"News from the Dark" Workshop, Montpellier, December 4-6, 2013

Current and Future Collider Searches/Constraints on Dark Matter

Aurelio Juste ICREA/IFAE, Barcelona

Searching for Dark Matter

arXiv:1305.1605

- A broad program of complementary searches is underway.
- Particle colliders are critical to elucidate the particle properties of dark matter (DM), but they will only contribute a fraction of the pieces needed to complete the puzzle.

Today's Presentation

- Introduction to DM searches at colliders
- SUSY-like DM
- Direct DM production
- Extended models
- Conclusions

Disclaimers:

- There is plenty of material that could not be included.
- This is not my main area of expertise.

Searches for Dark Matter at Colliders

How to make DM particles at colliders:

- SM decays to $\chi: Z \rightarrow \chi \chi, h \rightarrow \chi \chi, t \rightarrow c \chi \chi$
- Direct production: χχ+SM particles
- Associated production with a heavier exotic: χ +E, then E $\rightarrow \chi$ +SM
- Pair of heavier exotics:
 E+E, then both E→χ+SM
- Exotic resonance decays: $E \rightarrow \chi \chi$
- Heavier metastable exotic decay of E→χ not seen in the detector

Searches for Dark Matter at Colliders

Searches for Mediators at Colliders

- We are also interested in the particles that mediate the non-gravitational interactions between DM and SM particles.
- Depending on the DM-SM interaction, different mediators could be at play!
- In the SM the only possible mediators are the Z and Higgs bosons.
- Very heavy mediators → describe DM-SM interactions in terms of effective operators.
- If mediators are light enough, they can be produced and identified at the LHC, not necessarily in association with DM (e.g. Z'→qq, heavy SUSY Higgs,...).
- If mediators are very light, they can be produced and identified at lower energy experiments (e.g. dark photons).

Large Hadron Collider

- Outstanding performance of the LHC over the last two years:
 - 2011: pp collisions at $\sqrt{s}=7$ TeV, ~ 5.8 fb⁻¹
- (delivered to ATLAS and CMS)
- 2012: pp collisions at $\sqrt{s}=8$ TeV, ~23.3 fb⁻¹
- Collisions to resume in 2015 at $\sqrt{s} \ge 13$ TeV and L $\ge 10^{34}$ cm⁻²s⁻¹
 - → projecting ~25-45 fb⁻¹/year!

ATLAS and CMS Experiments

- Excellent performance up to the highest instantaneous luminosities delivered by the LHC.
 ~93% data-taking efficiency
- Most results shown use the full 2011 dataset (~ 5 fb⁻¹ at √s=7 TeV) and some results use the full 2012 dataset (~20 fb⁻¹ at √s=8 TeV).

$\mathsf{E}_{\mathsf{Tmiss}}$ and DM Particles

 DM particles will manifest themselves as an imbalance in the visible vector sum p_T (E_{Tmiss}).

- E_{Tmiss} reconstruction:
 - requires hermetic detectors;
 - requires precise measurement of energies of particles with EM and hadronic interactions;
 - affected by many types of imperfections (hot calorimeter cells, detector noise, beam-halo particles,..).
- E_{Tmiss} resolution significantly affected at the LHC by to pileup effects. Several pileup suppression techniques successfully deployed to mitigate impact.

SUSY-Like DM

SUSY-Like Scenarios

• DM candidate embedded in an extended TeV-scale new physics scenario.

- SUSY-like signatures are common in other BSM scenarios.
- Discovery could be "straightforward" (depending on mass of heavier exotics).
- Measuring the properties (mass, spin,...) will be hard....

SUSY Searches at LHC Run 1

- A broad program of SUSY searches is underway in many topologies:
 - MET + jets (ie, quarks/gluons)
 - MET + b-quarks
 - MET + jets + I lepton (e or μ)
 - MET + jets + 2 leptons (same sign)
 - MET + jets + 2 leptons (opposite sign)
 - MET + single jet
 - MET + jets + 1 lepton + b-quarks

No significant excess found so far.

