Theoretical aspects of Beyond the Standard Model physics

A.Deandrea Institut de Physique Nucléaire de Lyon Université Lyon 1 RPP2014 - January 21st 2014 - IPHC Strasbourg

Experimental hot subjects (a very long quest in just few lines)

- Discovery and properties of the Higgs Boson
- The top quark
- Electroweak precision tests
- Flavour measurements
- Neutrino oscillations
- Dark matter content of the universe

Standard Model quite successful on the first 4, way beyond expectations!

Hints for BSM

we have data to explain beyond SM

- neutrinos and flavour hierarchies in the quark/ lepton sectors
- dark matter (and dark energy if you dare...)

data to search/fulfill (precision tests, small deviations)

- Higgs boson mass, couplings
- top and flavour data
- EW precision data, etc.

Guidelines for BSM physics

• Top-down

- Fundamental symmetries 😳
- Unification of the couplings ③
- Unitarity 😳
- Renormalisability 🙂
- Hierarchies, naturalness, fine-tuning?? etc...

• Bottom-up

- Dark matter as a WIMP
- Electroweak precision tests
- Flavour observables
- Observation of new particles

Usual list, but realistic model-building not obvious

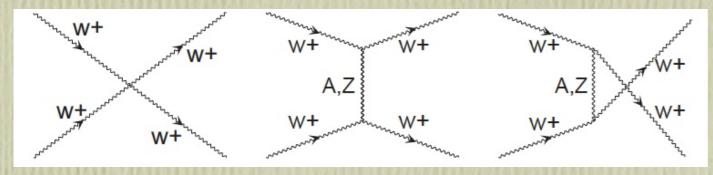
New Physics @ the TeV scale?

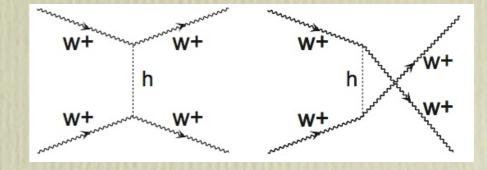
- Electroweak symmetry breaks at energies 100 GeV-1 TeV
- Weakly Interacting Massive Particle needs a mass
- - 100 GeV-1 TeV to fit observed Dark Matter density
- WL WL scattering unitarised at energies 1 TeV, by just the Higgs?
- Hierarchy: fine-tuning or Higgs mass must be stabilized by a scale 1 TeV

This makes a few strong hints to go beyond the SM at the TeV scale but...

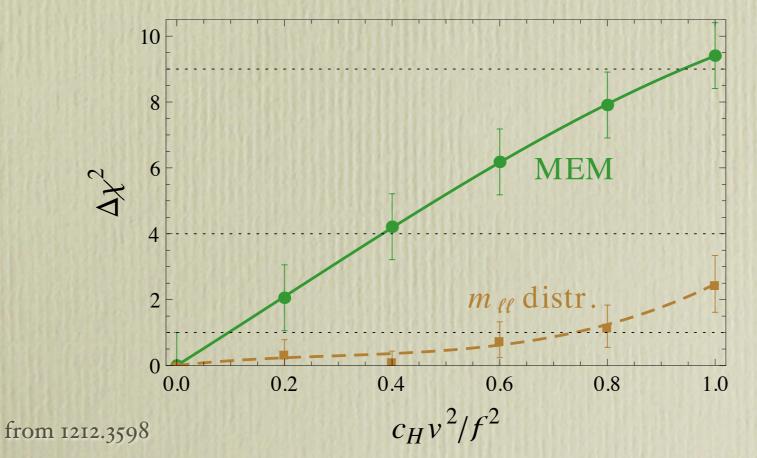
Constraints from higher dim operators Unless symmetries/cancellations:

- Baryon Number Violation
- Lepton Number Violation
- Flavour Violation
- CP Violation
- Precision Electroweak
- Contact Operators

