Quick overview of physics at Belle II

K.Trabelsi karim.trabelsi@kek.jp

Belle = B-factory

- $\circ~$ 2 B's and nothing else !
- 2 B mesons are created simultaneously in a L=1 coherent state
 - ⇒ before first decay , the final states contains a B and a \overline{B}

"continuum" production

 $\sigma(e^+e^- \rightarrow c \,\overline{c}) \simeq 1.3 \text{ nb} (\sim 1.3 \times 10^9 \text{ X}_c \,\overline{Y}_c \text{ pairs})$

 $\tau \tau$ production also !

Belle II

is an intensity frontier experiment built at Super-KEKB in Tsukuba, Japan

successor of extremely successfull B factories (BaBar and Belle)

from EPS 2001...

SuperKEKB luminosity projection

Quest for NP... continues

Intensity frontier front: $o(10^2)$ higher luminosity

B Factories → Super B Factory

- $\circ~$ complementarity to other intensity frontiers experiments (LHCb, BES III...)
- accurate theoretical predictions to compare to

theory uncertainty matches the expected exp. precision

theory uncertainty will match the expected exp. precision with expected progress in LQCD

accurate theoretical predictions to compare to

theory uncertainty matches the expected exp. precision

theory uncertainty will match the expected exp. precision with expected progress in LQCD

(here LHCb means LHCb upgrade)

(adopted from G.Isidori et al, Ann. Rev. Nucl. Part. Sci. 60, 355 (2010))

Observable	Expected th.	Expected exp.	Facility
	accuracy	uncertainty	
CKM matrix			
$ V_{us} [K \rightarrow \pi \ell \nu]$	**	0.1%	K-factory
$ V_{cb} [B \rightarrow X_c \ell \nu]$	**	1%	Belle II
$ V_{ub} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II
$\sin(2\phi_1) \left[c\bar{c}K_S^0\right]$	***	$8 \cdot 10^{-3}$	Belle II/LHCb (*)
¢2	10000	1.5°	Belle II
ϕ_3	***	30	Belle II / LHCb
CPV			
$S(B_s \rightarrow \psi \phi)$	**	0.01	LHCb
$S(B_s o \phi \phi)$	**	0.05	LHCb
$S(B_d \rightarrow \phi K)$	***	0.05	Belle II/LHCb
$S(B_d \rightarrow \eta' K)$	***	0.02	Belle II
$S(B_d \to K^*(\to K^0_S \pi^0)\gamma))$	***	0.03	Belle II
$S(B_s \to \phi \gamma))$	***	0.05	LHCb
$S(B_d \to \rho \gamma))$		0.15	Belle II
A_{SL}^d	***	0.001	LHCb
A_{SL}^s	***	0.001	LHCb
$A_{CP}(B_d \rightarrow s\gamma)$	*	0.005	Belle II
rare decays			
$\mathcal{B}(B \to \tau \nu)$	**	3%	Belle II
$\mathcal{B}(B \to D\tau\nu)$		3%	Belle II
$\mathcal{B}(B_d \to \mu\nu)$	**	6%	Belle II
$\mathcal{B}(B_s o \mu \mu)$	***	10%	LHCb
zero of $A_{FB}(B \rightarrow K^* \mu \mu)$	**	0.05	LHCb
$\mathcal{B}(B \to K^{(*)}\nu\nu)$	***	30%	Belle II
$\mathcal{B}(B \to s\gamma)$		4%	Belle II
$\mathcal{B}(B_s \to \gamma \gamma)$	3250	$0.25 \cdot 10^{-6}$	Belle II (with 5 ab^{-1})
$\mathcal{B}(K \to \pi \nu \nu)$	**	10%	K-factory
$\mathcal{B}(K \to e \pi \nu) / \mathcal{B}(K \to \mu \pi \nu)$	***	0.1%	K-factory
charm and τ			
$\mathcal{B}(\tau \to \mu \gamma)$	***	$3 \cdot 10^{-9}$	Belle II
q/p_D	***	0.03	Belle II
$arg(q/p)_D$	***	1.5°	Belle II

(*) flavor tagging

Methods and processes where BF can provide important insight into NP complementary to other experiments:

```
E_{\text{miss}}:
B(B \rightarrow \tau \nu), B(B \rightarrow D^{(*)} \tau \nu), B(K^{(*)} \nu \overline{\nu}), ...
```

```
Inclusive:
 B(B \rightarrow s_{\gamma}), A_{CP}(B \rightarrow s_{\gamma}), B(B \rightarrow sll), ...
```

```
Neutrals:

S(B \rightarrow K_S \pi^0 \gamma), S(B \rightarrow \eta' K_S), S(B \rightarrow K_S K_S K_S), B(\tau \rightarrow \mu \gamma), B(B_s \rightarrow \gamma \gamma), ...
```