MET + jets + 2 leptons + b-quarks

12

- MET + jets + Z-boson
- MET + 3 or 4 leptons
- MET + jets + I photon
- MET + jets + 2 photons
- MET + leptons and no jets
- etc etc etc
- Results interpreted in the CMSSM, other SUSY models, and Simplified Models (SMS):
 - CMSSM: adds five parameters to the SM: m_0 , $m_{1/2}$, $tan\beta$, A_0 , $sin(\mu)$
 - Over most of the parameter space the neutralino is the LSP (DM candidate).
 - SMS: consider just a few particles and pair production. Set limits on σxBR .
 - Allows to explore wider kinematic phase space than particular models predict.

Summary Results: CMSSM

For more details:

ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults</u> CMS: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS</u>

Summary Results: SMS

For more details:

ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults</u> CMS: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS</u>

What Did We Learn So Far?

• Too soon to tell from LHC exclusions if SUSY is related to the EW scale and DM.

Prospects for LHC SUSY Searches

- Huge improvement in sensitivity expected at the edge of phase space during Run 2.
- For gluinos/stop searches an achieve sensitivity of full Run1 dataset with just 1-4 fb⁻¹ at 13 TeV.
 - Preliminary estimates are \sim 15-30 fb⁻¹ by the end of 2015.

Ultimate LHC Reach for SUSY?

ATL-PHYS-PUB-2013-002

- It's hard to make predictions, especially about the future.
- Run 1 results have already exceed expectations in many respects...

DM Direct Production

Collider Production

• Assuming dark matter (DM) couples to the SM (quarks and gluons), we can relate direct detection searches to production of dark matter at hadron colliders:

- Advantages of collider searches:
 - 1) No detection threshold

(for light DM the nucleus recoil can fall below threshold in direct detection searches)

- 2) Independent of type of interaction (spin-independent vs spin-dependent) and of astrophysics assumptions (e.g. direct detection searches assume a DM local abundance of $\rho_{DM} \sim 0.3 \text{ GeV/cm}^3$)
- Interpretation under a number of assumptions.

Theoretical Framework

Main assumptions:

٠

- DM particles are Dirac fermions.
- DM particles are pair-produced via a mediator particle that couples to quarks and/or gluons. Interactions must be flavor-universal for the four light quarks.
- Mediators are too heavy to be produced directly → contact interaction
- DM-SM interactions described by only two parameters: M_{*} and m_χ.
 M_{*} ~ M/g₁g₂ [M>2m_χ, g₁g₂<(4π)²]
- 90% CL upper limits on σ(pp→χχ+X) used to set limits on M_∗ for the different operators.
- Upper limits on M_{*} translated to limits on DM-nucleon scattering cross section.

Name	Initial state	Type	Operator
D1	qq	scalar	$\frac{m_q}{M_\star^3} \bar{\chi} \chi \bar{q} q$
D5	qq	vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q$
D8	qq	axial-vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^5 q$
D9	qq	tensor	$\frac{1}{M^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
D11	gg	scalar	$\frac{1}{4M_{\star}^3}\bar{\chi}\chi\alpha_s(G^a_{\mu\nu})^2$

Spin independent Spin dependent

$$\sigma_0^{D1} = 1.60 \times 10^{-37} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right)^2 \left(\frac{20 \text{GeV}}{M_*}\right)^6,$$

$$\sigma_0^{D5,C3} = 1.38 \times 10^{-37} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right)^2 \left(\frac{300 \text{GeV}}{M_*}\right)^4,$$

However EFT only valid when $Q^2 << M^2$ [$Q^2 << (4\pi M_*)^2$, $m_y < 2\pi M_*$]

PRD 82, 116010 (2010)

20

Mono-Jet

- Basic requirements:
 - High p_T jet and large E_{Tmiss}
 - Low jet multiplicity
- Main backgrounds estimated using data-driven techniques:
 - $Z(\rightarrow_{VV})$ +jets
 - W(→Iv)+jets

CMS-PAS-EXO-12-048

Mono-Photon

- Basic requirements:
 - High p_T photon and large E_{tmiss}
 - Low jet multiplicity, veto leptons
- Main backgrounds:
 - W/Z+γ (from simulation)
 - W/Z+jet, with misID jet (data-driven)
- Complementary to monojet, but the former dominates in rate so most sensitivity comes from monojet.

