PICSEL group @ IPHC Physics with Integrated Cmos Sensors and ELectron machines

PICSEL: Group history & composition

Physicists

PICSEL

uelectronics

- Permanents
 - ➤ Marc WINTER (Project coordinator), since 1999 ⇒ (..., DELPHI, PICSEL)
 - > Jerome BAUDOT (Professor), since 2006 ⇒ (DELPHI, STAR, ALICE, PICSEL)
 - ➤ Isabelle RIPP-BAUDOT (researcher), since 2010 ⇒ (DELPHI, CMS, D0, SuperB, PICSEL)
 - ➤ Auguste BESSON (Assistant Professor), since 2003 ⇒ (D0, CMS, PICSEL)

Post-doc

- ➤ Serhiy SENYUKOV (leaving dec.2013) ⇒ (ALICE, PICSEL)
- ➤ Luis Alejandro PEREZ PEREZ (Sep.2013 Sep.2016) ⇒ (Babar, CKMfitter, SuperB, PICSEL)
- PHD students
 - Loic COUSIN (Sep 2011-Sep 2014) ⇒ (AIDA and alignment studies + double layers @ILD studies)
 - ➢ Robert MARIA (Sep 2012- Sep 2015) ⇒ (Time dependent asymmetry in D0 decays and plume + tracking in Belle 2)
- Microcircuit designers and support
 - 12 permanents (See Claude Colledani's presentation)
 - Test Experts
 - 6 permanents

CPS and vertex detector optimisation: squaring the circle

Early 2000s

- Different approach compared to hybrid pixels & LHC
- Focus on resolution and material budget
- Vertex detector design and specifications
 - Physics performances
 - Spatial resolution
 - ➤ Material budget ⇔⇒multiple scattering
 - **Experimental environment constraints**
 - Radiation hardness (ionising and non ion. rad.)
 - ➢ Occupancy ⇐⇒Read-out speed
 - ▶ Power dissipation $\Leftrightarrow \Rightarrow$ cooling ?
 - Other parameters
 - Costs, fabrication reliability and flexibility
 - Mechanical integration
 - > Geometry
 - > Alignment issues
- Interdependance of these parameters
 - e.g. lower radius of inner layer
 - > Better $\sigma_{i.p.}$ but larger occupancy, higher rad.
 - \blacktriangleright Needs higher read-out speed and/or granularity \Rightarrow power dissipation

⇒ CPS presents an attractive trade off with respect to all these parameters

CMOS pixel sensor (CPS) for charged particle detection

- Main features
 - Monolithic, p-type Si
 - \blacktriangleright Signal created in low doped thin epitaxial layer ~10-20 μ m
 - > ~ 80 e- /µm ⇒ total signal ~ O(1000 e-)
 - Thermal diffusion of e-
 - Limited depleted region
 - Interface highly P-doped region: reflection on boundaries
 - Charge collection: N-Well diodes
 - ➤ Charge sharing ⇒ resolution
 - Continuous charge collection
 - No dead time
- Main Avantages
 - Granularity
 - > Pixel pitch down to 10 x 10 μ m² \Rightarrow spatial resolution down to ~ 1 μ m)
 - Material budget
 - > Sensing part ~ 10-20 μ m \Rightarrow whole sensor routinely thinned down to 50 μ m
 - Signal processing integrated in the sensor
 - Compacity, flexibility, data flux
 - Flexible running conditions
 - > From $\leq 0^{\circ}$ C up to 30-40°C if necessary
 - ➤ Low power dissipation (~ 150-250 mW/cm²) ⇒ material budget
 - ▶ Radiation tolerance: >~100s kRad and O(10¹² n_{eq}) ⇒f(T,pitch)
 - Industrial mass production
 - > Advantages on costs, yields, fast evolution of the technology, Possible frequent submissions
- Main limitation
 - Industry adresses applications far from HEP experiments concerns
 - > Different optimisations on the parameters on the technologies
 - Recently: new accessible processes:
 - Smaller feature size, adapted epitaxial layer
 - > Open the door for new applications

