Neutron Electric Dipole Moment search with a superthermal spallation Ultracold Neutron source at RCNP/TRIUMF

Edgard PIERRE KEK, Tsukuba, Japan Osaka University, Osaka, Japan TRIUMF, Vancouver, Canada

CPPM seminar, Marseille, 13th of January 2014

Outline

- The neutron Electric Dipole Moment (nEDM) and the particles used: the UltraCold Neutrons (UCN)
- The new He-II superthermal UCN source at RCNP

Development on the nEDM experiment

Outlook

The neutron EDM group

Spokespeople: Y. Masuda (KEK), J.W. Martin (Winnipeg)

Collaborators: T. Adachi, M. Barnes, C. Bidinosti, J. Birchall, L. Buchmann, C. Davis, F. Doresty, W. Falk, M. Gericke, R. Golub, K. Hatanaka, B. Jamieson, S. Jeong, S. Kawasaki, A. Konaka, E. Korkmaz, E. Korobkina, M. Lang, L. Lee, J. Mammei, R. Mammei, R. Matsumiya, K. Matsuta, M. Mihara, A. Miller, E. Miller, T. Momose, R. Picker, W.D. Ramsay, S.A. Page, <u>E. Pierre</u>, Y. Shin, J. Sonier, H. Takahashi, K. Tanaka, I. Tanihata, W.T.H. van Oers, Y. Watanabe

(KEK, U. of Winnipeg, U. of Manitoba, TRIUMF, NCSU, RCNP, UNBC, UBC, Osaka University)

The neutron Electric Dipole Moment

Baryon asymmetry of the Universe

 $\eta_{EW-SM} \sim 10^{-18}$ and $\eta_{exp} \sim 6 imes 10^{-10}$ [WMAP (2003)]

Sakharov's conditions for baryogenesis [JETP letters 5, 24 (1967)].

- B-Violation
- C & CP violation
- on equilibrium

Known CP violation (B - K⁰) insufficient \rightarrow New CP violations needed

The neutron Electric Dipole Moment

The EDM of a particle

$$ec{d} = drac{ec{s}}{ec{s}}$$

 $\hat{H} = -ec{d}\cdotec{E} = -drac{ec{s}}{ec{s}}\cdotec{E}$

C, P, T symmetries

- C: charge conjugation $(q \rightarrow -q)$
- P: parity inversion $(\vec{r} \rightarrow -\vec{r})$
- T: time reversal($t \rightarrow -t$)

Assuming CPT conservation

 \hat{H} : P-odd and T-odd \Rightarrow Non zero d violates CP and T

nEDM: status of the art

nEDM: predictions

nEDM: predictions

UltraCold Neutrons (UCN)

- ~100 neV energy neutrons
- All the interactions: same order of magnitude
- Can be trapped using physical walls!

How to produce UCN

Neutrons are moderated by passing through different materials with different temperatures

Experiments with UCN

- Long storage time: many applications for fundamental physics
- n decay, gravity, lifetime, electric charge...

How to measure the nEDM

 $B_{\uparrow\uparrow} - B_{\uparrow\downarrow}$ contribution must vanish. High control on B fluctuations and spin handling needed.

Co-magnetometer needed!

How to measure the nEDM: the Ramsey's method

N. F. Ramsey, Phys.Rev.**76** 996 (1949) \Rightarrow Nobel Prize 1989 **1 2 3 4**

- 1. Initially spin $\parallel \vec{B}, \vec{E} \uparrow \text{ or } \downarrow \text{ field applied}$
- 2. First $\pi/2$ RF pulse to place the spin $\perp \vec{B}$ (2s)
- 3. Free precession time T
- 4. Second $\pi/2$ RF pulse (2s)

How to measure the nEDM: the Ramsey's method

Expected statistical sensitivity

$$\sigma_d = \frac{h}{2\alpha E t_c \sqrt{N}}$$

 $\alpha = 0.95 \exp(-t_c/T_2) = 0.83$ E = 10 kV/cm $t_c = 130 \text{ s}$ $N = (7.5 \times 10^5 \text{ UCN/batch}) \exp(-t_c/\tau)$ $\times 144 \text{ batch/day} = 7.1 \times 10^7 \text{ pol. UCN}$ $\frac{3600s \times 24}{600s}$ assuming 10 minutes cycle

 $\begin{array}{c} 1 \ \mu \text{A} @ \text{RCNP} & \sigma_d = 1.1 \ x \ 10^{-25} \ \ \text{ecm/day} \\ 10 \ \mu \text{A} @ \text{RCNP} & \sigma_d = 3.6 \ x \ 10^{-26} \ \ \text{ecm/day} \\ 40 \ \mu \text{A} @ \text{TRIUMF} \ \sigma_d = 1.6 \ x \ 10^{-26} \ \ \text{ecm/day} \\ \end{array}$

Expected statistical sensitivity

- Such N not achievable with the UCN sources used during 2006 experiment.
- This was already know for a long time...

Golub and Pandlebury, Contemporary Physics 13, 519 (1972) Review on neutron EDM:

"If no effort were to be spared, an nEDM error of 2x10⁻²⁷ e cm might ultimately be achieved"

New UCN sources must be developed

The new way to produce UC High-energy Proton

- Liberate neutrons by proton-induced spallation.
- Moderate (thermalize) in cold (20 K) D₂O.
- Cold neutrons then "downscatter" to near zero energy (4 mK) in superfluid helium through phonon production.

