BSM Higgs Boson Searches at the LHC

Paul Thompson University of Birmingham

On behalf of the ATLAS and CMS collaborations

Moriond EW 15-22nd March 2014

Introduction

- In the Standard Model (SM) only 1 complex Higgs doublet is responsible for electroweak symmetry breaking: there is one neutral CP even Higgs boson h
- Two Higgs Doublet Models (2HDM) extend beyond the SM Higgs sector to include two complex Higgs Doublets . Leads to five physical states H⁺, H⁻, A(CP-odd), H, h (CP-even)
- Is the Higgs observed at the LHC the standard model Higgs or the h from an extended sector?
- Minimal Supersymmetric Standard Model (MSSM) solution to "hierarchy problem" (m_h<<m_{Planck}) and dark matter (DM) candidates
- Other models (which may also solve hierarchy problem) include Higgs as a composite particle, introduction of an additional electroweak singlet to the doublet Higgs field of the SM, NMSSM etc.
- Entering a new realm of exploration: probing the couplings and decays rates of the observed Higgs boson whilst searching for additional Higgs States which could provide window into the underlying physics of EWSB

Searches

- Number of ways to search:
- Directly from decays of neutral and charged Higgs e.g. through Flavour Changing Neutral Currents (FCNC)
- Study *indirectly* by interpreting measured mass and couplings of light Higgs in extensions of the standard model
- Neutral Higgs searches: many searches including bassociated and gg-fusion production with VV, bb, ττ, μμ decays etc.
- Charged Higgs searches: many searches including production in top decays with decay to τν, cs,..
- Many analyses completed on full 8 and 7 TeV data imposing constraints on models as we approach Run-II

2HDM/MSSM Models

- Higgs sector of 2HDM models described by parameters: 4 Higgs masses, tan β(ratio of vacuum expectation values vev) and α mixing between the two neutral CP even states h,H
- Type I: One doublet couples to V("fermiophobic"), one to fermions
- Type II: "MSSM like" model, one doublet couples to up-type quarks, one to down-type quarks
- Type III: "Lepton-specific" model, Higgs bosons have same couplings to quarks as type I and to leptons as in type II
- Type IV: "Flipped" model, Higgs bosons have same couplings to quarks as in type II and to leptons as in type I
- For more specific MSSM models m_h fully determined at tree level by m_A and tan β
- In MSSM/2HDM type II models the couplings to b quarks and τ leptons are enhanced at high tan β

Latest Results

Limits on new Phenomena via coupling measurements

 Higgs measurements interpreted in 2HDM/MSSM/composite/electroweak singlet/Dark matter models ATLAS-CONF-2014-010

Direct search for H->hh, A->Zh

 Using multilepton final states and diphoton Higgs decays CMS-PAS-HIG-13-025

Other recently released searches

- MSSM CMS-PAS-HIG-13-021
- Charged Higgs ATLAS-CONF-2013-090

Search for t->cH

- Using multilepton and diphoton H->γγ Higgs decays
 CMS-PAS-HIG-14-001
- Final results from ATLAS using H->γγ submitted to JHEP

Search for Higgs with single top tHq

 Probe t-H coupling using Higgs to diphoton decays

CMS-PAS-HIG-13-034

Lots of other searches but not enough time here

- High Mass ZZ,WW searches CMS-HIG-12-024
- ATLAS cascade Higgs arXiv:1312.1956
- NMSSM ATLAS-CONF-2012-079, CMS-PAS-HIG-13-010
- Doubly charged Higgs ATLAS arXiv:1210.5070 ,CMS arXiv:1207.2666
- Fermiophobic Higgs ATLAS-CONF-2012-013, CMS arXiv:1207.1130
- 2HDM WW ATLAS-CONF-2013-027

Limits on new phenomena

ATLAS-CONF-2014-010

- Constraints on new phenomena via Higgs Boson coupling measurements. Mass scaling of couplings and representative BSM models: Minimal Composite Higgs Model (MCHM), additional EW singlet, 2HDM, Simplified MSSM, Higgs portal to DM
- Use same data and techniques as ATLAS Higgs coupling measurements ATLAS-CONF-2014-009 h-> $\gamma\gamma$, ZZ, WW, $\tau\tau$, bb (see talk by Eilam Gross)
- For Higgs portal to DM additional data is used: observed limit of Zh->II+E^{miss} arXiv:1402.3244