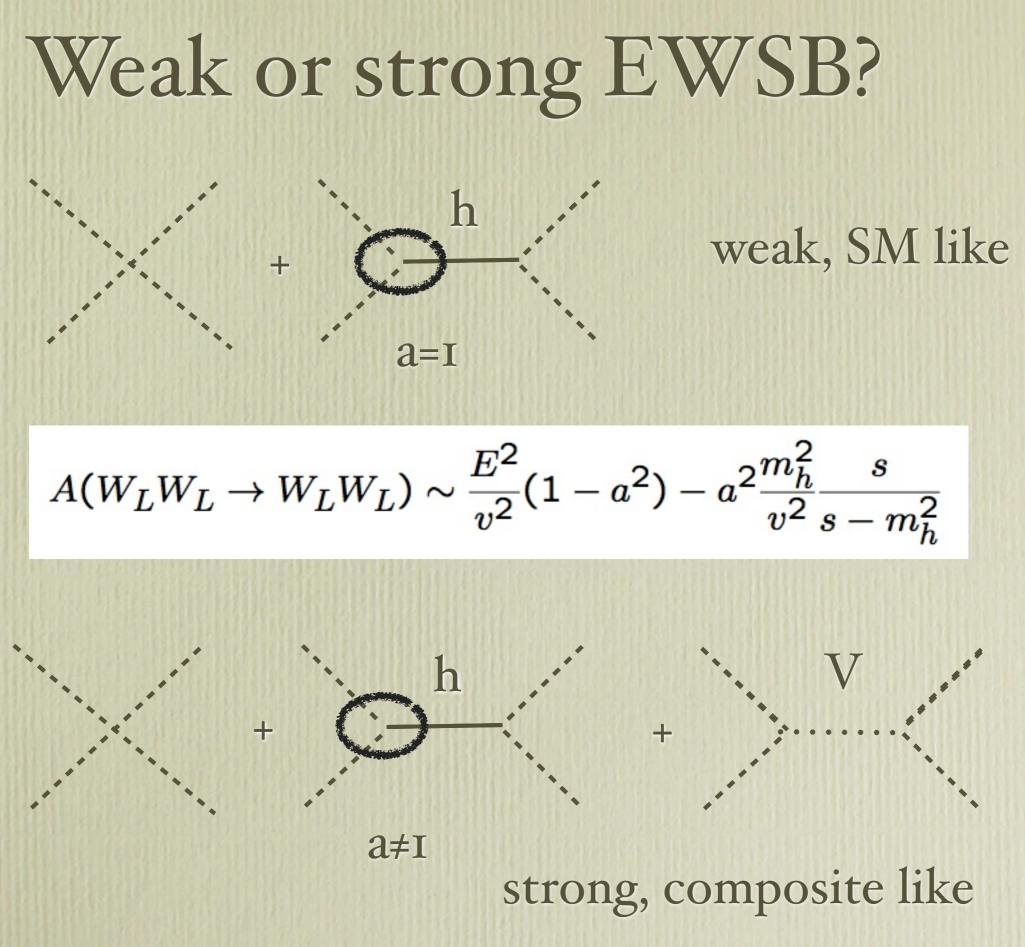



Some ideas behind models

- WW scattering unitarity
- naturalness and vacuum stability
- matter parities
- extra symmetries (space-time, global, gauge)
- compositeness & Technicolor
- extra dimensions

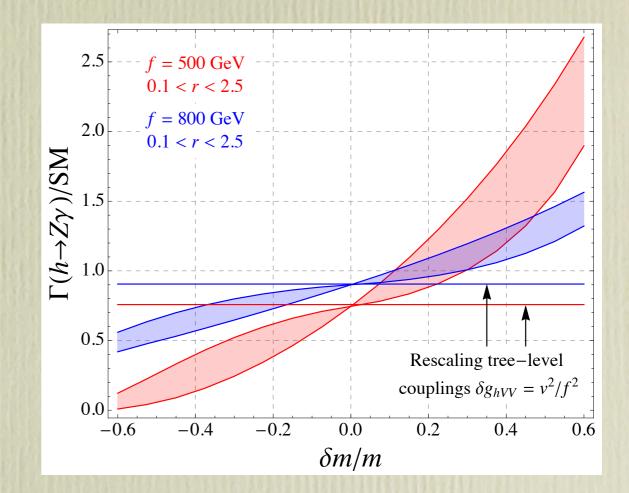

WW and unitarity

• Higgs boson exchange crucial (see Lee, Quigg, Thacker 1977)



• Now still useful for discriminating models if accurately measured at LHC 14 TeV, example testing 2HDM or effective composite SILH models:

A.Deandrea, RPP2014, January 21st 2014



A.Deandrea, RPP2014, January 21st 2014

Possible tests weak vs strong

- VV → VV, limited sensitivity at LHC
- $h \rightarrow Z \gamma$, large effect may be possible
- VV → hh, at a e⁺e⁻ collider

see 1305.5251, 1308.2676, 1309.7038

Natural theories

$$m^2 = m_0^2 \left(1 + a(\lambda, g) \log \frac{\Lambda^2}{m_0^2} \right) + b(\lambda, g) \Lambda^2$$

- natural if $b(\lambda,g)=0$ by a symmetry
- can be natural if Λ is a physical cut-off (ex. compositness)
- quasi-natural if $b(\lambda,g)=0$ perturbatively (ex. at oneloop in Little Higgs for top contribution)
- tuned: any special value you like, even mo=0 Λ=0 (classically conformal)

