}^{u} \bar{Q}_{i} \tilde{H} U_{j} + \frac{g_{ij}^{u}}{\Lambda^{2}} \bar{Q}_{i} \tilde{H} U_{j} \left(H^{\dagger} H \right) + \mathrm{h.c.}$$

yet, modulo an accidental cancellation of o(1/few)

but there is hope as:

- *Hcc* cpl. could be significantly larger due to BSM physics:

$$\mathcal{L}_{\text{EFT}} \supset \lambda_{ij}^{u} \bar{Q}_{i} \tilde{H} U_{j} + \frac{g_{ij}^{u}}{\Lambda^{2}} \bar{Q}_{i} \tilde{H} U_{j} \left(H^{\dagger} H \right) + \text{h.c.}$$

$$= \frac{v}{\sqrt{2}} \left(\lambda_{ij}^{u} + g_{ij}^{u} \frac{v^{2}}{2\Lambda^{2}} \right), \qquad \Lambda \simeq \frac{44 \, \text{TeV}}{\sqrt{c_{c} - 1}}.$$

$$= \frac{1}{\sqrt{2}} \left(\lambda_{ij}^{u} + 3g_{ij}^{u} \frac{v^{2}}{2\Lambda^{2}} \right). \qquad \text{Hcc enhancement}$$

yet, modulo an accidental cancellation of o(1/few)

- a method was recently put forward to tag c-jets at the LHC [ATLAS-CONF-2013-068]

medium working point: 20% efficiency w/1/5, 1/140, 1/10 rejection for b,QCD, τ -jets (*loose* point: 95% efficiency w/out significant rejection power for fakes.)

- indirectly constrained through the invisible width:

[Falkowski-Riva-Urbano '13]

if all other "visible" couplings set to SM values:

adding a new physics source of ggh: $Br_{inv} \sim 50\%$ @95%CL

- indirectly constrained through the invisible width:

if all other "visible" couplings set to SM values:

adding a new physics source of ggh: $Br_{inv} \sim 50\%$ @95%CL

[Falkowski-Riva-Urbano '13]

- charm fusion opens up as a significant H prod. mechanism

@NLO:
$$\sigma_{cc} \approx 0.003 \, \sigma_{gg}$$
 in the SM

$$O(10\%)$$
 increase in $\sigma_{pp\to h}$ if $Hcc 4x$ larger

we perform a global Higgs fit within the EFT framework*:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} h \, \partial^{\mu} h - \frac{1}{2} m_{h}^{2} h^{2} - c_{3} \, \frac{1}{6} \left(\frac{3 m_{h}^{2}}{v} \right) h^{3} + \dots$$

$$+ m_{W}^{2} W_{\mu}^{+} W^{-\mu} \left(1 + 2 c_{W} \, \frac{h}{v} + \dots \right) + \frac{1}{2} m_{Z}^{2} \, Z_{\mu} Z^{\mu} \left(1 + 2 c_{Z} \, \frac{h}{v} + \dots \right)$$

$$- \sum_{\psi = u, d, l} m_{\psi^{(i)}} \, \bar{\psi}^{(i)} \psi^{(i)} \left(1 + c_{\psi} \frac{h}{v} + \dots \right) + \dots$$

$$\mathcal{L}_{(2)} = -\frac{h}{4v} \left[2c_{WW} W^{\dagger}_{\mu\nu} W^{\mu\nu} + c_{ZZ} Z_{\mu\nu} Z^{\mu\nu} + 2c_{Z\gamma} A_{\mu\nu} Z^{\mu\nu} + c_{\gamma\gamma} A_{\mu\nu} A^{\mu\nu} - c_{gg} G^a_{\mu\nu} G^{a,\mu\nu} \right],$$

 $SU(2)_V$ custodial symmetry, $h = \text{custodial singlet}, c_Z = c_W = c_V$

we perform a global Higgs fit within the EFT framework*:

only allowing c_c to float: $c_c \sim 4 @20$

allowing a new physics source in ggh: c, ~< 8 @20

a fairly large coupling allowed by current Higgs data

we assume similar efficiencies for cc and gg fusion

This yields significant change (\vee) $H \rightarrow bb$ channel:

 $BR(H\rightarrow bb)$ is significantly suppressed:

$$BR_{h\to b\bar{b}} = \frac{BR_{h\to b\bar{b}}^{SM}}{1 + (|c_c|^2 - 1)BR_{h\to c\bar{c}}^{SM}}. \approx 40\% (20\%)$$
with $c_{gg}>0$

but most charm fusion events rejected after VH-enriching cuts:

$$\rightarrow \mu_{bb} \approx 0.7 (0.3)$$
 @8TeV with $c_{gq}>0$

large part of bb signal expected @ATLAS/CMS could be lost! in the benefit of charm...

one could use charm tagging techniques to capture $H \rightarrow cc$:

build *cc*-enriched *bb* signal = "charming the Higgs":

$$\mu_{b\bar{b}+c\bar{c}} \equiv \frac{\sigma_{pp\to h} \left(\epsilon_b^2 \text{BR}_{h\to b\bar{b}} + \epsilon_c^2 \text{BR}_{h\to c\bar{c}}\right)}{\sigma_{pp\to h}^{\text{SM}} \left(\epsilon_b^2 \text{BR}_{h\to b\bar{b}}^{\text{SM}} + \epsilon_c^2 \text{BR}_{h\to c\bar{c}}^{\text{SM}}\right)}$$

now, one can use charm tagging technique to capture $H \rightarrow cc$:

build *cc*-enriched *bb* signal = "charming the Higgs":

$$\mu_{b\bar{b}+c\bar{c}} \equiv \frac{\sigma_{pp\to h} \left(\epsilon_b^2 B R_{h\to b\bar{b}} + \epsilon_c^2 B R_{h\to c\bar{c}}\right)}{\sigma_{pp\to h}^{SM} \left(\epsilon_b^2 B R_{h\to b\bar{b}}^{SM} + \epsilon_c^2 B R_{h\to c\bar{c}}^{SM}\right)}$$

assume ATLAS' medium working point w/ ε_c =20% efficiency, and ε_b =70% for b-tagging efficiency:

$$\rightarrow \mu_{bb+cc} \approx 0.75 (0.4)$$
 @8TeV

only marginal fraction of lost signal recovered

now, one can use charm tagging technique to capture $H \rightarrow cc$:

build *cc*-enriched *bb* signal = "charming the Higgs":

$$\mu_{b\bar{b}+c\bar{c}} \equiv \frac{\sigma_{pp\to h} \left(\epsilon_b^2 \text{BR}_{h\to b\bar{b}} + \epsilon_c^2 \text{BR}_{h\to c\bar{c}}\right)}{\sigma_{pp\to h}^{\text{SM}} \left(\epsilon_b^2 \text{BR}_{h\to b\bar{b}}^{\text{SM}} + \epsilon_c^2 \text{BR}_{h\to c\bar{c}}^{\text{SM}}\right)}$$

assume ATLAS' medium working point w/ ε_c =20% efficiency, and ε_b =70% for b-tagging efficiency:

$$\rightarrow \mu_{bb+cc} \approx 0.75 (0.4)$$
 @8TeV

only marginal fraction of lost signal recovered

assume instead a speculative ε_c =40% c-tagging efficiency:

$$\rightarrow \mu_{bb+cc} \approx 0.9 (0.6)$$
 @8TeV

large fraction recovered, almost back to bb SM rate!

Conclusions

- the observed Higgs boson appeared Standard so far.
- yet, there is still room for significant BSM corrections even for new dynamics >~TeV scale