Mass scaling of Higgs Boson Couplings

Probe mass scaling of Higgs boson couplings to fermions and vector bosons

 Production/decay similar to SM but modified couplings to fermions and vector bosons e.g. Ellis and You arXiv:1303.3879 parameterisation. Ratios between modified and SM couplings:

$$\kappa_{f,i} = v \frac{m_{f,i}^{\epsilon}}{M^{1+\epsilon}} \qquad \kappa_{V,j} = v \frac{m_{V,j}^{2\epsilon}}{M^{1+2\epsilon}}$$

- ν=246 GeV, ε "mass scaling parameter", and M is the "vev parameter"
- $\varepsilon=0$, M=v yields SM $\kappa_f = \kappa_v = 1$
- 2 Dimensional likelihood scan: best fit is compatible with SM within 1.5 σ
- Couplings to fermions and vector bosons compatible with linear and quadratic mass dependence (SM), and consistent with v=246 GeV

Composite Higgs

- Minimal Composite Higgs Model (MCHM) where Higgs is composite pseudo Nambu-Goldstone boson
- Higgs couplings modified w.r.t. SM as a function of Higgs compositeness scale f $\kappa = \kappa_V = \kappa_F = \sqrt{1 - \xi}$ $\xi = v^2 / f^2$
- MCHM4 model
- SM retained for $\xi \to 0$ $f \to \infty$
- Similarly for MCHM5 where $\kappa_F = \frac{1-2\xi}{\sqrt{1-\xi}}$

MCHM4 measurement ignoring boundary: observed expected $\xi = 1 - \mu_h = -0.30^{+0.17}_{-0.18}$ $0.00^{+0.15}_{-0.17}$

95% CL interval accounting for physical boundary: observed(expected)

 $0 \le \xi < 0.12 \ (0.29)$ f > 710 GeV (460 GeV)

MCHM5

$$\xi = -0.08^{+0.11}_{-0.16} \qquad 0.00^{+0.11}_{-0.13}$$
$$0 \le \xi < 0.15 \ (0.20)$$
$$f > 640 \text{ GeV} \ (550 \text{ GeV})$$

8

Additional Electroweak Singlet

- Dark matter particle could be additional EW singlet which mixes with h, resulting in heavy Higgs H as well.
- Couplings of h(H) are decreased by factor k(k')

$$\mu_{h} = \frac{\sigma_{h} \times BR_{h}}{(\sigma_{h} \times BR_{h})_{SM}} = \kappa^{2} \qquad \qquad \mu_{H} = \frac{\sigma_{H} \times BR_{H}}{(\sigma_{H} \times BR_{H})_{SM}} = \kappa^{2} (1 - BR_{H,new})$$

where $BR_{H,new}$ denotes new decay modes of H, and $\kappa^2 + \kappa'^2 = 1$ due to unitarity

2HDM Models

- Assume observed Higgs m_h=125.5 GeV is the light Higgs boson h in 2HDM models
- Couplings of to vector bosons, up-type, down-type quarks and charged leptons for 4 types of 2HDMs can be expressed as functions of α (mixing angle) and tan β (ratio of vevs)

Coupling scale factor	Type I	Type II	Type III	Type IV
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
K _u	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$
Kd	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$
Kl	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$

- Correction for σ(bbh) associated production calculated using SUSHI. Differential distributions not known so assume identical to ggF
- Significant rates at small tan β for types I and III and large tan β for types II & IV
- Correction generally smaller than 10% of the total production rate for the regions of parameter space compatible with the data at 95% CL

2HDM Models

• Observed exclusion limit (95% CL) for four types of 2HDM models in $(\cos(\beta - \alpha), \tan \beta)$ plane

- Compared with expected exclusion limits for SM Higgs Boson
- Data are consistent with SM alignment limit $\cos(\beta \alpha) = 0$ to within 1-2 σ for all models