SM and naturalness

 Naturalness as UV sensitivity of h mass in the SM effective theory (not a principle, just reasonable)

$$\delta M_H^2 \sim \frac{3G_F}{4\pi^2\sqrt{2}} \Lambda^2 (4m_t^2 - 2m_W^2 - m_Z^2 - m_H^2)$$

implies

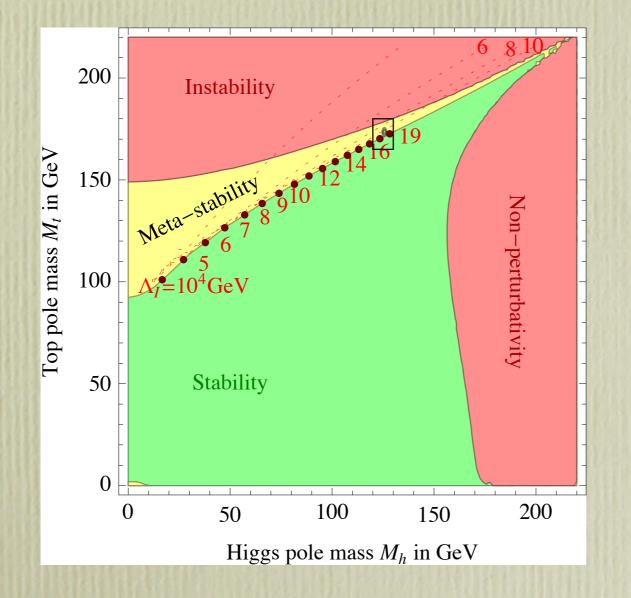
 $\Lambda\sim 500~GeV$

• no new physics (yet) implies it is wrong? Maybe but it works in other cases...

new physics: charm quark mass at 1.3 GeV

More general question... if fundamental scalar sector

 $V = \text{constant} + M_H^2 |H|^2 + \lambda |H|^4$


Cosmological constant

Naturalness

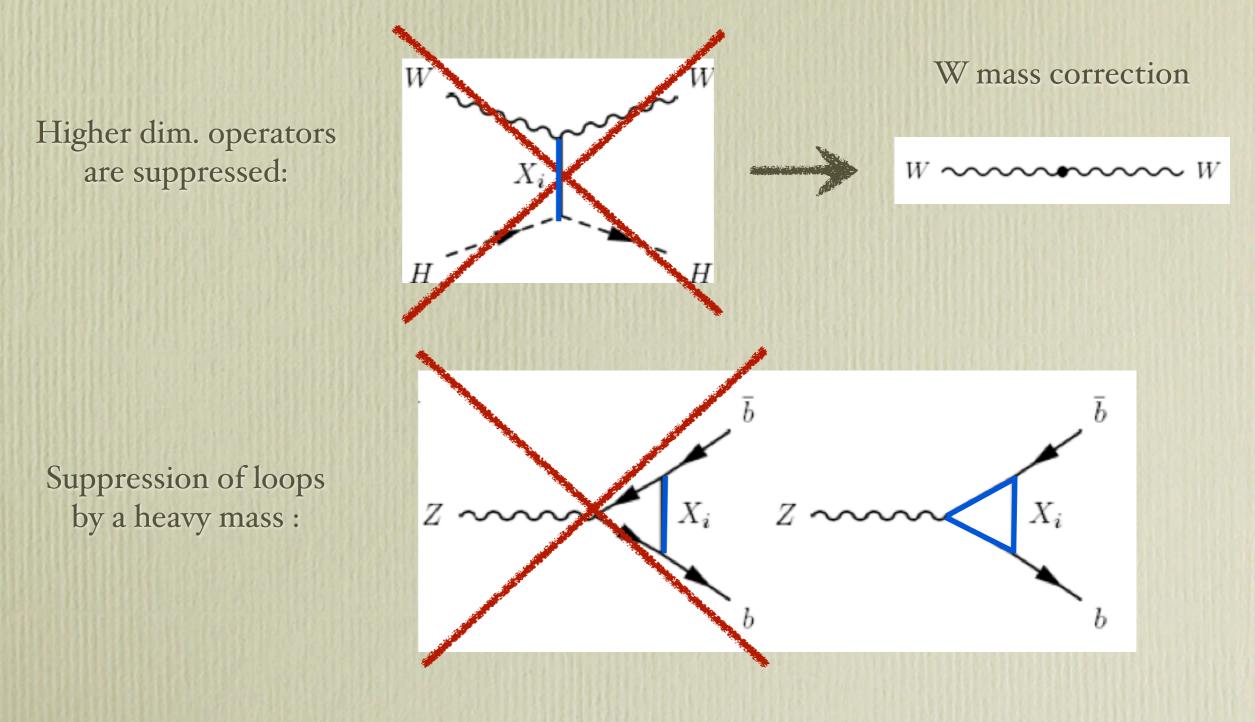
Stability

Stability/criticality

• measurement of m_t, m_h allows to "wildly" extrapolate up to 15 orders of magnitude:

Why close to instability?