BelleII@IPHC, October 24th 2013

CMOS: Past, present and future: 15 years of R & D

State of the art

- IPHC-Strasbourg and collab.
 - CPS developped since ~ 1999
 - ➢ 4-5 fabricated prototypes /year
 - 2-3 test beam campaigns /year
 - ~ 50 conferences
 - ~ 60 publications
 - ≻ ~ 15 PhD
 - Typical performances in AMS 0.35 μm technology
 - > Detection efficiency \ge 99.9% with fake rate $\sim \le 10^{-5}$
 - > Typical spatial resolution (20 μ m pitch) :
 - ~1.5 µm (analog output)
 - ~3.5 µm (digital output)
- Read-out architecture with digital output
 - In pixel preamplification and CDS
 - Column parallel rolling shutter read-out
 - Continuous read-out
 - Integration time = #rows x row r.o. time (100ns)
 - End-of-columns discriminators
 - > Data sparsification (0-suppression)

⇒enhances r.o. speed with preserving material budget, granularity and power comsumption

State of the art (2): current applications

Institute Particles Classe Honore Classe Transcom

- EUDET pixel telescope
 - Beam telescope (FP6 project)
 - ➢ 6 x Mimosa-26 planes (// r.o. and dig output)
 - Successfully operating since 2008
- STAR PXL detector
 - First vertex detector equipped with CPS
 - 2 layers = 40 ladders x 10 sensors
 - ➢ First sectors (3/10) installed May 2013
 - Commissioning completed
 - End of construction under way
- Prototype: Mimosa-28 (Ultimate)
 - AMS 0.35 µm techno with high resisitivity epitaxial layer
 - > 960 x 928 pixels, 20.7 µm pitch ⇒ 3.8 cm²
 - In pixel CDS & ampli, collumn parallel read-out
 - End of column discri. and binary charge encoding
 - On chip zero suppression

BelleII@IPHC, October 24th 2013

Upgrade for more demanding applications

- CPS are also considered by forthcoming projects
 - ALICE @ LHC: baseline for ITS upgrade
 - CBM @ FAIR (>2018): baseline
 - ILD @ ILC@ 500 GeV: TDR option

	$\sigma_{single \ point}$	read-out time	TID	Fluence n_{eq}/cm^2	T _{coolant} °C
STAR-PXL	5 µm	~200 µs	150 kRad	3×1012	30
future projects	3-5 µm	I-30 µs	up to 10 MRad	up to 1014	< 0 - 30

⇒ higher particles rates

- Goal: ALICE ITS upgrade (cf. TDR draft) ⇒scheduled for 2017-18 LHC shutdown
 - Addionnal L0(22mm) + replacement of inner layers
 - scheduled for 2017-18 LHC long shutdown
 - > 0.25-1 MRad + 0.3-1x10¹³n_{eq}/cm²
 - Chip sensitive area 1x3 cm²

- ➤ Inner layers ⇒0.3% X0
- > Spatial resolution ~ 4 μ m
- \blacktriangleright Read-out speed ~ 10-30 μ s

BelleII@IPHC, October 24th 2013

MISTRAL > Col. // read-out with in pixel ampli.

Read-out speed ~ 30 μs

> In pixel discri & 2/4-row encoding

(cf. C. Colledani's talk)

Auguste Besson

ASTRAL

Spin off

- Visible photon detection
 - design of a specific electron bombarded CMOS (LUCY)
 - ➢ collab. with IPN-Lyon and PHOTONIS
 - goal = hybrid photo-detector with
 - * sensitivity to single photons
 - * spatial resolution in the 10 microns range
 - paper: NIM A 648 (2011)266–274, doi:10.1016/j.nima.2011.04.018
- X-rays
 - concept studies, no practical applications
 - > Explore high res. Process, single photon counting, 1 PhD.
- Radiation monitor
 - Dosimeter for space application
 - Ongoing thesis and prototype
- Beta detection
 - > Nucl.Phys. B (Poc.Suppl.) 125 (2003) 133
- Hadrontherapy
 - proton telescope based on thinned MIMOSA 26 or M28
 - > FIRST experiment at GSI: Carbon cross-sections measurement
 - > Online dose monitoring for carbon-therapy with Proton Interaction Vertex Imaging
 - http://hal.archives-ouvertes.fr/hal-00838442

•Tools

-Software for test beam analysis (TAF/MAF)

Track matching, efficiency, resolution, clustering, etc.

-Digitisation tool

>(DIGMAPS) standalone tool to build a digitizer
-GFANT 4 full simulation

➢AIDA & self alignement (L.Cousin)

•e⁺e⁻ Physics and tracking

-ttbar-H Yukawa coupling @ ILC

-Tracking ILD-VTX @ ILC

➤Tracking studies @ ILD

Standalone tracking with VTX

-See I.Ripp Baudot's talk

BelleII@IPHC, October 24th 2013

•Tools

-Software for test beam analysis (TAF/MAF)

Track matching, efficiency, resolution, clustering, etc.