2HDM Models

- Observed exclusion limit (95% CL) for four types of 2HDM models in $(\cos(\beta \alpha), \tan \beta)$ plane
- Compared with expected exclusion limits for SM Higgs Boson
- Data are consistent with SM alignment limit $\cos(\beta \alpha) = 0$ to within 1-2 σ for all models

Simplified MSSM

- Measurement of light Higgs mass m_h used to infer radiative corrections (top, stop, ..) in MSSM
- MSSM mixing matrix for h taken with $m_h=125.5$ GeV and used to express light Higgs couplings k_v, k_u, k_d as a function of m_A and tan β and known parameters (m_h, m_z) L. Maiani et al arXiv:1305.2172
- Additional corrections from stop are assumed to be small (<3% for m_{stop}>500 GeV)
- Additional corrections which break universality k_d=k_t=k_b are sub-leading and ignored A. Djouadi et al arXiv:1307.5205

- Correction for bbh associated production included
- For tan β > 2, m_A>400(290) GeV observed(expected) at 95% CL
- Limit increases to larger masses at low tan β
- Data consistent with SM decoupling i.e. m_A->infinity
- More general models with H->hh, Higgs decays to SUSY, effects of light SUSY particles, etc. not investigated here. M. Carena et al EPJC 73 (2013) 2552 (more scenarios, e.g. m_h-mod benchmark)

BSM Higgs Boson Searches, Moriond EW 2014

Higgs Portal to Dark Matter

- "Higgs Portal" model extends SM to include weakly interacting massive particles (WIMPs) coupling to Higgs boson
- Dark matter-nucleon scattering as well as decay rate inferred from Higgs invisible decays
- Translate BR_{i,u} < 0.37 (0.39) obs. (exp.) at 95% CL (5-channel + Zh) into limits on DM rate (depends on WIMP spin)

- Significantly more sensitive at low mass for vector WIMP than direct detection experiments assuming Higgs Portal model
- Sensitivity dominated by 5-channel coupling combination

2HDM Searches H->hh, A->Zh

If m_H>2m_h then H->hh

CMS-PAS-HIG-13-025

- For m_A in range $2m_h < m_A < 2m_t$, then A->Zh dominates
- Assume SM decays of h. Look at leptonic and diphoton decays

	$h \to WW^*$	$h \rightarrow ZZ^*$	$h \to \tau \tau$	$h \rightarrow bb$	$h \rightarrow \gamma \gamma$
$h \to WW^*$	\checkmark	\checkmark	\checkmark	Х	\checkmark
$h \rightarrow ZZ^*$	-	\checkmark	\checkmark	\checkmark	\checkmark
$h \rightarrow \tau \tau$	-	-	\checkmark	X	\checkmark
$h \rightarrow bb$	-	-	-	Х	X
$h ightarrow \gamma \gamma$	-	-	-	-	Х

	$h \to WW^*$	$h \rightarrow ZZ^*$	$h \to \tau \tau$	$h ightarrow \gamma \gamma$
$Z \rightarrow ll$	\checkmark	\checkmark	\checkmark	\checkmark
$Z \rightarrow qq$	X	\checkmark	X	Х
$Z \to \nu \nu$	X	\checkmark	Х	Х

Leptons	Photons	OSSF pairs	Hadronic τ	b-tag
4	0	0, 1 or 2	0 or 1	0 or 1
3	0	0 or 1	0 or 1	0 or 1
2	2	0 or 1	0	-
1	2	-	0	-
1	2	-	1	-
0	2	-	1 or 2	-

2HDM Limits

Limits on Br*sigma. 95% CL of 7pb for H->hh and 2pb for A->Zh

• Limits on 2HDM Type I and Type II in the tan β , cos($\beta - \alpha$) plane

t->cH (CMS)

- Flavour Changing Neutral Current t->cH highly suppressed in SM due to Glashow-Iliopoulos-Maiani mechanism with branching ratio 10⁻¹³-10⁻¹⁵
- With large tt cross section and large t coupling to Higgs the LHC is ideally placed
- For t->cH possible new physics rate higher than SM by ~10¹⁰-10¹²
- Study multilepton (CMS-PAS-SUS-13-002) and diphoton (CMS-PAS-HIG-13-025) final states
- H->WW->|v|v, H-> $\tau\tau$, H->ZZ->jjll,vvll,IIII, and H-> $\gamma\gamma$

