

Dark matter indirect detection from dSph galaxies and galaxy clusters: status and prospects

Céline Combet (LPSC, Grenoble)

"News from the dark", Montpellier, 05/12/2013

Introduction: DM distribution, J-factor

Dwarf spheroidal galaxies: J-factor and uncertainties

Galaxy clusters: single source vs. stacking analysis

Prospects and conclusions

CLUMPY code Charbonnier, Combet, Maurin, CPC 183, 656 (2012) http://lpsc.in2p3.fr/clumpy http://lpsc.in2p3.fr/clumpy/downloads.html

Indirect detection in gamma-rays

The gamma-ray flux in given by:

Dark matter distribution: large scales

Hierarchical formation of structures in the Universe: from micro-haloes to galaxy clusters

Galaxy clusters are the largest gravitationnally-bound structures in the universe, $M \sim 10^{14} - 10^{15} M_{sun}$

Dark matter distribution: Galactic scale

Aquarius (MW-like) simulation – Springel et al (2008)

Where to look?

Dense (~ $\int \rho^2$) – Close (1/d²) – No astrophysical background

$$J = \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \frac{1}{l^{2}} \left(\rho_{sm} + \sum_{i} \rho_{cl}^{i} \right)^{2} l^{2} dl d\Omega$$
[up to 20% of J_{tot} in some config.]
[boost signal]
$$J_{sm} \equiv \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \rho_{sm}^{2} dl d\Omega$$

$$J_{cross-prod} \equiv 2 \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \rho_{sm} \sum_{i} \rho_{cl}^{i} dl d\Omega$$

$$J_{subs} \equiv \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \left(\sum_{i} \rho_{cl}^{i} \right)^{2} dl d\Omega$$

$$J = \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \frac{1}{l^{2}} \left(\rho_{sm} + \sum_{i} \rho_{cl}^{i} \right)^{2} l^{2} dl d\Omega$$

$$[up to 20\% of J_{tm} in some config.] [boost signal]$$

$$J_{sm} = \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \rho_{sm}^{2} dl d\Omega$$

$$J_{cross-prod} \equiv 2 \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \rho_{sm} \sum_{i} \rho_{cl}^{i} dl d\Omega$$

$$J_{subs} \equiv \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \left(\sum_{i} \rho_{cl}^{i} \right)^{2} dl d\Omega$$

$$[exact realisation (mass and position) of DM distribution unknown]$$

$$\left(\langle J_{cross-prod} \rangle = 2 \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \rho_{sm} \langle \rho_{subs} \rangle dl d\Omega$$

$$\langle J_{subs} \rangle = N_{tot} \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \frac{dP_{V}}{dV} dl d\Omega \int_{M_{\min}}^{M_{\max}} \mathcal{L}(M) \frac{P_{M}}{dM} dM$$

$$\mathcal{L}(M) \equiv \int_{V_{cl}} (\rho_{cl})^{2} dV$$

Angular dependence – integration along the l.o.s

Angular dependence – integration along the l.o.s

Introduction: DM distribution, J-factor

Dwarf spheroidal galaxies: J-factor and uncertainties

Galaxy clusters: single source vs. stacking analysis

Prospects and conclusions

Optimal integration angle: Walker et al., ApJL 733, 46 (2011) Classical dSphs and Fermi-LAT/CTA: Charbonnier et al., MNRAS 418, 1526 (2011)

[N.B.: J not boosted for dSphs]

8 classical dSph galaxies (before SDSS)

Brightest of the MW's satellites ('plenty' of kinematic data)

→ Dominated by DM ($m_{stars}^{stars} < m_{DM}^{2} \sim 10^{7} M_{sun}^{sun}$) → No expected γ -ray background emission

Optimal integration angle

Optimal integration angle

Limit on annihilation cross-section

CR contamination

 → background limited

Limit on annihilation cross-section

Limit on annihilation cross-section

$$\langle \sigma_{\rm ann} v \rangle \propto m_{\chi}^2 \times J(\alpha_{\rm int}) \times \text{Sensitivity} \times \frac{dN^{pp}}{dE}$$

IACT current experimental status

IACT are the best option from massive WIMP Still far from "thermal" cross-section \rightarrow need more sensitivity (CTA)

Fermi-LAT current experimental status

Fermi combined analysis + updated kinematics analysis

Joint likelihood allows to get better constraints Start probing interesting region of the m - $\langle \sigma v \rangle$ plane

Systematics in the Jeans analysis

Assumptions:

- Light profile (Plummer, cusp, etc.)
- Constant velocity anisotropy
- Choice of binning

Charbonnier et al. (2011) – test on simulated data \rightarrow no significant impact on J-factor reconstruction

Spherical symmetry?

