

Institut de recherche sur les lois fondamentales de

saclay

Recherches du boson de Higgs avec l'expérience DØ F. Couderc CEA- Saclay

Séminaire LAPP -20 Juin 2008

- The TeVatron and the $D \ensuremath{\varnothing}$ detector
- SM Higgs Boson
 - Low-mass Higgs searches
 - High-mass Higgs searches
 - TeVatron combination
- MSSM Higgs bosons
- Perspectives
- Conclusions

The TeVatron

Recorded / Delivered: $4.3 / 3.7 \text{ fb}^{-1}$ Analyzed : $1.0 - 2.4 \text{ fb}^{-1}$

Best peak luminosity: ~ $300E30 \text{ cm}^{-2}/\text{s}^{-1}$

DØ detector

Multi purpose detector

- silicon vertex detector
- central tracker
- calorimeter (EM/ HAD)
- muon system

Standard Model Higgs boson

5

EW symetry breaking: Higgs mechanism

Succés de la Théorie électrofaible et de SU(2)xU(1)

MAIS, terme de masse non invariant de jauge \Rightarrow Particules sans masse!

Mécanisme de Higgs: ajouté un champ scalaire (doublet de SU(2)) avec le bon potentiel

- symétrie de jauge se brise
- bosons de jauges \rightarrow massiques
- couplages de Yukawa
 - \rightarrow fermions massiques

	Measurement	Fit	$ O^{\text{meas}} - O^{\text{fit}} / \sigma^{\text{meas}}$ 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02768	
m _z [GeV]	91.1875 ± 0.0021	91.1875	
Г _z [GeV]	2.4952 ± 0.0023	2.4957	
$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	41.477	
R _I	20.767 ± 0.025	20.744	
A ^{0,I} _{fb}	0.01714 ± 0.00095	0.01645	
$A_{ }(P_{\tau})$	0.1465 ± 0.0032	0.1481	
R _b	0.21629 ± 0.00066	0.21586	
R _c	0.1721 ± 0.0030	0.1722	
A ^{0,b}	0.0992 ± 0.0016	0.1038	
A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742	
A _b	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _I (SLD)	0.1513 ± 0.0021	0.1481	
$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.398 ± 0.025	80.374	
Г _w [GeV]	2.140 ± 0.060	2.091	
m _t [GeV]	170.9 ± 1.8	171.3	-

Higgs mass constraints

Direct searches at LEP

MH > 114.4 GeV @ 95% CL

Higgs mass constraints

Indirect constraints:

Constraints on the Higgs boson mass

Search strategy at TeVatron

Low-mass Higgs ($m_H < 135 \text{ GeV/c}^2$)

Mainly associated production WH, ZH avec H \rightarrow bb rew + inclusive production H $\rightarrow \gamma\gamma$

☞ High-mass Higgs (m_H > 135 GeV/c²)

 $H \rightarrow WW^*$ large branching ratio, 'only" electroweak backgrounds (di-boson): search for $gg \rightarrow H(X)$

Final states studied

Signature: high p_{τ} isolated leptons and/or missing transverse energy + high p_{τ} jets for associated production.

Standard Model: Low-mass Higgs boson searches

The main tool: b-tagging

Search for $H \rightarrow bb$, jj background is reducible by

Tagging b-jets

b hadrons: long life time + heavy - secondary vertex, Decay lifetime - tracks with high impact parameters - vertex mass **Displaced tracks** b-tagging @ DØ: **Decay lifetime** Secondary vertex Lxy - kinematics informations combined in a Neural Network **Primary vertex** d0

Prompt tracks

♥ efficiency (b): 50 / 70 % ₲ fake rate (j) : 0.5 / 4.5 %

Jet

Search for W/Z H with $H \rightarrow bb$

 \Rightarrow W/Z + jj/cc/bb are the largest backgrounds

Simulation from MC + data:

- * kinematics from LO (Alpgen) simulation
- * normalization (cross section) corrected from (N)NLO/LO
- * still not enough:
 - create enriched W/Z + jets samples
 - before b-tagging Higgs signal negligible
 - normalize to data in those samples before b-tagging
 - σ [V+bb(cc)] / σ [Vinclusive] kept from simulation (after NLO correction)

Electroweak V+jets backgrounds

Normalize Z+jets before b-tagging:

- select 2 isolated leptons
- cut on mll invariant mass
- estimate other bkgs
- normalize

Normalize W+jets before b-tagging:

- select 1 isolated muon
- estimate other bkgs
- normalize

Other backgrounds

- Top production:
 - ttbar + single top use simulation only
 - Discriminate on the total energy of objects in the event
- Di-boson:
 - WW/WZ small backgrounds
 - Can discriminate on di-jet mass (W or Z vs H)
- QCD:
 - Hard to model especially cross sections
 - From data using QCD enriched sample (lepton isolation)
 - Need a good $\mathsf{E}_{\!\tau}$ resolution and lepton id.