CMS-PAS-HIG-13-034

- Limits yielded B(t->cH) < 0.56 (0.65) % for observed (expected)</p>
- Can be used to place limit on coupling $\lambda_{tc}^{H} < 0.14$ (observed)

Higgs Decay Mode	observed	expected	1σ range
$H \rightarrow WW^*$ ($\mathcal{B} = 23.1\%$)	1.58 %	1.57 %	(1.02–2.22)%
$H \rightarrow \tau \tau$ ($\mathcal{B} = 6.15\%$)	7.01 %	4.99 %	(3.53–7.74)%
$H \rightarrow ZZ^*$ ($B = 2.89\%$)	5.31 %	4.11%	(2.85–6.45)%
combined multileptons (WW [*] , $\tau\tau$, ZZ [*])	1.28 %	1.17%	(0.85–1.73)%
$H \rightarrow \gamma \gamma$ ($B = 0.23\%$)	0.69 %	0.81 %	(0.60–1.17)%
combined multileptons + diphotons	0.56 %	0.65%	(0.46–0.94)%

t->qH (ATLAS)

- Flavour Changing Neutral Current t->qH, where H->γγ
- Other t->bW, both leptonic and hadronic W decays used
- Full 7 TeV and 8 TeV data sample

ATLAS final result submitted to JHEP

- Limit on branching ratio B(t->cH) < 0.83(0.53)% at 95% CL converted to limit on Higgs Yukawa coupling t->cH < 0.17(0.14) observed(exp.)
- Analysis equally sensitive to t->cH and t->uH, so limit can be expressed as

$$\sqrt{\lambda_{tcH}^2+\lambda_{tuH}^2} < 0.17$$
 BSM Higgs Boson Searches, Moriond EW 2014

Higgs with single top

Production mode sensitive to t-H coupling ^q

- Negative coupling of H to fermions C_t=-1 would lead to enhanced (x15) tHq rates plus (x2) H->γγ decay rate
- High rate also expected in BSM models such as composite Higgs with heavy top partner (700-800 GeV) decaying to tH

- Expected significance 1.2σ
- No events observed
- Place 95% limits on: cross section x Br(H->γγ) of 4.1 (C_t=-1)

MSSM Higgs searches to $\tau\tau$

- Study neutral MSSM Higgs, H,A,h->ττ
- Constraints on m_A, tan β phase space
- To enhance sensitivity categories with 0 and 1 b-jet
- Extension to larger m_A and exclude down to tan β =4.2 at m_A =140 GeV

BSM Higgs Boson Searches, Moriond EW 2014

CMS-PAS-HIG-13-021

Charged Higgs

- Search for $H \rightarrow \tau v$, using assumption $B(H \rightarrow \tau v=1)$
- Different channels dominate depending on m_H/m_t

ATLAS-CONF-2013-09

Summary

- We are entering a new era in Higgs BSM physics where we study the couplings of the observed Higgs boson in more detail and search for additional Higgs states
- Wide range of new/recent results on Higgs physics BSM from ATLAS and CMS
- Limits on new phenomena from Higgs Couplings ATLAS-CONF-2014-010
- Search for t->cH CMS-PAS-HIG-14-001 plus final results from ATLAS
- Search for Higgs with single top tHq CMS-PAS-HIG-13-034
- As we prepare for Run-II we know where in the phase space to focus our efforts...stay tuned!