- not a nonsense as true even at low scale
- maybe not tuned, due to a model?


Matter parities

- Many models share a common ingredient: a Matter parity, M-parity, for the new particles X_A, X_B ... or more generally a new global symmetry
- Often known as R-, T-, KK- parity
- Not fundamental, but rather ad hoc
- decay by pairs if initial particles are SM (as M-neutral)
- cannot be resonantly produced
- the lightest M-parity particle is stable (LMP)
- MET (large) at colliders
- once X_i produced (may cascade) decay to X_{LMP}

A well known example is SUSY phenomenology

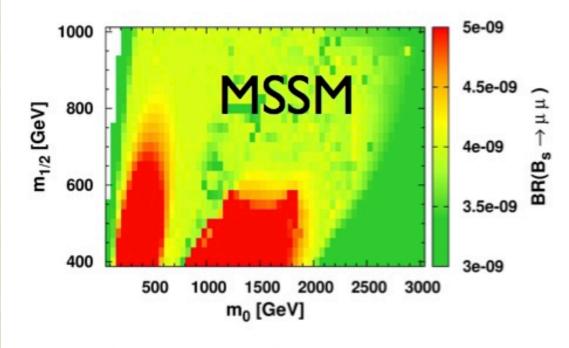
Matter parities and quantum corrections

• corrections to electroweak precision measurements are typically small, just ad-hoc parity or something more fundamental?

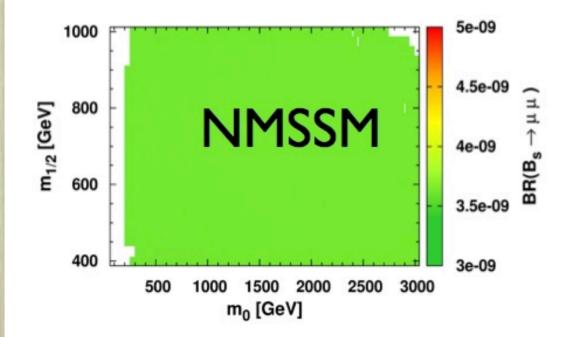
Typical BSM models under test

- Supersymmetry
- Technicolor/Composite
- Extra dimensions

Supersymmetry


- hierarchy problem
- unification of gauge couplings
- dark matter candidate
- unification with gravity
- essential ingredient in string/brane

MSSM


• MSSM has tuning (direct search limit and H mass & couplings constraints)

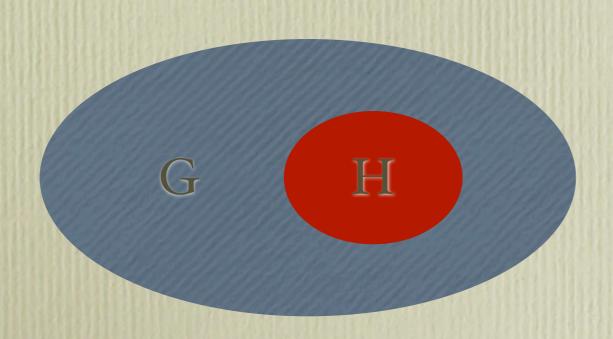
$$\begin{split} m_{H}^{2} &= m_{Z}^{2}\cos^{2}2\beta + \Delta m_{H}^{2} \\ \Delta m_{H}^{2} &= \frac{3m_{t}^{4}}{4\pi^{2}v^{2}} \left[\log \frac{M_{S}^{2}}{m_{t}^{2}} \left(1 - \frac{X_{t}^{2}}{12M_{S}^{2}} \right) \right] \geq 87 \text{ GeV} \\ X_{t} &= A_{t} - \mu \cot \beta \quad M_{S}^{2} = m_{\tilde{t}_{1}} m_{\tilde{t}_{2}} \\ \swarrow \end{split}$$
maximal mixing heavy stops, fine tuning O(1%)

more general low scale SUSY

$$B_s \to s\gamma, \ B_s \to \mu^+\mu^-, \ B_s \to \tau\nu$$

- not limited to artificially very constrained models (mSUGRA, mGMSB, mAMSB, etc.)
- example NMSSM in much better shape than MSSM
- however λ -SUSY (large coupling λ SH_uH_d case of NSSM) partially ruled out, see 1310.0459

from D.Kazakov Morion 13


Compositness/Technicolor

- "Composite" models used today in the effective theory meaning
- "Technicolor" used typically for fundamental fermions forming bound states
- naively the S parameter $\approx 4\pi (v/m_{\varrho})^2$ implies $m_{\varrho} \approx 3 \text{ TeV}$
- The lighter the composites, more they affect Higgs couplings