Systematics in the Jeans analysis

Haloes are triaxial

Preliminary results on triaxiality

Simulated data provided by W. Dehnen and M. Wilkinson (Univ. of Leicester)

Assuming spherical symmetry has a significant impact on the J-value reconstruction

Data and methods: what's next?

Number of	position	coordinates
-----------	----------	-------------

Number of velocity coordinates

Method	Description
	Only the projected radius $R^2 = x^2 + y^2$ and LOS velocity v_z is available for each star
21	(standard technique). Large data sets (500+ stars) are currently available for the classical
	Milky Way dwarf spheroidal population. See the introduction for details of techniques that
	use 2+1 data. Standard Jeans method + higher-order Jeans method (Richardson & Fairbairn, 2013)
2+3	Proper motions of each star are added to R and v_z . This is the most likely scenario with
	the GAIA satellite. See Wilkinson et al. (2002), Strigari et al. (2007) and An et al. (2012)
	for dynamic techniques that can be applied to $2+3$ data.
3+1	In this scenario the LOS depth z is available before the proper motions. This could arise if
	the variable nature of a star is used to determine its distance from the observer. The LOS
	depth can be added to R to calculate the deprojected 3D radius $r^2 = R^2 + z^2$. This is the
	situation that we investigate in unprecedented detail in this paper. Richardson et al.(2013)
3+3	The full 6D information of each star is known. By performing a simple coordinate
	transformation one has the radial and tangential velocities. The anisotropy parameter $\beta(r)$
	can then be read off directly.

Richardson, Spolyar & Lehnert (2013, arXiv:1311.1522)

Dsph galaxies – summary

- DSph galaxies are interesting targets for indirect detection
- Astrophysical factor (J-factor) may be constrained from kinematic data only, using no strong prior from simulations (e.g NFW profile)
- Analysis assumes spherical symmetry \rightarrow effect on triaxial halo may not be negligible
- Better data + improved methods
 - \rightarrow better constraints on the profiles
 - \rightarrow better constraints on J
 - \rightarrow more robust limits on annihilation cross-section

A quick introduction to indirect detection

Dwarf spheroidal galaxies: J-factor and uncertainties

Galaxy clusters: single source vs. stacking analysis

Prospects and conclusions

DM decay: Combet et al., PRD 85, 063517 (2012) DM annihilation: Nezri et al., MNRAS 425, 477 (2012) Disentangle DM/astro: Maurin et al., A&A 457, 16 (2012)

Galaxy clusters – observational properties

Stars/galaxies – 2%

Lensing

Dark matter – 85 %

Galaxy clusters – observational properties

DM searches in galaxy clusters

Galaxy clusters are the largest gravitationnally-bound structures in the universe, $M \sim 10^{14} - 10^{15} M_{sun}$

Interesting targets for DM indirect detection

 \rightarrow MAGIC: Aleksic et al. (2010) – Perseus

→ HESS: Abramowski et al (2012) – Fornax

→ Fermi: Yuan et al. (2010), Ackermann et al. (2010), Huang et al. (2012), Zimmer et al. (2012), Ando & Nagai (2012), Han et al. (2012)

Modelling

Observations

Jeltema et al. (2009), Pinzke et al. (2011), Cuesta et al. (2011), Sanchez-Conde et al. (2011)

X-ray catalogue: best up until recently, HIFLUGCS ~ 170 objects Best targets: Coma, Fornax, AWM7, Virgo...

However, CR-induced gamma-ray signal is expected \rightarrow Not ideal environments

From X-ray data to DM profile

• X-ray observations

Hydrostatic equilibrium

Spher. sym. (assumed) + spectrum in shells \rightarrow T(r) , ρ (r) Assume hydrostatic equilibrium \rightarrow M₅₀₀ (< R₅₀₀) = f (T, ρ)

Inner slopes $\in [0.6 - 1.9]$ have been inferred

(Ettori et al. 2002, Lewis et al. 2003)

Dark matter profile – NFW

 $\begin{array}{l} \text{Concentration} - \text{mass relationship} \rightarrow \ r_s = \frac{R_\Delta}{c_\Delta(M_\Delta)} \\ \text{[from N-body simus]} \\ \rho(r) = \frac{\rho_s}{\left(r/r_s\right) \left[1 + \left(r/r_s\right)\right]^2} \quad \rightarrow \text{determine } \rho_s \end{array}$