He-II superthermal source concept

$$P = \int p(E_u) dE_u = N_{\text{He}} 4\pi b^2 \left(\frac{\hbar}{m_n}\right)^2 \frac{k_c^3}{3} \left[\int \frac{d\Phi(q)}{dE} S\left(q, \hbar\omega = \frac{\hbar^2 q^2}{2m_n}\right) dq \right]$$

From MC simulations (R. Matsumiya) P=14 UCN/cm³/s at 20 K P=6 UCN/cm³/s at 50 K P=4 UCN/cm³/s at 80 K

UCN losses within He-II

- Upscattering: depends on temperature τ~T⁻⁷.
 For T=0.8K (reached during last November experiment!), we have τ~600 s.
- Absorption with ³He (σ_{abs}=5333 b). Natural abondance: τ~30 ms. Isopure ⁴He needed. With 10^{-10 3}He impurity, τ~300 s.
- Neutron lifetime: τ~886 s.
- Losses during wall collisions: τ~250 s.
- Global storage lifetime reachable: τ~150 s.

UCN losses within He-II

Upscattering: need low temperature

Absorption with ³He: need isopure Helium

Neutron lifetime: intrinsic

 Losses during wall collisions: need high cleaning of the walls

First prototype source: vertical extraction

First prototype source: vertical extraction

Vertical source: UCN production

Vertical source issue: energy spectrum

Gravity reduces number of UCN which can reach the experimental setup

New concept: horizontal extraction

Expected UCN number for the new horizontal source $N=P\tau_s \epsilon_d V$

Vertical UCN source: P=4 UCN/cm³/s

Phys. Rev. Lett. 108(2012)134801
 Horizontal: dilution factor (V ratio): x6/9.9

cold n flux: x1.2

26 UCN/cm³ at E₁=90 neV

26

- UCN production volume: x1.4
- beam current upgrade: x10
- storage lifetime: x2

Expected number of UCN at RCNP (10 µA beam current): N=7.5x10⁵

New source: a source of polarized UCN

Goal: select and keep the polarization along the experimental setup. Interaction UCN - material wall:

New source: a source of polarized UCN

Only one spin state can pass.

But we have to be careful to do not depolarize UCN during transport

SC magnet at RCNP

SC magnet at RCNP

Magnetic field check on axis

Magnetic Fields

Horizontal source

 We got first polarized UCN during last November!

Analysis currently on going.

The nEDM experiment

Many nEDM experiments!

	RAL/ SUSSEX /ILL (Grenoble, FR)	PSI (Villigen, CH)	TUM (Munich, DE)	SNS EDM (Oakridge, US)	CryoEDM (Grenoble, FR)	Russian (Grenoble, FR ⇒ Dubna, RU)	TRIUMF (Vancouver, CA)
temp	RT	RT	RT	0.7 K	0.7 K	RT	RT
comag	Hg	Hg	Hg	³ He	none	none	Xe+Hg
source	reactor, turbine	spall., sD ₂	reactor, sD ₂	spall, internal ⁴He	reactor, internal ⁴He	reactor, turbine, (⁴ He)	spall., ⁴ He
nr of cells	1	2	2	2	4	>1	1-2
goal [ecm]	3·10 ⁻²⁶	5·10 ⁻²⁸	5·10 ⁻²⁸	3·10 ⁻²⁸	1.6·10 ⁻²⁷	3·10 ⁻²⁸	10 ⁻²⁸
date	2006	2018	2019	2020	2015	2018	2019

R. Picker

nEDM systematics

- magnetic field variations
- leakage currents
- geometric phase effect
 - false EDM arising from B-field inhomogeneity and E x v.

comagnetometry

(co)magnetometry

false EDM (GP) effect

nEDM systematics

Best nEDM limit so far (ILL/RAL/SUSSEX): 2.9 ·10-26 e-cm

-		. ,
Effect	Shift	σ
Door cavity dipole	-5.6	2.0
Other dipole fields	0.0	6.0
Quadrupole difference	-1.3	2.0
$\mathbf{v} \times \mathbf{E}$ translational	0.0	0.03
$\mathbf{v} \times \mathbf{E}$ rotational	0.0	1.0
Second-order $\mathbf{v} \times \mathbf{E}$	0.0	0.02
$\nu_{\rm Hg}$ light shift (geo phase)	3.5	0.8
$v_{\rm Hg}$ light shift (direct)	0.0	0.2
Uncompensated B drift	0.0	2.4
Hg atom EDM	-0.4	0.3
Electric forces	0.0	0.4
Leakage currents	0.0	0.1
ac fields	0.0	0.01
Total	-3.8	7.2

TABLE I. Systematic errors and uncertainties $(10^{-27}e \text{ cm})$.

PRL 97, 131801 (2006)

Requirements for 10⁻²⁷ ecm

- B₀ ca 1 μT
- Homogeneity < nT/m
 - \Rightarrow < 100 pT across the cell
- Stability controlled to < pT

- New UCN guides for high polarization
- Non magnetic NiMo coating

- New UCN guides for high polarization
- Non magnetic NiMo coating
- Successfully coated at TUM (Munich) last summer

Magnetron sputtering, T. Lauer

- New UCN guides for high polarization
- Non magnetic NiMo coating
- Successfully coated at TUM (Munich) last summer
- Should increase polarization from 20% to 99% compared to stainless steel!

 New high efficiency UCN detector based on neutron capture on Lithium 6

[1] G. Ban, E. Pierre et al., Nucl. Instr. and Meth. A 611, 280 (2009)

First order pile-up calculation (pulse lenght: 250 ns):

Expected \sim 30 % pile-up at TRIUMF commissioning.

 \rightarrow Segmentation needed.

Background study

Number of Photoelectrons in PMT

The future experiment at TRIUMF

Outlook

- The new horizontal source has been tested successfully two months ago
- Focusing on nEDM developments during 2014 such as UCN detector tests with real UCN, magnetic fields and high voltage
- Expected publishable new nEDM limit for 2016 in Japan, just before moving the experiment to Canada

Thank you