-Digitisation tool

➤(DIGMAPS) standalone tool to build a digitizer -GEANT 4 full simulation

➢AIDA & self alignement (L.Cousin)

•e⁺e⁻ Physics and tracking

-ttbar-H Yukawa coupling @ ILC

- -Tracking ILD-VTX @ ILC
 - ≻(Y.Voutsinas + B.Boitrelle)
 - ➤Tracking studies @ ILD
 - ≻Standalone tracking with VTX

-See I.Ripp Baudot's talk

Energy deposition, charge transport, charge collection discriminator simulation

Efficiency Resolution Multiplicity

BelleII@IPHC, October 24th 2013

•Tools

-Software for test beam analysis (TAF/MAF)

Track matching, efficiency, resolution, clustering, etc.

-Digitisation tool

➤(DIGMAPS) standalone tool to build a digitizer

-GEANT 4 full simulation

≻AIDA & self alignement (L.Cousin)

•e⁺e⁻ Physics and tracking

-ttbar-H Yukawa coupling @ ILC

- -Tracking ILD-VTX @ ILC

 - ➢Tracking studies @ ILD
 - ≻Standalone tracking with VTX

-See I.Ripp Baudot's talk

BelleII@IPHC, October 24th 2013

•Tools

-Software for test beam analysis (TAF/MAF)

>Track matching, efficiency, resolution, clustering, etc.

-Digitisation tool

➤(DIGMAPS) standalone tool to build a digitizer

-GEANT 4 full simulation

≻AIDA & self alignement (L.Cousin)

•e⁺e⁻ Physics and tracking

-ttbar-H Yukawa coupling @ ILC

−Tracking ILD-VTX @ ILC
 >(Y.Voutsinas + B.Boitrelle)
 >Tracking studies @ ILD
 >Standalone tracking with VTX

-See I.Ripp Baudot's talk

BelleII@IPHC, October 24th 2013

•Tools

-Software for test beam analysis (TAF/MAF)

Track matching, efficiency, resolution, clustering, etc.

-Digitisation tool

>(DIGMAPS) standalone tool to build a digitizer

-GEANT 4 full simulation

➤AIDA & self alignement (L.Cousin)

•e⁺e⁻ Physics and tracking

-ttbar-H Yukawa coupling @ ILC

-Tracking ILD-VTX @ ILC

≻(Y.Voutsinas + B.Boitrelle)

➤Tracking studies @ ILD

➤Standalone tracking with VTX

-See I.Ripp Baudot's talk

Integration activities

• PLUME

- Double sided ladders -
 - Collab. Bristol & DESY
 - Double sided ladders with ~ 0.35% X0
 - ➢ First prototype built in 2011
 - See J.Baudot's talk.

• SALAT in AIDA project

- Large surface detectors (stitching)
 - First demonstrator built
 - ➢ Goal: 6 x 4 cm²
 - > Applications: Large area telescope, forward discs
- SERNWIET
 - Sensor embedding in kapton
 - Collab. CERN

BelleII@IPHC, October 24th 2013

Auguste Besson

Image obtained with 55Fe source, X-rays detected by MIMOSA-26

Summary

- Group founded with the starting CPS R&D in early 2000s
- Motivations
 - Lepton collider physics
 - Exploit fully the potential of CPS
 - Pursuing the R&D and prototypes fabrications
 - Integration developpements (PLUME, etc.)
 - > Algorithms & tracking optimizations
- Know how
 - Physics & tracking
 - ➢ Resolution, clustering, digitisation, alignment, etc.
 - > Interests: e.g. low momentum tracks, VTX standalone tracking, c-tagging, etc.
 - Hardware Expertise
 - > Microelectronics, Mechanical integration, Microtechnics (probe tests, bounding), PCB designs
 - Test experts
 - DAQ systems, Lab tests, Beam test = 2 telescopes + 2-3 campaigns/year (@ DESY & CERN)
- ⇒ Mastering the complete fabrication chain (from design to validation) on site.
- ⇒ Faster fabrication/validation cycles (typically < 1 year)

Back up

Read-out speed

- ILC motivations
 - − Robustness with respect to predicted beam background ⇒occupancy
 - Capabilities to stand the increased occupancy @ 1 TeV (x3-5)
 - Stand alone tracking capabilities (low momentum tracks)
- How to improve read-out speed ?
 - Elongated pixels (+staggered pixels)
 - Less row per column
 - ➤ Allow in pixel discriminator \Rightarrow r.o ≥ 2 x faster
 - More parallelisation
 - > 2 or 4 rows read out simutaneously \Rightarrow r.o ≥ 2-4 x faster
 - Sub arrays read out in // \Rightarrow r.o \ge 2-4 x faster
 - > Only possible in smaller feature size process (0.18 μ m) see next slide