PROFILE

From X-ray data to DM profile

X-ray observations

Hydrostatic equilibrium

Spher. sym. (assumed) + spectrum in shells \rightarrow T(r) , ρ (r) Assume hydrostatic equilibrium \rightarrow M₅₀₀ (< R₅₀₀) = f (T, ρ)

Inner slopes $\in [0.6 - 1.9]$ have been inferred

(Ettori et al. 2002, Lewis et al. 2003)

Dark matter profile – NFW

PROFILE

Concentration – mass relationship $\rightarrow r_s = \frac{R_{\Delta}}{c_{\Delta}(M_{\Delta})}$ [from N-body simus] $\rho(r) = \frac{\rho_s}{(r/r_s) [1 + (r/r_s)]^2} \rightarrow \text{determine } \rho_s$

Meta-catalogue of 1743 X-ray clusters (<z>~0.1)

- Most data from ROSAT All Sky Survey
- Extraction and homogenisation
- Provides $M_{_{500}}$ and $R_{_{500}}$ for all objects

→ Number of objects is high enough to investigate stacking strategy

[previous studies: HIFLUGCS ~ 170 objects] N.B.: MCXC uses improved gas distrib. w.r.t. HIFLUGCS

MODEL

	$\log_{10}\left(\frac{J(1^\circ)}{\text{GeV}^2 \text{ cm}^{-5}}\right)$			$\log_{10}\left(\frac{J(0.1^\circ)}{\text{GeV}^2 \text{ cm}^{-5}}\right)$	
Ref.	[1]‡	[2]§	This work	[3]¶ `	This work
Error	$\lesssim 0.1$	$\lesssim 0.2$	(wo/w subs)	-	(no subs)
Fornax	17.8	17.9	16.9 18.8	17.0	16.7
Coma	17.2	17.1	16.9 18.4	16.8	16.7
A1367	-	17.1	16.7 18.3	-	16.5
A1060	-	17.3	16.8 18.3	-	16.7
AWM7	17.1	17.2	16.8 18.2	-	16.6
NGC4636	17.6	17.5	17.2 18.2	-	16.9
NGC5813	-	17.3	17.1 18.1	16.4	16.8
A3526*	17.4	-	17.1 18.1	-	16.9
A426 [†]	-	-	17.2 18.1	16.9	17.0
Ophiuchus	-	-	16.8 18.1	16.8	16.7
Virgo	-	-	17.9 18.0	17.5	17.5
NGC5846	-	-	16.7 17.9	16.5	16.5

```
Ackermann et al. (2010),<sup>§</sup>Huang et al. (2012),<sup>¶</sup>Sánchez-Conde et al. (2011)
```


- Larger/closer clusters are favoured for single-source analysis
- Previous 'best' targets ranking based on HIFLUGCS (Sanchez-Conde et al. 2011, Pinzke et al. 2011, Gao et al 2012)

MCXC used an improved gas description to infer M500, R500

J values we find from MCXC differ from previous works but should be more reliable.

Boost factor in galaxy clusters

Varying mass distribution dN/dM + clump fraction

Substructre parameters are crucial to evaluate boost factor

Boost factor in galaxy clusters

Varying concentration

Boost is very sensitive to the choice of the extrapolated concentration

Boost factor in galaxy clusters

Varying the integration angle

Boost from substructures of ~ 1000 are excluded \rightarrow confirmed by Sanchez-Conde & Prada (in prep)

Current experimental limits

Limit not as good as that from dSph galaxies

Is it possible to improve on the single-source approach using a stacking strategy?

Stacking for galaxy clusters, naively

Annihilation:

- If no clumps \rightarrow stacking is pointless
- With substructures \rightarrow stacking could be interesting as

100 times more objects at J/10 (for our reference substructure configuration)

 $\textbf{Decaying DM} \rightarrow \textbf{stacking also looks promising}$

But need consider instrumental response and observation strategy → Answer depends on type of detector

Stacking for galaxy clusters

Stacking for galaxy clusters

Confirmed by independent work by Ando & Nagai (2012) 2.8 yrs Fermi data – 49 'nearby massive clusters'

A quick introduction to indirect detection

Dwarf spheroidal galaxies: J-factor and uncertainties

Galaxy clusters: single source vs. stacking analysis

Prospects and conclusions

DSph galaxies or galaxy clusters?

DSph galaxies are a better option (larger J, no bkgd, robust) + more data expected for ultra-faint dSph galaxies + more ultra-faint dSph galaxies should be discovered (LSST)

Galaxy clusters interesting because of their astro. background

Overall picture