Back up

High Mass Higgs Searches

- Search for high mass SM-like Higgs using H->ZZ->llqq, where qq includes bb
- SM Higgs excluded from m_H>290 GeV using llqq alone
- Combine with searches using H->WW, ZZ in leptonic decays
- Observed follows expected. Excluded at 95% CL across whole range

24

Eur.Phys.J. C73 (2013) 2469

Cascade Higgs Decay Search

BSM Higgs Boson Searches, Moriond EW 2014

1000

Expected Limits [pb]

10

10-1

95% C.L. Upper Limits [pb]

10-1

1000

Compare 2HDM Limits

26

Compare direct/Simplified MSSM

 More general models with H->hh, Higgs decays to SUSY, effects of light SUSY particles, etc. not investigated here. M. Carena et al EPJC 73 (2013) 2552 (more scenarios, e.g. m_h-mod benchmark)

Compare MSSM/EW Singlet

Simplified MSSM

MSSM matrix element for h, $\delta 1$ and δ rad. corr. Involving top and stop

$$\mathcal{M}_{S}^{2} = (m_{Z}^{2} + \delta_{1}) \begin{bmatrix} \cos^{2}(\beta) & -\cos(\beta)\sin(\beta) \\ -\cos(\beta)\sin(\beta) & \sin^{2}(\beta) \end{bmatrix} + m_{A}^{2} \begin{bmatrix} \sin^{2}(\beta) & -\cos(\beta)\sin(\beta) \\ -\cos(\beta)\sin(\beta) & \cos^{2}(\beta) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \frac{\delta}{\sin^{2}(\beta)} \end{bmatrix}$$

To get couplings, take trace, set m_h , neglect subleading δ_1 A. Djouadi et al arXiv:1307.5205, substitute for δ . Diagonalize to find eigenvectors L. Maiani et al arXiv:1305.2172

$$\kappa_{V} = \frac{s_{d}(m_{A}, \tan\beta) + \tan\beta s_{u}(m_{A}, \tan\beta)}{\sqrt{1 + \tan^{2}\beta}}$$

$$\kappa_{u} = s_{u}(m_{A}, \tan\beta) \frac{\sqrt{1 + \tan^{2}\beta}}{\tan\beta}$$

$$\kappa_{d} = s_{d}(m_{A}, \tan\beta) \sqrt{1 + \tan^{2}\beta},$$

$$s_{u} = \frac{1}{\sqrt{1 + \frac{(m_{A}^{2} + m_{Z}^{2})^{2} \tan^{2}\beta}{(m_{Z}^{2} + m_{A}^{2} \tan^{2}\beta - m_{h}^{2}(1 + \tan^{2}\beta))^{2}}}}$$

$$s_{d} = \frac{(m_{A}^{2} + m_{Z}^{2}) \tan\beta}{m_{Z}^{2} + m_{A}^{2} \tan^{2}\beta - m_{h}^{2}(1 + \tan^{2}\beta)} s_{u}$$

Higgs Invisible BR

Type 1 2HDM

0.6

-2(

0.6

Type II 2HDM

tan β

tan β

TYPE I 2HDM: σ *Br(gg \rightarrow H \rightarrow hh), m_H = 300 GeV $\sqrt{s} = 8 \text{ TeV}, \int L dt = 19.5 \text{ fb}^{-1}$ **CMS Preliminary** $t_{\beta} = 100$ 10² $t_{\beta} = 50$ TYPE I 2HDM $H \rightarrow hh$ m_H = 300 GeV 95% C.L. CLs Limits — Observed NLO expected NLO expected ±16 NLO expected ±26 $t_{\beta} = 10$ 10 $t_{\beta} = 5$ tanβ $t_{\beta} = 1$ 10 -0.2 -0.6-0.40.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.2 0.4 0.6 0 $\cos(\beta - \alpha)$ $\cos(\beta - \alpha)$ TYPE II 2HDM: σ *Br(gg \rightarrow A \rightarrow Zh), m_A=300 GeV $\sqrt{s} = 8 \text{ TeV}, \int L dt = 19.5 \text{ fb}^{-1}$ **CMS Preliminary** $t_{\beta} = 100$ 10² $t_{\beta} = 50$ TYPE II 2HDM A→ Zh m_A = 300 GeV 95% C.L. CLs Limits Observed NLO expected NLO expected ±10 NLO expected ±20 $t_{\beta} = 10$ 10 $t_{\beta} = 5$ tanß $t_{\beta} = 1$ 24 50 10-1 -0.6-0.4-0.20.2 0.4 0.6 0.0 -0.2 0.6 -0.6 -0.4 0.2 0.4 0 $\cos(\beta - \alpha)$ $\cos(\beta - \alpha)$