Composite effective theories

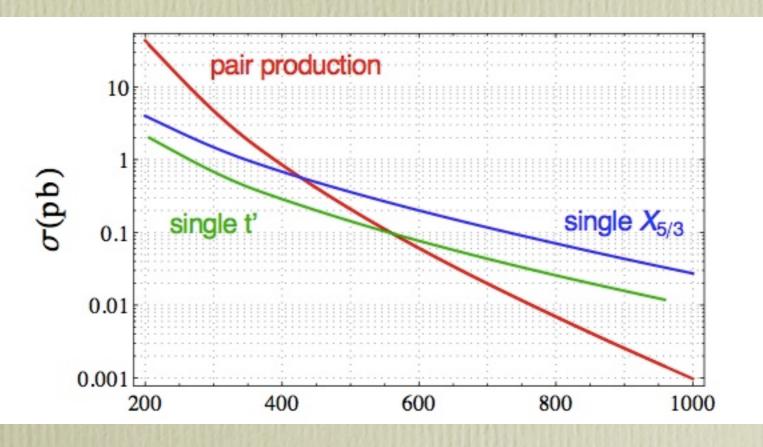
• The Higgs can be a Goldstone boson (massless in the symmetry limit) of a global symmetry

coset G/H → # Goldstones = dim[G]-dim[H]
 SM ∈ H

Georgi, Kaplan 1980 Arkani-Hamed, Cohen,Georgi 2001 Little Higgs, deconstruction

Composite effective theories

8				
G	\mathcal{H}	C	N_G	$\mathbf{r}_{\mathcal{H}} = \mathbf{r}_{\mathrm{SU}(2) \times \mathrm{SU}(2)} \left(\mathbf{r}_{\mathrm{SU}(2) \times \mathrm{U}(1)} ight)$
SO(5)	SO(4)	~	4	${f 4}=({f 2},{f 2})$
$SU(3) \times U(1)$	$SU(2) \times U(1)$		5	$2_{\pm 1/2} + 1_0$
SU(4)	Sp(4)	~	5	${f 5}=({f 1},{f 1})+({f 2},{f 2})$
SU(4)	$[\mathrm{SU}(2)]^2 \times \mathrm{U}(1)$	√*	8	$(2,2)_{\pm 2} = 2 \cdot (2,2)$
SO(7)	SO(6)	~	6	${f 6}=2\cdot ({f 1},{f 1})+({f 2},{f 2})$
SO(7)	G_2	√*	7	${f 7}=({f 1},{f 3})+({f 2},{f 2})$
SO(7)	$SO(5) \times U(1)$	√*	10	$\mathbf{10_0} = (3, 1) + (1, 3) + (2, 2)$
SO(7)	$[SU(2)]^{3}$	√*	12	$({f 2},{f 2},{f 3})=3\cdot ({f 2},{f 2})$
Sp(6)	$\operatorname{Sp}(4) \times \operatorname{SU}(2)$	~	8	$({f 4},{f 2})=2\cdot ({f 2},{f 2})$
SU(5)	$SU(4) \times U(1)$	√*	8	${f 4}_{-5}+ar{f 4}_{+f 5}=2\cdot ({f 2},{f 2})$
SU(5)	SO(5)	√*	14	${f 14}=({f 3},{f 3})+({f 2},{f 2})+({f 1},{f 1})$
SO(8)	SO(7)	~	7	${f 7}=3\cdot ({f 1},{f 1})+({f 2},{f 2})$
SO(9)	SO(8)	~	8	${f 8}=2\cdot ({f 2},{f 2})$
SO(9)	$SO(5) \times SO(4)$	√*	20	$({f 5},{f 4})=({f 2},{f 2})+({f 1}+{f 3},{f 1}+{f 3})$
$[SU(3)]^2$	SU(3)		8	$8 = \mathbf{1_0} + \mathbf{2_{\pm 1/2}} + \mathbf{3_0}$
$[SO(5)]^2$	SO(5)	√*	10	${f 10}=({f 1},{f 3})+({f 3},{f 1})+({f 2},{f 2})$
$SU(4) \times U(1)$	$SU(3) \times U(1)$		7	$3_{-1/3} + \mathbf{\bar{3}}_{+1/3} + 1_0 = 3 \cdot 1_0 + 2_{\pm 1/2}$
SU(6)	Sp(6)	√*	14	${f 14}=2\cdot ({f 2},{f 2})+({f 1},{f 3})+3\cdot ({f 1},{f 1})$
$[SO(6)]^2$	SO(6)	√*	15	$15 = (1, 1) + 2 \cdot (2, 2) + (3, 1) + (1, 3)$


from 1401.2457 Csaki et al.