Detailed description of physics program at SBF in

Physics at Super B Factory A.G. Akeroyd et al, arXiv:1002.5012

SuperB Progress Reports, Physics B. O'Leary et al, arXiv:1008.1511

<u> $B \rightarrow \tau \nu$ </u>, $D^{(*)} \tau \nu$, $K^{(*)} \nu \overline{\nu}$

fully (partially) reconstruct B_{tag} B_{tag} full reconstruction: hadronic tag

reconstruct h from $B_{sig} \rightarrow \tau v$ or $B_{sia} \rightarrow h \nu \overline{\nu}$

1.5

0.5

no additional energy in EM calorim. signal at $E_{FCL} \sim 0$

Missing energy modes...

KI M

Barrel KLM

peaking background from K_L : better K_L efficiency in KLM better background rejection in ECL/KLM

ECL: new electronics, better suppression of bckg

Endcap KLM

Iron plates + scintillator strip (14 lyr) X-Y directions in one layer Z direction in the depth of layers

Iron plates (14 lyr) Z inner 2 layers : scintillators other layers (13 lyr): RPC (same as Belle)

Inclusive: $B \rightarrow s(+d)\gamma$, direct CPV

Conclusion

- $\circ~$ Belle II: successor to B factories with $o(10^2)$ larger data sample
- search for NP at intensity frontier, complementary to energy frontier and other precision experiments
- physics benchmarks, methods, ... known from B factories, improve them (syst limited) for huge statistics
- $\circ~$ Belle II and SuperKEKB well on track , physics runs scheduled for the end of 2016

Backup slides

uncertainties from f_B and $|V_{ub}|$ can be reduced to B_B and other CKM uncertainties by combining with precise Δm_d (*)

2HDM (type II):
$$B(B \rightarrow D\tau^+ \nu) = G_F^2 \tau_B |V_{cb}|^2 f(F_V, F_S, \frac{m_B^2}{m_{H^+}^2} \tan^2 \beta)$$

uncertainties from form factors F_V and F_S can be studied with $B \rightarrow D l \nu$ (more form factors in $B \rightarrow D^* \tau \nu$)

Results on \mathbf{B} \rightarrow \mathbf{D}^{(*)} \tau \mathbf{v}

- Also sensitive to charged Higgs:
 - uncertainties related to $\mid V_{cb} \mid$ and hadronic effects cancel in ratios :

$$\mathcal{R}(D) = \frac{\mathcal{B}(\bar{B} \to D\tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D\ell^- \bar{\nu}_{\ell})} \qquad \mathcal{R}(D^*) = \frac{\mathcal{B}(\bar{B} \to D^* \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^* \ell^- \bar{\nu}_{\ell})}$$

- Standard Model expectations: $\mathcal{R}(D)\sim 0.3$ $\mathcal{R}(D^*)\sim 0.25$
- $\begin{array}{c}
 \begin{array}{c}
 \begin{array}{c}
 \begin{array}{c}
 \begin{array}{c}
 \begin{array}{c}
 \begin{array}{c}
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \end{array} \\
 \end{array}$ \left(\end{array} \\
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \end{array}
 \left(\end{array} \\
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \end{array}
 \left(\end{array} \\
 \bigg{)}
 \end{array} \\
 \end{array} \\
 \end{array}
 \left(\end{array} \\
 \bigg{)} \\
 \end{array} \\
 \bigg{)} \\
 \end{array}
 \left(\end{array} \\
 \bigg{)} \\
 \bigg

- Previous Belle measurements:
 - Inclusive tagging: * $B^0 \rightarrow D^{*-} \tau^+ \nu [PRL 99, 191807 (2007)]$ * $B^+ \rightarrow D^{(*)0} \tau^+ \nu [PRD 82, 072005 (2010)]$
 - Exclusive tagging: * $B^0 \rightarrow D^{(*)-} \tau^+ \nu$ $\therefore D^+ \rightarrow D^{(*)0-} \tau^+ \nu$
 - * $B^{+} \rightarrow D^{(*)0} \tau^{+} \nu [arXiv:0910/4301]$

Combined for Belle/BaBar $R(D^{(*)})$: 4.8 σ

 $\Rightarrow R(D^{(*)}) \text{ analysis for final Belle data set } (had tag) underway$

0.5

1

1.5

2

2.5