BelleII@IPHC, October 24th 2013

Validation of the 0.18µm technology roadmap

- Goal: ALICE ITS upgrade (cf. TDR draft) ⇒scheduled for 2017-18 LHC shutdown
 - Addionnal L0(22mm) + replacement of inner layers
 - scheduled for 2017-18 LHC long shutdown
 - (See talks by Beolè and Bufalino)
 0.25-1 MRad + 0.3-1x10¹³n_{eq}/cm²
- ➤ Inner layers ⇒0.3% X0
- > Spatial resolution ~ 4 μ m
- Chip sensitive area 1x3 cm²
- \blacktriangleright Read-out speed ~ 10-30 µs

19

• STEP 1 (2012): First prototypes ⇒Validation of MIP detection performances

Mimosa-28 (=Ultimate) performances

- Operating conditions
 - JTAG + 160 MHz
 - Temperature
 - ≻ 35°C
 - Read-out time = $200 \ \mu s$
 - > Suited to $\geq 10^6$ part/cm²/s
 - Power comsumption
 - ➤ 150 mW/cm²
- Performances
 - Noise ~ 15 e- ENC @ 35°C
 - Eff vs fake rate
 - Spatial resolution
 - charge sharing
 - ➤ σ_{sp} ≥~ 3.5 μm
 - Radiation tolerance
 - 3.10¹²n_{eq}/cm² + 150 kRad @ 35 °C

Mimosa 28 - epi 20 um - NC S400 Efficiency 10⁻¹ 98 10-2 10⁻³ 96 10-4 94 10-5 10⁻⁶ 92 10-7 90 **10⁻⁸** 88 10⁻⁹ Not irradiated 150 kRad 10⁻¹⁰ 86 10-11 10 11 12 9 8 Threshold (mV)

⇒ reached performances meets specifications

An example of vertex detector optimisation: ILD @ ILC

- Spatial resolution/material budget $\Rightarrow \sigma_b < 5 \oplus 10/p\beta \sin^{3/2} \theta \ \mu m$.
- Occupancy 1st layer: ~ 5 part/cm²/BX ⇒ few % occupancy max
- Radiations: O(100 krad) et O(1x10¹¹ $n_{eq (1MeV)}$) / year
- Power dissipation: 600W/12W (Power cycling, ~3% duty cycle)
- Proposed geometry:
 - 3 x double sidded ladders
 - Optimize material budget / alignment.
- 2 designs:
 - Double sidded inner ladders :
 - Priority to r.o. speed & spatial resolution
 - 2 faces: resolution / speed (elongated pixels)
 - > Pitch $16x16\mu m^2/16x64\mu m^2$ + binary charge encoding
 - t_{read-out} ~ 50μs/10μs ; σ_{res} ~ 3 μm/6μm
 2012: Mimosa-30 prototype (AMS 0.35 μm)
 - 2012: Mimosa-30 prototype (AMS 0.35 μm) with 2 sided read-out
 - Outer ladders: power dissipation
 - Minimize P_{diss} while keeping good spatial resoution
 - > Pitch ~ $35x35 \ \mu m^2$ + ADC 3-4 bits
 - t_{read-out} ~ 100 μs
 - 2012: Mimosa-31 prototype (AMS 0.35 μm) with 4-bit ADC

BelleII@IPHC, October 24th 2013

Ongoing evelopments

Applications driving the R&D

- ALICE Internal Tracking System: 50 μ s with 4 μ m and 10⁷ hits/cm²/s
 - Require readout acceleration
- AIDA Single Arm Large Area Telescope: Sensor sensitive area = 25 cm²
 - Require stitching
- CBM Micro-Vertex Detector
 - Require acceleration & radiation tolerance

Advanced functionalities

- MIMOSA-32/34: further optimisation of q-collection, noise, ampli.
- MIMOSA-22-THR: pixel matrix + col-level discriminators
 - single and double rows read-out
- SUZE-02: zero-suppression circuitry
- AROM-0: matrix with in-pixel discriminator
- MIMADC: matrix with in-pixel 3-bits ADC

Full Scale Basic Blocs (FSBB)

- = complete functionality over ~1 cm²
- Q4/2013: col-level discri. approach (→MISTRAL)
- Q4/2015: in-pixel discri. approach (→ASTRAL)

Final sensors

- Q4/2014: MISTRAL 22x33 µm2 pitch with 30 µs integration time (15 µs possible)
- Q4/2016: ASTRAL 15 µs integration time (2 µs possible)
- 2015: AIDA large area (4×6 cm2) beam telescope sensor.