Compositness and flavour

- Extra vector-like quark multiplets often present (even exotic ones)
- Partial compositness (elementary/composite talk through mixings)
- Anarchic scenario (no hierarchies, SM ones generated by mixings of strongly composite top and elementary light quarks)
- MFV (light quarks strongly composite)

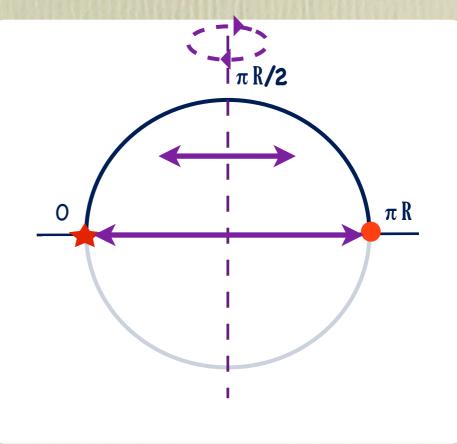
Vector-like quarks

- Unique window to test models (Xdim, composite, Little Higgs, SUSY)
- Reach at LHC substantial and only partially exploited
- Mixings with all the 3 SM generation important (production/decay)
- Single production dominant with present mass bound at LHC (~700 GeV)

see talk by L.Panizzi

Mixing structure

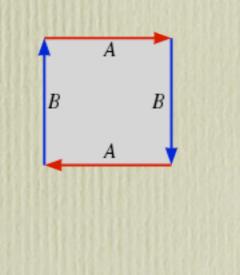
- Key assumption: new fermions interact with the SM fermions via Yukawa interactions
- The Q-numbers of the new fermions under the weak $SU(2)_L \times U(1)_Y$ gauge group are limited by interaction with the SM Higgs doublet and one of the SM fermions
- Possible Q-numbers :
- 1 SM-like singlet
- 3 doublets : 1 with SM hypercharge Y, the others Y+/-1
- 2 triplets with Y+/-1
- if more than one VL multiplet, inter-multiplet interactions and more general structure

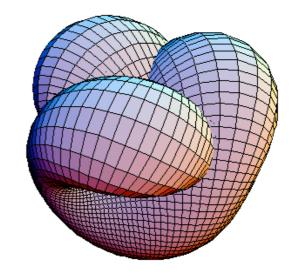

Extra dimensional models

- Typical Scenarios:
 - Large (flat) \ Warped Extra Dimensions
 - only gravity in the bulk, all SM fields in the bulk
- Issues you may explain (or describe geometrically) :
 - Weak scale stability: Gauge-Higgs unification
 - Fermion mass hierarchy, neutrino masses
 - Gauge symmetry breaking, strongly interacting conformal sector
 - Higgs composite models/technicolor

But : non-renormalizable, often large arbitrariness (localized interactions)

Selecting Xdim models

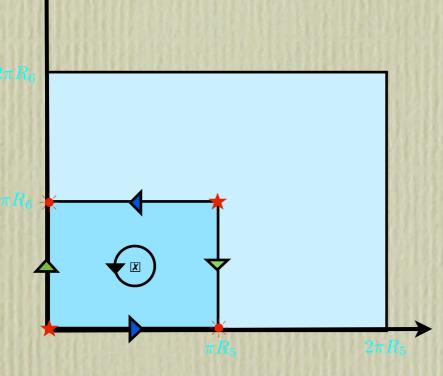

- Many models but a personal view:
 - promote (dark-)Matter parity to a fundamental orbifold symmetry
 - "natural" chiral fermions in the spectrum (no Z_N-type quotient tricks)
 - no fixed points (source of arbitrary localized interactions)

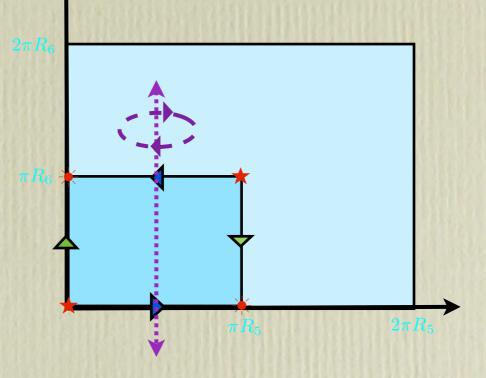


standard orbifold S¹/Z₂, KKparity ad hoc, fixed points are not the same point!