A first example: ZH -- JUD bb

Experimental signature: 2.1 fb⁻¹

missing E_{_{T}} (> 50 GeV) + 2 high p_{_{T}} jets (p_{_{T}} > 15 GeV/c)

Backgrounds

- * Electroweak Vjj, Vcc, Vbb * QCD jj, bb : data. Exploits the difference between the missing energy measured:
 - in the calorimeter $(\not\!\!E_T)$
 - only with jets (H_{T})
 - in the tracker (p_{T})

Higgs @TeVatron, LAPP, F Couderc

A first example: ZH -- JUD bb

Improving the sensitivity:

b-tagging: 2 b-tagged jets
multivariable discriminant: combine several discri.
variables into a Boosted
Decision Tree (BDT).

Experimental signature: 1.7 fb⁻¹

1 isolated lepton (from the W) + missing E_{T} + 2 high p_{T} jets

Backgrounds

- * Electroweak V+jets, di-boson* Top
- * QCD bb: data (invert iso cut)

Improve sensitivity

- * 1 and 2 b-tagged jets
- * lepton \equiv e or mu

* use a NN

Higgs @TeVatron, LAPP, F Couderc

Standard Model: High-mass Higgs boson searches

High mass: $H \rightarrow WW^*$ (|v|'v)

Probability to observe the kinematic configuration "*obs*"assuming the processus is *m*.

Data (551) DØ Run IIb Preliminary Signal (M_L=160) L=1.2/fb mu+ mu-Signal+Bkgd. - Total Bkgd. 10² Z+jets Bkgd. Diboson Bkad Improve sensitivity with W+jets Bkad. QCD Bkgd. 10 Top Bkgd. Neural Network: -Matrix element discriminant + kinematic variables 10⁻¹ 10^{-2} -0.4 -0.2 0.2 0.4 0.6 0.8 -0 1 1.2 1.4 nnout

Standard Model searches: Combination before ICHEP 08

Channel	CDF Lumi	D0 Lumi	Final State	Exp. (Obs) Upper Limits / SM @ MH (GeV)
WH → Iv bb	1.9 fb-1	1.7 fb⊣	e/µ, 1b/2b	D0: 8.9 (11) @ 115 GeV CDF: 6.4 (6.4) @115 GeV
ZH→II bb	1.0 fb-1	1.1 fb ⁻¹	e/µ, 1b/2b	CDF: 16 (16) @115 GeV D0:20 (18) @ 115 GeV
ZH → vv bb	2.1 fb ⁻¹	1.7 fb ^{_1}	$Z \rightarrow vv/W \rightarrow iv,$ 2b	D0: 8.4 (7.5) @115 GeV CDF:8.3 (8.0) @115 GeV
Η → ττ (gg, VBF,WH,ZH)	2.1 fb ⁻¹		τ + 2 jets	CDF: 25 (31) @ 115 GeV
Η → γγ		2.3 fb ⁻¹	γγ	D0: 50 (55) @115 GeV
H→ WW*	2.3 fb⁻¹	2.4 fb ⁻¹	ee, eμ, μμ	D0: 2.4 (2.1) @ 160 GeV CDF:2.5 (1.6) @ 160 GeV
WH→ WWW*	1.9 fb ⁻¹		e+e+, e+μ+, μ+μ+	CDF: 35 (33) @ 160 GeV

- A real nightmare
- Combine 28 different channel to get the full sensitivity
- Different techniques at DØ and CDF, gives compatible results within 10%
- All correlations between systematics are taken into account