Limits on WIMP-Nucleon Scattering Cross Section

• Translation to spin-independent bounds on WIMP-nucleon scattering cross section:

Most sensitive bounds for m_{χ} ~1-6 GeV (in the case of $q\bar{q}$) and for m_{χ} ~1-17 GeV (in the case of gg)

Limits on WIMP-Nucleon Scattering Cross Section

• Translation to spin-dependent bounds on WIMP-nucleon scattering cross section:

Most sensitive bounds for $m_{\chi} \sim 1-200 \text{ GeV}$

Assuming a Light Mediator

 Exploring the scenario of a vector coupling and a light mediator with mass M and with Γ:

- For M>few x 100 GeV the EFT is adequate and somewhat conservative in the bounds on Λ* (however, note the effective couplings become large).
- For M<100 GeV the actual bounds are much weaker than claimed by the EFT approach.

Mono-W/Z

- Motivation: CoGent and DAMA favored regions can be made to overlap assuming isospinviolating dark matter: -0.72 < fn/fp < -0.66 f_n/f_p = ratio of neutron and proton couplings In addition, constraint from XENON sufficiently reduced that it can be consistent with these signals.
- Mono-W/Z production at the LHC provides information on the couplings to u- and d-quarks, as well as on their relative sign.

- Large enhancement in production cross section for ξ =-1 (constructive interference).
- Signatures probed: mono-lepton, monohadronic W/Z

Mono-W/Z

Mono-lepton

- Signature:
 - High $p_T e \text{ or } \mu$ and
 - High E_{Tmiss} (back-to-back with lepton)

CMS-PAS-EXO-13-004

- Main backgrounds: W+jets, tt, diboson
- Analyze tail of transverse mass distribution

Mono-hadronic W/Z

- Signature:
 - High p_T fat jet (Cambridge-Aachen) encompassing W decay products
 - Balanced leading subjets
- Main backgrounds: W/Z+jets
- Analyze jet mass distribution in range 50-120 GeV.

Mono-W/Z: Results

Mono-lepton

Mono-hadronic W/Z

- Mono-hadronic W/Z has ~x10 better sensitivity than mono-lepton.
- Large increase in sensitivity in the case of constructive interference makes monohadronic W/Z to exceed monojet sensitivity.

Couplings to Heavy-Flavor

 Sensitivity to scalar interaction between DM and quarks can be boosted by focusing on final states with a heavy quark produced at the LHC.

$$\mathcal{O} = \frac{m_q}{M_*^3} \bar{q} q \bar{X} X$$

• Requirement of b-tagged jet also helps to reduce background.

arXiv:1303.6638

	Process	Monojet	b -tag on j_1
	Z+jets(fake)	406 fb	$7~{ m fb}$
Background	Z+b+jet	6.7 fb	3 fb
Dackground	W+jets,W+b	$95~{\rm fb}$	2 fb
	$t\bar{t}$ +jets	16 fb	6 fb
	$\bar{X}X$ +jets	11 fb	$0.7~{\rm fb}$
Signal	$\bar{X}X + b$ +jets	65 fb	33 fb
	$\bar{X}X + t\bar{t}$	244 fb	113 fb

 $\varepsilon_{\rm back} \sim 2\%$

 $\varepsilon_{\rm signal} \sim 50\%$

Expected signal (M_{*}=50GeV, m $_\chi$ =10GeV) and background at 8 TeV Basic cuts applied: E_T^{miss}>350 GeV, p_T^{lead}>100 GeV

30

Example: Mono-B

• Signature:

Large E_{Tmiss} recoiling against energetic b jet(s) Lepton veto to suppress W+jet and Z+jet, SM tt backgrounds

- Signal contribution dominated by tt channel.
- Constraints on WIMP-nucleon cross section:

$$\sigma_n = \frac{(0.38m_n)^2 \mu_{\chi n}^2}{\pi M_*^6} \approx 2 \times 10^{-38} \text{cm}^2 \left(\frac{30 \text{ GeV}}{M_*}\right)^6$$

Constraints on $m_q \bar{q} q \bar{X} X$ from mono-b searches

arXiv:1303.6638

8 TeV, 20 fb⁻¹, p_T (b-jet) > 100 GeV

LHC Projections

• Projections performed for monojet and mono-b searches under the assumption that the EFT is valid (heavy mediator).

