Indirect searches with Galactic Cosmic Rays

I – Galactic cosmic rays (GCR)
II – GCR phenomenology: basics
II – Status of recent measurements
III – Conclusions

N.B.: dark matter candidate in the GeV-TeVmass range

David Maurin (LPSC) dmaurin@lpsc.in2p3.fr *News from the Dark* LUPM, Montpellier 31/10/2013

1. Source injection

Particles reaching Earth come from:

- whole diffusive volume for stable species
- small volume (~ 100 pc) for radioactive nuclei and high energy electrons
- \rightarrow different species sample different regions of the Galaxy

Taillet & Maurin (2003) Maurin & Taillet (2003)

(astrophysics + particle physics)

Indirect detection

 \rightarrow Calculate rare secondary fluxes (e⁺, anti-p, anti-d, diffuse γ -rays)

- \rightarrow Calibrate transport (model vs data): B/C, ¹⁰Be/⁹Be
- \rightarrow Calculate rare secondary fluxes (e⁺, anti-p, anti-d, diffuse γ -rays)
- \rightarrow Excess from DM annihilation?

1. Cosmic rays in the Galaxy

 \rightarrow Spectra and abundances (acceleration and transport)

1. Cosmic rays in the Galaxy

 \rightarrow Spectra and abundances (acceleration and transport)

- \rightarrow flux modulation < 10 GeV/n
- \rightarrow time dependence

1. Cosmic rays in the Galaxy

- 3. Earth magnetic shield \rightarrow Spectra and abundances (acceleration and transport) \rightarrow Cut-off rigidity for detectors size ~ 30 kpc size $\sim 10^4$ km <t> ~ 20 Myrx 10⁷ k A. Garlick / space-art.co.u x 10⁵ size ~ 100 AU <t> ~ a few years 2. Transport in the Solar cavity
- \rightarrow flux modulation < 10 GeV/n
- \rightarrow time dependence

1. Cosmic rays in the Galaxy

 \rightarrow time dependence

A brief history of cosmic-ray measurements

A brief history of cosmic-ray measurements

A brief history of cosmic-ray theory

A brief history of cosmic-ray theory

I – Galactic cosmic rays (GCR)
II – GCR phenomenology: basics
II – Status of recent measurements
III – Conclusions

Transport equation: ingredients and solutions

1. Transport equations

$$\underbrace{\frac{\partial N^{j}}{\partial t}}_{i} + \underbrace{\left(-\vec{\nabla} \cdot \left(K(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V}(\vec{r})\right)}_{K^{j}} N^{j} + \underbrace{\left(\Gamma_{rad} + \Gamma_{inel}\right)}_{inel} N^{j} + \underbrace{\frac{\partial}{\partial E}\left(b^{j}N^{j} - c^{j}\frac{\partial N^{j}}{\partial E}\right)}_{i} = \underbrace{Q^{j}(E,\vec{r}) + \sum_{m_{i} > m_{j}} \Gamma^{i \to j}N^{i}}_{m_{i} > m_{j}}$$

- Coupled set of second order differential equation (space and momentum)
- All nuclear species to consider

2. Ingredients

- Nuclear physics
- Solar physics [same transport equation, different environment/geometry/boundary conditions]
- Astrophysics environment [sources, gas distribution, radiation field in Galaxy, magnetic fields]

3. How to solve the transport equation?

- Numerical solution [discretisation using explicit or implicit schemes]
- Monte Carlo diffusion [forward and backward stochastic equation]
- Semi-analytical solutions [solve for simplified geometry: Green functions, Bessel expansion,...]

