IN2P3 : Réunion Détecteur Gazeux 29 Oct 2013

LLR Ecole Polytechnique and CNRS/IN2P3

Denis Bernard

Le Menu

– ILC

– HARPO

ILC - SDHCAL

 Within the SDHCAL (Semi-Digital Hadron Calorimeter) Collaboration, develop a small cell digitization :

G2CD : General Gaseous Calorimeter Digitizer

- Cell size (10 mm)²
- Tested on SDHCAL prototype data

(π beam, threshold 0.113, 5, 15 pC) (CERN 2012, CALICE collaboration)

Yacine HADDAD, MPGD2013, July 2013 Zaragoza

HARPO, polarimétrie et astronomie d'excellente résolution angulaire et sensibilité par création de paires e^+e^-

Emploi d'une cible active fine (TPC) en astronomie γ non polarisée et polarimetrie γ

- Micro rappel sur le science case
- Le projet HARPO
 - objectifs
 - collaboration
 - résultats récents
 - financements, manpower

Science case

- Non polarized astronomy
 - Improve angular resolution crowded sky regions
 - Solve sensitivity gap between Compton and pair telescopes
- Polarimetry
 - Astrophysics : understand the nature / working mechanism(s) of γ emitting cosmic sources
 - Pulsars : decipher geometry of emitting region
 - AGN : decipher leptonic (SSC) against hadronic (protonsynchrotron) models
 - GRB : decipher models / tests global order of magnetic field
 - Cosmo / New Physics
 - LIV : Search for Lorentz Invariance Violation
 - Search for axion or ALP Axion-like-particles.

Science case : Polarimetry : Astrophysics

- Today just one example : AGN : decipher leptonic synchrotron self-Compton (SSC) against hadronic (proton-synchrotron) models
 - high-frequency-peaked BL Lac (HBL)
 - X band : 2 -10 keV
 - γ band : 30 200 MeV
- SED's indistinguishable
- X-ray : $P_{\text{lept}} \approx P_{\text{hadr}}$
- γ -ray : $P_{\rm lept} \ll P_{\rm hadr}$

H. Zhang and M. Böttcher, A.P. J. 774, 18 (2013)

1.0 0.8 Lept. total □ 0.6 maximal 0.4 Lept. SSC Lept. sy Had. total Had. p-sy Had. pair-sy Had. e-sy 0.2 10¹³ 10¹² vF_v [Jy Hz] 10¹ 10^{10} 10^{9} 10^{8} $10^{\overline{20}}$ 10^{18} 10²² 10²⁴ 10²⁶ 10¹⁶ ν [Hz]

RX J0648.7+1516

LIV : Search for Lorentz Invariance Violation

- Particle (photon) dispersion relations modified in LIV effective field theories (EFT)
- Additional term to the QED Lagrangian parametrized by $\xi/M, \ M$ Planck mass.
- ξ bounds :
 - time of flight from the Crab : $\Delta t = \xi (k_2 k_1) D/M$, $\xi \leq \mathcal{O}(100)$.
 - birefringence $\Delta \theta = \xi (k_2^2 k_1^2) D/2M$ LIV induced birefringence would blurr the linear polarization of GRB emission.

 $\xi \le 3.4 \times 10^{-16}$ with IBIS on Integral (250 – 800 keV) D. Götz, *et al.*, MNRAS 431 (2013) 3550

• Bound $\propto 1/k^2$!

Search for Axions

- Scalar field associated with U(1) symmetry devised to solve the strong CP problem.
- Couples to 2 γ through triangle anomaly.
- γ propagation through $B \Rightarrow$ Dichroism \Rightarrow E dependant rotation of linear polarization \Rightarrow linear polarization dilution.

 $g_{a\gamma\gamma} \le \pi \frac{m_a}{B\sqrt{\Delta\omega L_{GRB}}}$

• Saturation over
$$L = 2\pi\omega/m_a^2 > L_{GRB}$$
 for $m_a \leq \sqrt{\frac{2\pi\omega}{L_{GRB}}}$

and the limit $g_{a\gamma\gamma}$ reaches a ω -independent constant.

A. Rubbia and A. S. Sakharov, Astropart. Phys. 29, 20 (2008)

HARPO

- Goal : Characterize potential and performance of a thin active target (TPC) as a γ -Ray (a) telescope (b) polarimeter.
- Collaboration :
 - LLR, Ecole Polytechnique & CNRS/IN2P3
 - 4 staff physicists, $\Sigma \ {\rm FTE} \approx 1$
 - 1 post-doc, oct 2013
 - 1 Ph. D, oct 2012
 - 3 engineers (meca, elec, info, $\Sigma \text{ FTE} \approx 1$)
 - Irfu/CEA Saclay :
 - SEDI : A. Delbart *et al.*,
 - SPP : P. Colas
 - SAp : D. Götz

HARPO : Recent Results : 1

• Study of TPC potential for (non polarized) γ -Ray astronomy

D.B., Gamma2012

and

NIM A 701 (2013) 225-230

HARPO : Recent Results : 2

- Study of TPC potential for γ -Ray polarimetry
- First full (5D), exact (down to threshold), polarized, event generator
- Detailed study, parametrization, of asymmetry dilution due to multiple scattering, with optimal tracking (e.g. Kalman filter)
- Discovery that multiple scattering is manageable for a gazeous TPC