• Significant improvement from LHC 7 TeV. 5 fb⁻¹ to LHC 14 TeV. 300 fb⁻¹. No real improvement from HL-LHC. Much better to go to higher energy.

LHC Projections

• Projections performed for monojet and mono-b searches under the assumption that the EFT is valid (heavy mediator).

• Significant improvement from LHC 7 TeV. 5 fb⁻¹ to LHC 14 TeV. 300 fb⁻¹. No real improvement from HL-LHC. Much better to go to higher energy.

LHC Projections

• Projections performed for monojet and mono-b searches under the assumption that the EFT is valid (heavy mediator).

arXiv:1307.7834

Significant improvement from LHC 7 TeV. 5 fb⁻¹ to LHC 14 TeV. 300 fb⁻¹.
 No real improvement from HL-LHC. Much better to go to higher energy.

Searches at e⁺e⁻ Colliders

- Searches for dark matter in monophoton final state. 350 DELPHI 650 pb⁻¹ 300 DELPHI MC our MC 250 Events $/ 650 \text{ pb}^{-1}$ DM signal 200 150 100 In terms of the scale, the accessible regions are 50 approximately independent of the M_x , until the kinematic reach of the collider ($M_x \sim \sqrt{s/2}$) is reached.
 - Higher energies and beam polarization important.

Searches at e⁺e⁻ Colliders

 Dramatic increase in sensitivity compared to direct searches in case of leptophilic DM couplings
 → loop-induced couplings to quarks.

Searching for the Mediator

Searching for the Mediator

Light DM spin-1

mediator.

- For energies larger than the mediator mass, probing more structure of the s-matrix
 - ➔ Depending on more details of the mediator.
 - ➔ However, in that case the mediator itself can be searched directly!
- Two typical examples of mediator Φ:
 - Φ = Higgs (spin 0)
 - Μ_Φ~100 GeV
 - g_{SM}~(100 MeV)/(100 GeV)
 - $\sigma_n \sim 10^{-43} 10^{-45} \text{ cm}^{-2}$
 - Φ = Ζ' (spin 1)
 - $\sigma_n \sim 10^{-36} 10^{-39} \text{ cm}^{-2}$

N= Ar, Ge, Xe, ...

SUSY, typically Higgs mediated. 38

Higgs Mediator

Constraints on the invisible Higgs rate at the LHC can be translated into limits in the WIMP-nucleon cross section and compared with direct-detection experiments.

$$\Delta \mathcal{L}_S = -\frac{1}{2} m_S^2 S^2 - \frac{1}{4} \lambda_S S^4 - \frac{1}{4} \lambda_{hSS} H^\dagger H S^2 ,$$

$$\Delta \mathcal{L}_V = \frac{1}{2} m_V^2 V_\mu V^\mu + \frac{1}{4} \lambda_V (V_\mu V^\mu)^2 + \frac{1}{4} \lambda_{hVV} H^\dagger H V_\mu V^\mu ,$$

$$\Delta \mathcal{L}_f = -\frac{1}{2} m_f f f - \frac{1}{4} \frac{\lambda_{hff}}{\Lambda} H^\dagger H f f + \text{h.c.} .$$
(5)

$$\mathrm{BR}^{\mathrm{inv}}_{\chi} \equiv \frac{\Gamma(H \to \chi \chi)}{\Gamma^{\mathrm{SM}}_{H} + \Gamma(H \to \chi \chi)} = \frac{\sigma^{\mathrm{SI}}_{\chi p}}{\Gamma^{\mathrm{SM}}_{H} / r_{\chi} + \sigma^{\mathrm{SI}}_{\chi p}}$$

 r_x =function of M_x and known masses and couplings (assuming M_{H} =125 GeV)

-2 In A(B_{iu}) ATLAS Preliminary 9 $[\kappa_{\gamma}, \kappa_{g}, B_{i,u}]$ — Observed √s = 7 TeV, Ldt = 4.6-4.8 fb⁻¹ √s = 8 TeV, ∫Ldt = 13-20.7 fb⁻¹ SM expected 6 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 B_{i.u}

ATLAS-CONF-2013-034

Direct Searches for $H \rightarrow invisible$

- LEP excluded invisibly decaying Higgs boson for $m_H < 114.4$ GeV assuming it is produced in association with Z and that it decays predominantly to invisible particles.
- At the LHC can search for a narrow scalar boson decaying to invisible particles over a mass range between 115 and 300 GeV.