Auguste Besson

- Change from to Tower-Jazz
 0.18 µm CIS 2D process
- First validation in 2011-2012: see Auguste Besson's talk

0-suppression stage

Evolving to an optimal process: Tower-Jazz 0.18 μm

- CMOS $0.35\mu m$ process does not allow to fully exploit the potential of CPS
- Main limitations of 0.35µm:
 - Feature size ⇒ in pixel circuitry, r.o. speed, power comsumption, radiation hardness
 - Number of metal layers ⇒ in pixel circuitry, r.o. speed, insensitive area
 - Clock frequency ⇒ data output
 - Epitaxial layer flexibility: (thickness and resistivity) ⇒Charge collection/sharing
- Tower-Jazz 0.18 μm
 - Smaller feature size process
 - Stitching \Rightarrow multi chips slabs (yield ?)
 - 6 metal layers ⇒in pixel discri.
 - Deep P-well \Rightarrow small pitch in pixel discri.
 - higher epitaxial resistivity (1-6 k Ω .cm), epi thickness 18-40 μ m
 - Enhances signal
 - ⇒ Higher read-out speed, higher radiation tolerance
 - ⇒ Faster and smarter pixels

The PLUME project

Collaboration with

- DESY + University of Bristol
- Formerly with University of Oxford

▶ Previous achievements ≤ 2012

- Ladders with material budget 0.6 % X₀
 - Full VTX inner layer geometry
- Operated with air cooling on beam test
- Operation with power pulsing in preparation (single sensor achieved)—

Moving toward final goal

- Expected material budget 0.35 % X₀
 - Lighter (alu) flex cable & mechanical support
 - Two flex designs for symmetry and final ladder geometry
- Readiness
 - First cables validated, rest to be produced
 - New assembly setup in production
 - First ladder by end of summer 2013

Rationale for double-sided ladders

- Mechanics
 - One support for 2 sensitive layers = benefit material budget hence resolution
- Safety
 - ▶ Hit redundancy ➡ benefit efficiency
- Technology
 - Mixing 2 different sensor optimizations = alleviate technology limitation

Alignment

- Additional geometric constraints benefit #tracks needed for a given precision
- Tracking
 - 2-hits make a mini-vector => additional angular information
 - ➡ improve hit-track association

Tracking @ ILD

Silicon standalone tracking

- The problem at low p_{T} is track-seeding ►
 - 3 real 3D hits needed **b** -
- With current strip-SIT configuration ►
 - Either not efficient enough ×. 80% at p_T 500 GeV/c
 - Either two slow (270 s /event) when considering all combinations
- Pixelated-SIT with 2 double-layers option
 - Offers 4 3D hits & mini-vectors
 - Cellular automaton algorithm under evaluation Þ.

Track extrapolation TPC→SIT→VTX

Impact of pixelated-SIT (double-layers)

	strip		pixel	
	σ _{s.p.} (μm)	t _{int} (μs)	σ _{в.р.} (μm)	t _{int} (µs)
SIT - 1	7(<i>R</i> -φ)	< t _{BunchX}	4/15	100/7
SIT - 2	50 (z)		4	100

- Efficiency TPC→SIT strips > pixels
 - Benefit of short t_{int} / beam Background
- Efficiency SIT > VTX similar / both options ١.
 - BUT pixel timestamping layer mandatory Þ

BelleII@IPHC, October 24th 2013

Beam test results on Ladder

Beam test with 120 GeV π in November 2011

- → efficiency > 99% for fake hit rate<10⁻⁴/pixel
- → σ(point)=3 μm
- → σ(angle)=0.1°
- Analysis ongoing / alignment & cracks

- With next 0.35% X0 prototype
- Power pulsing in magnetic field

Þ

air outlet, cable out

Idea from R. De Oliveira, W.Dulinski

- Embed sensor one at time
 - ➔ Alleviate alignment difficulty
 - ➔ Allow individual testing before assembly (yield)
- Processing of further metal layers decoupled from sensor embedding

Questions

- x Insensitive area in-between sensors?
 - ➔ Possibility to overlay embedded sensors