A word on systematics

Source	$WH \rightarrow e\nu b\bar{b} DT(ST)$	$WH \rightarrow \mu\nu b\bar{b} DT(ST)$	$WH \rightarrow WW^+W^-$	$H \rightarrow W^+W^-$
Luminosity (%)	6.1	6.1	-	-
Normalization (%)	-	-	6.1	4-6
Jet Energy Scale (%)	3.0	3.0	0	3.0
Jet ID (%)	3.0	3.0	-	-
Electron ID/Trigger (%)	6.0	-	11	3-10
Muon ID/Trigger (%)	-	11.0	11	7.7-10
b-Jet Tagging (%)	9.2(4.6)	9.2(4.6)	-	-
Background σ (%)	6-20	6-20	6-18	6-18
Signal σ (%)	0	0	0	10.0
QCD multijets (%)	14	14	30-50	15-40
Source	$ZH \rightarrow \nu \bar{\nu} b\bar{b}$	$ZH \rightarrow e^+e^-b\bar{b}$ DT(ST)	$ZH \rightarrow \mu^+\mu^- b\bar{b} \text{ DT(ST)}$	$H \rightarrow \gamma \gamma$
Luminosity (%)	6.1	6.1	-	6.1
Normalization (%)	-	-	6.1	-
Jet Energy Scale (%)	3.0	2.0	2.0	-
Jet ID (%)	2.0	5.0	5.0	-
Jet Triggers (%)	5.5	-	-	-
Electron ID/Trigger (%)	0	4.0	-	12-17
Muon ID/Trigger (%)	0	-	4.0	-
b-Jet Tagging (%)	6.0	7.5(3.0)	7.5(3.0)	-
Background σ (%)	6-16	10-30	10-30	5-26
Heavy-Flavor Scale (%)	50	-	-	-
QCD multijets (%)	-	41-50	50	20

TeVatron combination

EW symmetry breaking in the Minimal Supersymmetric Standard Model (MSSM)

SUSY in a nutshell

- SUSY relates bosons to fermions. But it requires a complete set of new particles ('s"particles) : can not 'only" relate known bosons to known fermions
- One of the main appeals: it solves naturally the hierarchy problem provided that m_{Fermion} close to m_{Scalar}

 \Rightarrow New particles masses should not be much higher than TeV

 \Rightarrow Can be produced 'on-shell' at the Tevatron/LHC! (direct searches)

• **SUSY requires at least 2 Higgs doublets** (to cancel higgsino contribution to triangle anomalies, structure of superpotential)

MSSM: exactly 2 doublets $\Rightarrow 1 \text{ couples to down (up) quarks with vev } v_d (v_u)$: $\tan\beta = v_d/v_u$. NB: if $\tan\beta \approx 3 \rightarrow 1$ top ≈ 1 bottom large $\tan\beta$ regime appealing $\Rightarrow EW \text{ breaking: 5 physical states}$ - h/H and A $- H^+, H^-$

- At tree level, Higgs sector described by M_A and tan β

⇒ M_h , M_H and $M_{H\pm}$ related M_A and tanβ (tree level only) ⇒ There MUST be a light Higgs boson M_h < 135 (150) GeV/c².

 Results at Tevatron are usually interpreted in 2 benchmark scenarii called m_h^{max} and no-mixing.

Common set of parameters $m_t = 174.3 \text{ GeV},$ $M_{\text{SUSY}} = 1000 \text{ GeV},$ $\mu = -200 \text{ GeV},$ $M_2 = 200 \text{ GeV},$ $A_b = A_t,$ $m_{\tilde{g}} = 0.8 M_{\text{SUSY}}.$

Sign of $\boldsymbol{\mu}$ is usually varied

Differences in the stop mixing parameter X_t

- h/A or H/A or h/H/A are degenerated in mass
- A (+ h or H) coupling to down quark enhanced by $tan\beta$ only 2 decay modes available for neutral higgs !
- $\Rightarrow \mathcal{B}(\Phi \rightarrow bb) \approx 90\%$; $\mathcal{B}(\Phi \rightarrow \tau\tau) \approx 10\%$ where $\Phi = h/H/A$

 \Rightarrow If $m_{H^+} < m_{top}$, $\mathcal{B}(H^+ \rightarrow \tau \upsilon) \approx 1$

Searches for neutral Higgs bosons

33

The very first try

First search by CDF RunI data : 100 pb⁻¹

search for bh->bbb: looks like to be the golden channel to discover a susy Higgs at the TeVatron.