"Optimal" fit validation with Kalman filter

effective asymmetry and P precision

• P precision on the Crab 1.4 % ($\eta = \epsilon = 1$, and 1 year, 1 m³, $\sigma = l = 1$ mm. D.B., Atelier MeV (APC, 2013) and NIM A 729 (2013) 765

The detector

- Demonstrator built on partial budgets (P-&U 2010, IN2P3 2011)
- $(30 \mathrm{cm})^3$ cubic TPC
- Pressure $P \leq 5 \text{bar}$
- "T2K gas" Ar95 : IsoButane :2 CF4 :3

The Field cage

- Sides : PVC plates thinned to 1 mm on beam passage.
- 100μm Kapton foil with 60, 35μm-thick
 3 mm-wide Cu strips, pitch 5 mm.
- Resistance divider : pairs of resistances of 10 M Ω , paired to an homogeneity of $\approx 3. \times 10^{-4}$.
- $\bullet~$ Cathode : PCB 1.6 mm, $35 \mu m$ Cu
- Cathode downstream for datataking

$Anode, \ amplification$

- Amplification by "bulk" micro-mesh micromegas, gap $128 \mu m$ NIM A 608 (2009) 259
- Signal collection by strips on PCB, pitch = 1mm

Digitization

- Sampling / acquisition performed by AFTER chip; 12 bits, shaping min 100 ns IEEE Trans. Nucl. Sci. 55 (2008) 1744.
- F = 100 MHz/n, n > 2. 50 MHz.
- Data taking at chip level 500 evts/s.
- 72 channels/chip, 4 chip/FEC card, 288 channels/FEC.
- 2 FEC in total (x, y).
- Instrumented area 288 * 288 mm

Interface Card

- We don't use T2K's FEM + DCC system
- Use FPGA ML507 Evaluation Platform "kits" from Xilinx
- Ethernet connection to PC.

Trigger

- 6 scintillator plates surrounding TPC
- "Blue" scintillator EJ-208 (Eljen Technology), $30 \times 30 \times 1$ cm.
- "Green yellow" WLS bars EJ-280, 1×1 cm
- Doped PVT, n = 1.58.
- Light exits vessel through windows
- Detected by ETL 9125 FLB17 PMT Former BaBar DIRC PMT : Were used 20 mV @ $1\gamma e^-$, $g=1.7\times 10^7$
- At the moment the trigger signal is simple up-down NIM-logic coincidence

 \mathbf{T}

2012 Demonstrator Characterisation

• Tracker characterized (preliminary trigger system) with cosmic rays, P=2 bar

Pisa2012 and NIM A 718 (2013) 395

Gain

- micromegas incident when $P \ 2 \rightarrow 5$ bar (HT 500 \rightarrow 700 V)
 - repaired since
 - spare produced
 - diagnosed to too narrow HT operation range
 - \Rightarrow

decision of complement with 2 GEM (Gas Electron Multiplier)

GEM development

- GEM designed (LLR), produced (CERN), glued on frames (RD51/CERN) : 2013
- "standard" configuration (50 μ m kapton ..)

- 3 pieces (2 + 1 spare) produced.
- Integration into the detector in preparation
- Detector to be (re) characterized with cosmic rays

$\mu M + GEM$: ⁵⁵Fe source tests

• Ar :95 Iso :05, 1 bar

• Oct 2013 : Tests of μ M+GEM system

analysis in progress.

Trigger development

- Present cosmic-ray trigger is simple NIM-module $Up \cap Down$
- γ beam : need veto Up, and an \cup of the 5 downstream scintillators. (6 scintillators, 12 PMT in total)
- Were lent a PMM2 card (IPN Orsay), Parisroc chip (16 channels)
- Presently learning how to use it.

- Consider \cap micromegas signal to reject γ conversion in the downstream scintillator or cathode
- Consider vetoing the first 200 ns (1 cm) of the micromegas signal to reject γ conversion in the PCB after the vetoed Up scintillator
- ORTEC 142PC preamplifier appropriate for mesh signal amplification (Detector capacitance is huge 8 nF)

Beam line – Experimental zone

- Data taking in SPring8/NewSUBARU, Japan planned 2014.
- $\approx 100\%$ linearly polarized γ beam, by on-axis collision of optical/UV laser pulse on GeV $e^-.$
- 2 76 MeV energy range available.

– Gamma-ray Collaboration Hutch of KOnan University (GACKO)
 Experimental zone finalized (2012) and validated (2013)

Funding & Manpower

- CNES : presentation at "astro" committee (sept 2011)
 - \Rightarrow funding of Shaobo WANG thesis [oct 2012 sept 2015] (CNES/CNRS)
 - Finalized C++ version of non-paraxial Kalman filter tracking
 - Presently developing event reconstruction
- Labex P2IO :
 - Funding R&D [2012 2014], LLR-Irfu
 - Post-doc [oct 2013 sept 2015] Philippe Gros : will write Geant4 event simulation of the γ beam experiment.
- ANR 2013 : LLR-Irfu [2014 mid 2017]
 - Includes
 - finalization of characterization on polarized γ beam
 - design of a technological demonstrator (clean techno, small gap high pressure, self triggerable chip GET ..)
- SPring8 accelerator system presently undergoing upgrade.
 Data taking in JFY2014 (> Apr. 1 2014)