Orbifolds without fixed points

- One flat X-dim does not have candidates with chiral fermions and no fixed points
- 2 flat X-dim has the 17 wallpaper groups in the plane
 - Only 3 have no fixed points (Torus, Klein bottle, Real Projective Plane)
 - Only 1 has moreover chiral fermions (Real Projective Plane)
 - Isometries of Xⁿ: Noether theorem imposes selection rules





for details 0907.4993 1104.3800, 1210.0384

Selection rules in flat RPP

kk-modes (m,n)

 $p_{kk} = (-I)^{(m+n)}$ exact symmetry $p_{kk} = (-I)^{(m)}$ violated by localised interactions

pictures courtesy of G.Cacciapaglia

Beyond flat geometries

- RPP can be obtained from the sphere, but positive curvature implies massive eigenvalues for the Dirac operator. Extra gauge field can compensate the connection...but not than nice!
- Negative curvature more interesting (hyperbolic orbifolds M4 x H^d/ Γ):
 - massless fermionic modes, large mass gap with KK modes
 - M_p TeV exponential hierarchy
 - stability of the extra space (rigidity, only radion stabilization)
 - standard Friedman-Roberson-Walker cosmology

see N.Deutschmann's talk

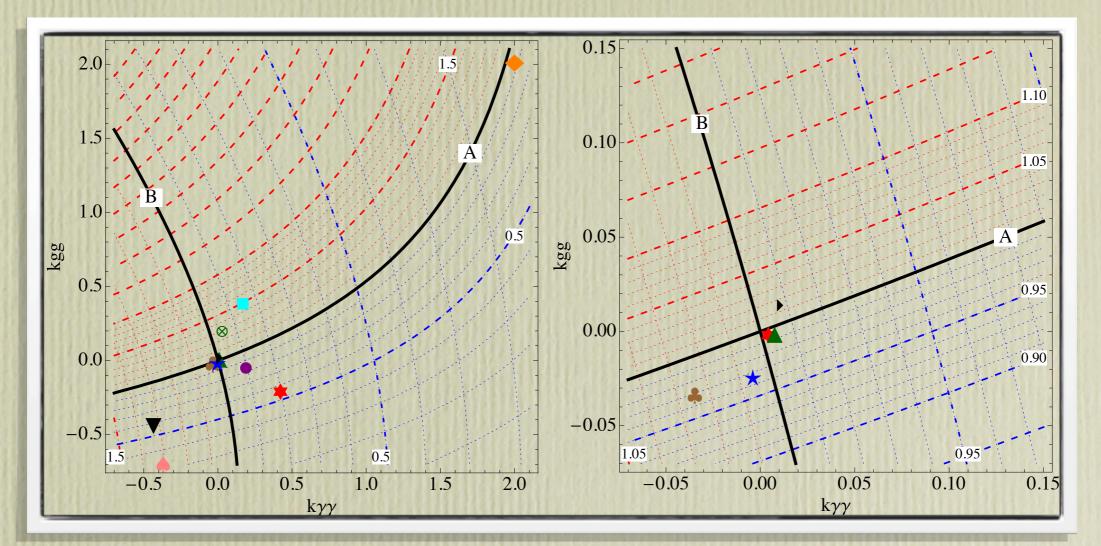
Bump hunt at LHC

- LHC at 7-8 TeV measured the Higgs boson (remember the no-loose "theorem" either Higgs or something else?)
- LHC at 13 TeV, more uncertain discovery of new particles, but well in the TeV range for testing extensions of the EW sector, putting bounds, challenging more naturalness