FIG. 3. CDF 95% C.L. excluded region in the parameter space m_A - tan β for the two stop mixing scenarios: *no mixing* (dashed lines) and *maximal mixing* (solid line). In all cases $m_S = 1 \text{ GeV}/c^2$ and $m_t = 175 \text{ GeV}/c^2$. Also shown is the LEP exclusion region for the *no mixing* scenario [17].

An additional tool: tau-tagging

Neural network ID 3 types distincts de Taus

Performance for p_{τ} [τ]>15 GeV : jet rejectection rate ~40 for a τ efficiency of 70%

Tau Type

lets

Taus

lets

Taus

1

1.5

9.1

0.04

5.8

Reconstruction

NN > 0.9

2

10

50

0.2

37

Searches for h/H/A $\rightarrow \tau \tau$

Experimental signature 1 fb⁻¹

- 2 iso high p_{T} leptons
- opposite charge
- small missing $\mathsf{E}_{_{\!\mathsf{T}}}$
- 3 channels: μ -had, e-had, e- μ

Backgrounds main $Z \rightarrow \tau$, QCD, $Z \rightarrow ee, Z \rightarrow \mu\mu$, di boson

1 fb⁻¹

Experimental signature

 $\stackrel{3}{\leq}$ N_{jets} $\stackrel{<}{=}$ 5 high p_T jets at least 3 b-tagged jets

Backgrounds

QCD multijet ccj, bbj, bcc, bbc, bbb (+ nj)

Improving sensitivity

- split sample into
 - 3 sub-channels:
 - * 3 jets (most sensitive)
 - * 4 jets
 - * 5 jets
- keep several jet pairings
- combine several kinematic variables in a Likelihood to:
 - * increase s/b * define a control regi
 - * define a control region

bbb(b) background modeling

Higgs @TeVatron, LAPP, F Couderc

Searches for h/H/A b(b) \rightarrow bbb(b)

Higgs @TeVatron, LAPP, F Couderc

Two effects must be accounted for:

1. The production **cross section enhancement depends on the details of the MSSM scenario beyond LO**. MSSM/SM enhancement factors are computed with the help of FeynHiggs (model dependent) 2. With increasing coupling to b (ie tan β), Γ_{μ} is not negligible anymore

Analysis level: the width is simulated by using a weighted combination of all the different Higgs mass MC.

Dzero results: bbb vs τ⁺τ⁻

Perspectives

Higgs @TeVatron, LAPP, F Couderc

42

Expected exclusion sensitivity

By the end of 2009 (Physics at LHC?), Tevatron might allow only

SM Higgs between 118 and 145 GeV

If the Higgs boson (exists? and) is light, will be hard for LHC as well!

→ LHC/Tevatron complementarity $H \rightarrow \gamma \gamma s H \rightarrow bb$

Expected discovery sensitivity

over the whole range!

MSSM Higgs

* bbb search interesting but not very sensitive compared to π
* π b (hb) in preparation
* no combination has
been done for now, neither internally nor with CDF

Conclusion

Le TeVatron et son premier 1fb⁻¹: - 2006 : B_s mixing à CDF (et Dzero) - 2007 : single top à Dzero

et avec un 7/8 fb⁻¹?

La quête du boson de Higgs commence seulement au TeVatron:

tous les canaux sont analysés
les outils de combinaisons sont en place
des améliorations encore possible: addition des τ, b-Tagging (Layer Ø à DØ), améliorations des analyses (ME, NN), amélioration de l'identification des leptons....

Higgs beyond SM :

D'ores et déjà atteint le domaine íntéressant"tan β- 40 (MSSM) Une surprise est toujours possible !

"Difficile de trouver un chat noir dans une pièce sombre... surtout s'il est ailleurs."

Higgs signal simulation

Higgs signal: SM signal generated with pythia Use NLO SM cross sections from MCFM Reweight pythia evt using MCFM kinematics SM --> MSSM enhancement computed with Feynhiggs

reweight vs η[b]
 reweight vs pT[b]

Separate hb and hbb channels

Ratio Syst to Nominal shape

Legend

- bbj vs bbb compo
- bbj syst
- L3 IP syst
 - MC kinematics — b effi syst
 - b jes syst

Higgs @TeVatron, LAPP, F Couderc

Results in the m_H max scenario

Higgs @TeVatron, LAPP, F Couderc