Direct Searches for $H \rightarrow invisible$

- LEP excluded invisibly decaying Higgs boson for $m_H < 114.4$ GeV assuming it is produced in association with Z and that it decays predominantly to invisible particles.
- At the LHC can search for a narrow scalar boson decaying to invisible particles over a mass range between 115 and 300 GeV.

Signature:

- Two jets separated by larger rapidity gap and high dijet mass.
- Large E_{Tmiss}

Main backgrounds:

• WZ, ZZ production

CMS-PAS-HIG-13-013

Direct Searches for $H \rightarrow invisible$

- Upper limits on production cross section times $BR(H \rightarrow inv)$ are set as a function of M_{H} .
- Assuming the SM cross section prediction for M_H=125 GeV, upper limits on BR(H→inv) are obtained.

Direct Searches for $H \rightarrow$ invisible: Prospects

- Upper limits on production cross section times $BR(H \rightarrow inv)$ are set as a function of M_{H} .
- Assuming the SM cross section prediction for M_H=125 GeV, upper limits on BR(H→inv) are obtained.

Z' Mediator

- In the low DM mass region, a light Z' with M~O(100) GeV is required in order to obtain the correct relic density.
- Consider a leptophobic Z', in order to evade direct searches for dilepton resonances.
- Standard dijet mass resonance searches challenging at low M_{Z'}. Can improve sensitivity by considering associated production modes: Z'+X (X=jet, γ, W, Z).
- Monojet and dijet searches complementary, probing high and low $g_D/g_{Z'}$ respectively.

N= Ar, Ge, Xe, ...

 $\mathcal{L} \ni g_{Z'} \bar{q} \gamma^{\mu} q Z'_{\mu} + g_D \bar{\chi} \gamma^{\mu} \chi Z'_{\mu},$

Z' Mediator

• The constraint on $g_{Z'}g_D$ can be mapped onto constraints on DM direct detection cross section.

$$\sigma_{SI} \simeq \frac{9g_{Z'}^2 g_D^2 M_N^2 M_D^2}{\pi M_{Z'}^4 (M_D + M_N)^2} \simeq 7.7 \times 10^{-40} \left(\frac{g_{Z'}}{0.1}\right)^2 \left(\frac{g_D}{0.1}\right)^2 \left(\frac{100 \text{GeV}}{M_{Z'}}\right)^4 \text{ or }$$

• Improved sensitivity for $M_{Z'}$ <400 GeV by using the associated dijet mode.

- This study assumed 15 fb⁻¹ at 8 TeV for the dijet associated search.
- Significant potential with LHC Run 2 datasets!

Extended Models

Light Dark Matter and Light Higgs Bosons

- Many SM extensions include the possibility of light Higgs bosons.
- The NMSSM was proposed to solve the " μ problem" of the MSSM.
- Three CP-even mass eigenstates (h_1, h_2, h_3) and two CP-odd ones (a_1, a_2)
 - a₁ is light << EW scale (pseudo Goldstone boson)

Light Dark Matter in Upsilon Decays

• If $m_{\chi} < m_{\gamma}/2$, could increase the invisible decay width of the $\Upsilon(1S)$ predicted by SM by orders of magnitude:

BF($\Upsilon(1S) \rightarrow \chi \chi$) ~ 4.2 x 10⁻⁴ (s-wave) BF($\Upsilon(1S) \rightarrow \chi \chi$) ~ 1.8 x 10⁻³ (p-wave) BF($\Upsilon(1S) \rightarrow \nu \nu$) ~ 9.9 x 10⁻⁶