GALPROP: Strong et al. (1998) DRAGON: Evoli et al. (2008)

Faharat et al. (2008)

USINE: Maurin et al. (2001)

Transport equation: typical timescales

Adapted from Taillet (2010)

 \rightarrow "Local" origin (~ 100 pc) [local source or production]

Transport equation: 2 zone (thin disc+thick halo) model

Webber, Lee & Gupta (1992)

$$-\frac{d}{dz}\left\{K(z)\frac{dN}{dz}\right\} + \frac{d}{dz}[V_{\text{gal}}(z)N] + nv\sigma 2h\delta(z)N = q(z, E)$$

 \rightarrow simple, but captures all the physics

K0/L degeneracy: impact on dark matter signal

Transport parameters from B/C analysis

 $-KN'' + nv\sigma 2h\delta(z) \times N = 2h\delta(z)Q(E)$

K0/L degeneracy: impact on dark matter signal

K0/L degeneracy: impact on dark matter signal

I – Galactic cosmic rays (GCR)
II – GCR phenomenology: basics
II – Status of recent measurements
III – Conclusions

MCMC analysis (USINE: Putze et al. '09,'10,'11 + GALPROP: Trotta et al.' 11)

MCMC analysis (USINE: Putze et al. '09,'10,'11 + GALPROP: Trotta et al.' 11)

Coste et al. (2012)

Results and issues

- **Solution considered**
- 1. Degenerate transport parameters
- Use radioactive clocks ¹⁰Be
- Use secondary e⁺

Ptuskin et Soutoul '98 Donato et al. '03, Putze et al. '10

Lavalle et al., in prep

2. Systematic errors from nuc. phys.
Improve cross-sections
Use of quartet ratio
Use AMS Li flux

- \rightarrow Hard to achieve
- \rightarrow Works well!
- \rightarrow In progress...

\rightarrow B/C: better data from AMS-02 (preliminary) + CREAM high energy data

Anti-matter from dark matter: antiprotons

Previous B/C transport parameters (no free parameters) + nuclear X-sections

- 1. Good agreement between model and data (no dark matter needed)
- 2. Small propagation uncertainties (similar history as B/C)
- 3. Nuclear physics uncertainties > propagation uncertainties
- → Even with AMS-02 data, constraints on non-detection difficult to improve (still a window at high energy, i.e. TeV dark matter candidates)

Anti-matter from dark matter: antideuterons

- 1. Nuclear physics uncert. > propagation uncert. (worse than for antiprotons)
- 2. Propagation uncertainties for 'exotic' contrib. >> prop. uncert. 'standard' contrib.
- \rightarrow Antideuterons can exclude more DM models than antiprotons

[However, AMS-02 limits have to be reconsidered (with permanent magnet)]

 \rightarrow My favoured choice for DM constraints (~ 100 improvement w.r.t. current limits)

Anti-matter from dark matter: positrons

Positron fraction: origin of the rise at high energy

 \rightarrow 'Natural' astrophysical prediction (local SNRs, pulsars)

Anti-matter from dark matter: positrons

'Natural' astrophysical prediction [Delahaye et al. (2010)] VS

"fine-tuned" leptophilic boosted dark matter post-diction

[N.B.: no boost from dark matter substructures [Lavalle et al. 2008]] \rightarrow maybe worse place to look for dark matter (local sources): no control on astro. background!

I – Galactic cosmic rays (GCR)
II – GCR phenomenology: basics
II – Status of recent measurements
III – Conclusions

Indirect dark matter crisis?

No signal yet! And we are reaching limitations in many channels...

- \rightarrow Still room for high mass candidates in antiproton flux
- \rightarrow Antideuterons best target left for DM discovery
- \rightarrow If large L favoured, stronger constraints on DM candidates

[not discussed: multi-wavelength and multi-messenger studies]

Larger perspective: why so many improper claims for DM discovery?

Scarce data, data in extreme range of instrument capabilities, detector issue

- 1 GV & 10 GeV antiproton excess (in the 80's and 90's)
- 10 GeV HEAT positron fraction bump (in the 90')
- 10 GeV EGRET excess (in the 00')
- 500 GeV ATIC excess (in 2008)

Correct data, but too biased to see the astrophysics

- 511 keV annihilation line (INTEGRAL/SPI)
- Rise of the positron fraction (PAMELA/AMS-02)

Correct, but too much data for our own good (Fermi-LAT, AMS-02 era)

- 10 GeV annihilation line in the galactic centre
- 130 GeV line in the Galactic center
- 110 and 130 GeV line in galaxy cluster

Exquisite AMS-02 data in the coming years...