Example of limits @LHC

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013


010	llus. 3031 2013					$\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$	$\sqrt{s} = 7, 8 \text{ lev}$
	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫£ dt[fb	-	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{q}\overline{q},\overline{q} \rightarrow q \overline{\chi}_{1}^{0} \\ \overline{g}\overline{g},\overline{g} \rightarrow q \overline{q} \overline{\chi}_{1}^{0} \\ \overline{g}\overline{g},\overline{g} \rightarrow q \overline{q} \overline{\chi}_{1}^{0} \\ \overline{g}\overline{g},\overline{g} \rightarrow q q \overline{\chi}_{1}^{0} \\ q q W^{\pm} \overline{\chi}_{1}^{0} \\ \overline{g}\overline{g},\overline{g} \rightarrow q q (\ell/(\nu/\nu)\nu) \overline{\chi}_{1}^{0} \\ \overline{g}\text{MSB}(\overline{\ell}\text{NLSP}) \\ \text{GMSB}(\overline{\ell}\text{NLSP}) \\ \text{GGM}(\text{bino}\text{NLSP}) \\ \text{GGM}(\text{bino}\text{NLSP}) \\ \text{GGM}(\text{higgsino-bino}\text{NLSP}) \\ \text{GGM}(\text{higgsino-bino}\text{NLSP}) \\ \text{GGM}(\text{higgsino}\text{NLSP}) \\ \text{Gravitino}\text{LSP} \end{array} $	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \\ 0 \end{array}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-069 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
3 rd gen. ĝ med.	$\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{1} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{1} \end{array}$	0 0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	Ř 1.2 TeV m(\tilde{k}_{1}^{0})<600 GeV Ř 1.1 TeV m(\tilde{k}_{1}^{0})<350 GeV Ř 1.34 TeV m(\tilde{k}_{1}^{0})<400 GeV Ř 1.3 TeV m(\tilde{k}_{1}^{0})<300 GeV	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{1} \\ \tilde{t}_{1}\tilde{t}_{2}(\text{light}), \tilde{t}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{3}(\text{medium}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{nedium}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{3}(\text{heavy}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{2}(\text{heavy}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{3}(\text{heavy}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{2}\tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} $	$\begin{array}{c} 0\\ 2\ e,\mu\ ({\rm SS})\\ 1\text{-}2\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 3\ e,\mu\ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-t: 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{l} \tilde{\ell}_{\mathbb{L},\mathbb{R}}\tilde{\ell}_{\mathbb{L},\mathbb{R}},\tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{\nu}\nu\tilde{\ell}_{\nu}\ell(\tilde{\nu}\nu),\ell\tilde{\nu}\tilde{\ell}_{\nu}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}Z\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{0} \end{array} $	2 e,μ 2 e,μ 2 τ 3 e,μ 3 e,μ 1 e,μ	0 0 - 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	$\begin{array}{l} \text{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \operatorname{prod., long-lived} \tilde{\chi}_1^\pm \\ \text{Stable, stopped} \; \tilde{g} \; \text{R-hadron} \\ \text{GMSB, stable} \; \tilde{\tau}, \tilde{\chi}_1^0 {\rightarrow} \tilde{\tau}(\tilde{e}, \tilde{\mu}) {+} \tau (\\ \text{GMSB,} \; \tilde{\chi}_1^0 {\rightarrow} \gamma \tilde{G}, \operatorname{long-lived} \tilde{\chi}_1^0 \\ \tilde{q} \; \tilde{q}, \; \tilde{\chi}_1^0 {\rightarrow} q q \mu \; (\text{RPV}) \end{array}$	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - -	Yes Yes Yes -	20.3 22.9 15.9 4.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \ \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \ \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \ \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \ \tilde{\chi}_1^0 \rightarrow ee \tilde{v}_{\mu}, e \mu \tilde{v} \\ \tilde{\chi}_1^+ \tilde{\chi}_1, \ \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \ \tilde{\chi}_1^0 \rightarrow \tau \tau \tilde{v}_e, e \tau \tilde{v} \\ \tilde{g} \rightarrow q q \\ \tilde{g} \rightarrow \tilde{t}_1 t, \ \tilde{t}_1 \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ e \\ \tau \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 7 jets - - 6-7 jets 0-3 b	- Yes Yes - Yes	4.6 4.7 20.7 20.7 20.3 20.7	\$\vec{v}_r\$ 1.61 TeV λ_{311}^2 =0.10, λ_{132} =0.05 \$\vec{v}_r\$ 1.1 TeV λ_{311}^2 =0.10, λ_{12233} =0.05 \$\vec{v}_r\$ 1.2 TeV m(\$\vec{v}_1\$)=m(\$\vec{v}_r\$), \$c_{1,25}\$ \$\vec{v}_r\$ 760 GeV m(\$\vec{v}_1\$)=300 GeV, \$\lambda_{121}\$>0 \$\vec{v}_r\$ 350 GeV m(\$\vec{v}_1\$)=300 GeV, \$\lambda_{121}\$>0 \$\vec{v}_r\$ 916 GeV BR(t)=BR(c)=0% \$\vec{v}_r\$ 880 GeV BR(t)=BR(c)=0%	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other		$ \begin{array}{c} 0\\2 e, \mu (SS)\\0\\ \sqrt{s} = 8 \text{ TeV}\\ \text{artial data} \end{array} $	4 jets 1 <i>b</i> mono-jet √s = 3 full o	Yes Yes 8 TeV data	4.6 14.3 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 800 GeV m(¿)<80 GeV, limit of <687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1\sigma theoretical signal cross section uncertainty.

$\mathbf{ATLAS} \text{ Preliminary}$ $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV}$

- I TeV but read the fine prints!!! NOT general bounds

Large BSM effects only in few cases

from hep-ph 0901.0927 (in unsuspicious times...)

	4 th	*	Littlest Higgs	•	Warped GHU Space	\star	Flat GHU
•	SUSY gold		Color Octet		Flat BH with Flavour		UED Model
	SLH		Lee Wick SM	٨	Warped BH with Flavour		

Sort of conclusion: BSM hints?

- naive/oversimplified models are under serious attack
- Hints may hide in details... Experimental bounds should be kept as general as possible (we may overlook interesting physics)
- model building has new challenges and opportunities