- CP-odd a₁ boson serves as s-channel mediator
- a_1 decays dominantly to $\chi\chi$ if kinematically allowed.
- Radiative decays $\Upsilon(nS) \rightarrow \gamma a_1$ (n=1,2,3) can also have a large branching fraction.
 - → look for $\Upsilon(1S) \rightarrow \gamma$ +invisible

BABAR data sample contains

Y(1S)→invisible

- Signature:
 - Tag $\Upsilon(1S)$ mesons in $\Upsilon(3S) \rightarrow \pi^+ \pi^- \Upsilon(1S)$ transition
 - Only two oppositely-charged tracks (no additional activity)
- Backgrounds:
 - Non-peaking (random combinations)
 - Peaking (indistinguishable from the signal): $\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(1S), \Upsilon(1S) \rightarrow I^+I^-$ (undetected)
- Fit recoil mass distribution:

- Results: Fit yield 2326 ±105 Peaking bkg (MC) 2444 ± 124 Signal only -118 ± 105 ± 124
- 90% CL Upper limit: BF(Ƴ(1S)→invisible)<3.0x10⁻⁴

$\Upsilon(1S) \rightarrow \gamma + invisible$

- Signature:
 - Tag $\Upsilon(1S)$ mesons in $\Upsilon(2S) \rightarrow \pi^+\pi^-\Upsilon(1S)$ transition
 - Two oppositely-charged tracks and a photon (no additional activity).
- Signal extraction:
 - 2D fit to the recoil mass and missing mass distributions.

$$M_{\text{recoil}}^2 = M_{\Upsilon(2S)}^2 + m_{\pi\pi}^2 - 2M_{\Upsilon(2S)}E_{\pi\pi}^*$$
$$M_X^2 = (\mathcal{P}_{e^+e^-} - \mathcal{P}_{\pi\pi} - \mathcal{P}_{\gamma})^2$$

Dark Light Higgs Scenario

- NMSSM near Peccei-Quinn limit:
 - h₁ is very light ~O(1) GeV
 - h₂ is the SM-like Higgs boson
 - a₁ is light ~15 GeV
 - X_1 is light ~7 GeV
- Spin-independent cross section driven by h₁ exchange (large enhancement from low h₁ mass).
- Annihilation via a₁ exchange gives right relic density (Breit-Wigner enhancement).

PRL 106, 121805 (2011)

Probing Dark Light Higgs

- Higgs physics phenomenology quite altered compared to NMSSM-like scenarios usually considered!
 - SM-like Higgs decays to h_1h_1 and a_1a_1 suppressed
 - h_1 too light to be searched for directly
 - a₁ too light to be searched for in gg→a₁, suppressed couplings to W/Z and top
- However, BR($h_2 \rightarrow \chi_2 \chi_1$) can be sizable if kinematically allowed:
 - → Non-standard Higgs decay modes (e.g. $\mu\mu$ +E_{Tmiss})

DM Embedded in a Dark Sector?

- Models introducing a new "dark" force mediated by a new gauge boson with a mass around a GeV have been proposed to explain the observations of PAMELA, FERMI, DAMA/LIBRA, CREST,...
- WIMP-like TeV-scale DM particles can annihilate into e.g. pairs of dark photons, which subsequently decay to pairs of leptons.
- New dark forces:
 - G_{Dark}⊃U(1)_D ➔ dark photon A'
 - G_{Dark}⊃SU(2)_DxU(1)_D
 → 4 dark bosons (A', W', W", W"")
 - A' mass generated via Higgs mechanism
 → dark Higgs h'

 Low-energy e⁺e⁻ colliders provide a clean environment to explore MeV/GeV scale dark matter and dark sector (including its structure).

Searches at Low Energy e⁺e⁻ Colliders

Summary and Conclusions

- Unraveling the nature of DM and measuring its properties is one of the most exciting challenges ahead, at the interface between particle physics, astrophysics and cosmology.
- Particle colliders (and in particular the LHC), will play a crucial and complementary role in this pursuit.
- Many strategies followed in parallel to cast a wide net over the many signatures a DM particle (and its relatives) could exhibit at colliders.
- Much juice to squeeze out of LHC Run 2 beginning in 2015!

Exciting Times Ahead!

LHC: A Long Road Ahead

