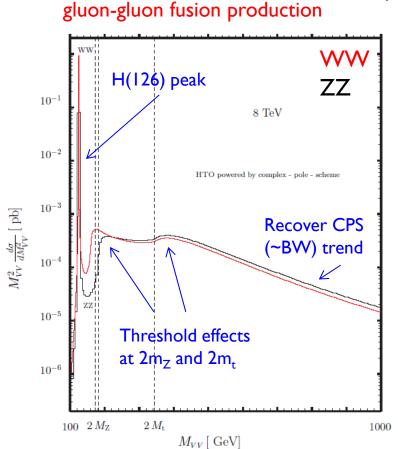


Constraints on Higgs total width using $H^*(126) \rightarrow ZZ$ events


<u>Roberto Covarelli</u> (*University of Rochester*) on behalf of the CMS collaboration

20/3/14, XLIX Rencontres de Moriond on Electroweak Interactions and Unified Theories

R. Covarelli

Principles of the analysis

N. Kauer and G. Passarino, JHEP 08 (2012) 116

2

• Off-shell $H^* \rightarrow VV (V = W, Z)$

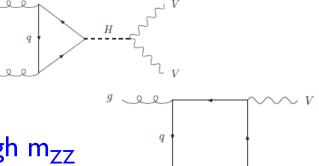
Peculiar cancellation between BW trend and $\Gamma(H \rightarrow ZZ)$ as a function of m_{VV} creates an enhancement of H(126) cross-section at high mass

$$\frac{d\sigma_{\rm gg \to H \to ZZ}}{dm_{ZZ}^2} \propto g_{\rm ggH}g_{\rm HZZ} \frac{F(m_{ZZ})}{(m_{ZZ}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2\Gamma_{\rm H}^2}$$

About 7.6% of total cross-section in the ZZ final state, but can be enhanced by experimental cuts

	${\rm Tot}[{\rm pb}]$	$M_{\rm ZZ}>2M_Z[\rm pb]$	R [%]	
$gg \to H \to \text{ all}$	19.146	0.1525	0.8	
$gg \to H \to ZZ$	0.5462	0.0416	7.6	
			\smile	_

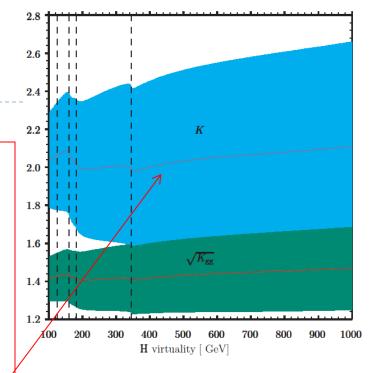
Constraint on width F. Caola, K. Melnikov (Phys. Rev. D88 (2013) 054024) J. Campbell et al. (arXiv:1311.3589)


$$\frac{d\sigma_{\rm gg \to H \to ZZ}}{dm_{ZZ}^2} \propto g_{\rm ggH}g_{\rm HZZ} \frac{F(m_{ZZ})}{(m_{ZZ}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2\Gamma_{\rm H}^2}$$

Can be used to set a constraint on the total Higgs width:

$$\sigma_{gg \to H \to ZZ}^{on-peak} = \frac{\kappa_g^2 \kappa_Z^2}{r} (\sigma \cdot BR)_{SM} \equiv \mu \sigma \cdot BR)_{SM} \qquad \qquad \kappa_g = g_{ggH} / g_{ggH}^{SM} \\ \frac{d\sigma_{gg \to H \to ZZ}^{off-peak}}{dm_{ZZ}} = \kappa_g^2 \kappa_Z^2 \frac{d\sigma_{gg \to H \to ZZ}^{off-peak,SM}}{dm_{ZZ}} = \mu r \frac{d\sigma_{gg \to H \to ZZ}^{off-peak,SM}}{dm_{ZZ}} \qquad \qquad r = \Gamma_H / \Gamma_H^{SM}$$

• Once the "signal strength" μ is fixed from an independent source a determination of r is obtained


- N.B. r-scaling while keeping µ fixed is equivalent to coupling scaling
- Caution: the interference with continuum gg → ZZ is not negligible at high m_{ZZ}

Monte Carlo simulation

gluon-gluon fusion

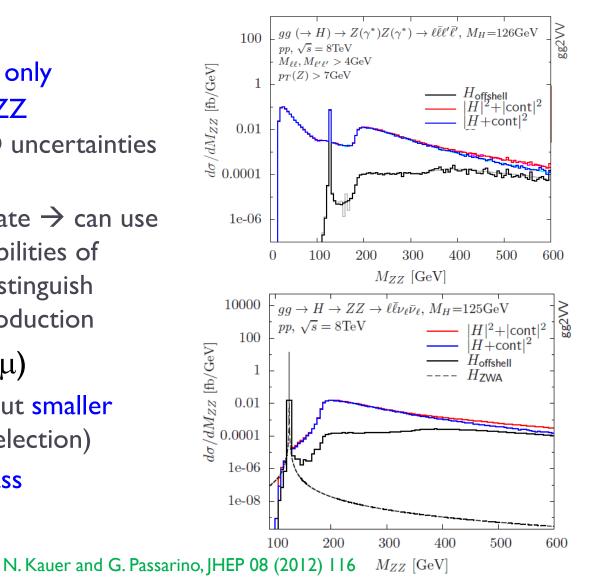
- Using latest versions of gg2VV and MCFM (LO in QCD)
 - Including signal H(125.6), background and interference
 - "Running" QCD scales (= m_{ZZ}/2) + scale and PDF variations for systematics
 - Signal m_{ZZ}-dependent k-factors (NNLO/LO) applied G. Passarino (arXiv:1312.2397)
 - Using results from M. Bonvini et al. (Phys. Rev. D88 (2013) 034032), use
 k_{continuum} = k_{signal}, assigning an additional 10% uncertainty on this assumption

other production modes

- VBF production is 7% of the total at H(126) peak
 - Slightly enhanced at high mass
 by trend of σ_{VBF}(m_{ZZ}) ~ 10%
 - Using PHANTOM to model it, with same settings
- VH and ttH do not contribute to tail effect

Analysis procedure

Fit r, using one or more variables:


 $\mathcal{P}_{tot} = \mu r \, \mathcal{P}_{sig} + \sqrt{\mu r} \, \mathcal{P}_{int} + \mathcal{P}_{bkg}$

 \mathcal{P} are MC- or data-derived templates for variables in each analysis

- For a self-contained ZZ analysis use μ from CMS on-peak 4-lepton analysis CMS collab., arXiv:1312.5353:
 - > SM width/couplings evaluated at $m_H = 125.6 \text{ GeV}$
 - Use observed signal strength (" μ observed", $0.93^{+0.26}_{-0.24}$)
 - N.B.An additional assumption we must make is that $\mu_{ggF} = \mu_{VBF} = \mu$ (necessary because couplings are in principle different in the two processes, but μ_{VBF} not enough constrained by present ZZ data)
 - Expected results are provided also for $\mu = 1.00^{+0.27}_{-0.24}$ (" μ expected", expected uncertainty from low-mass analysis)

The 41 and 212v final states

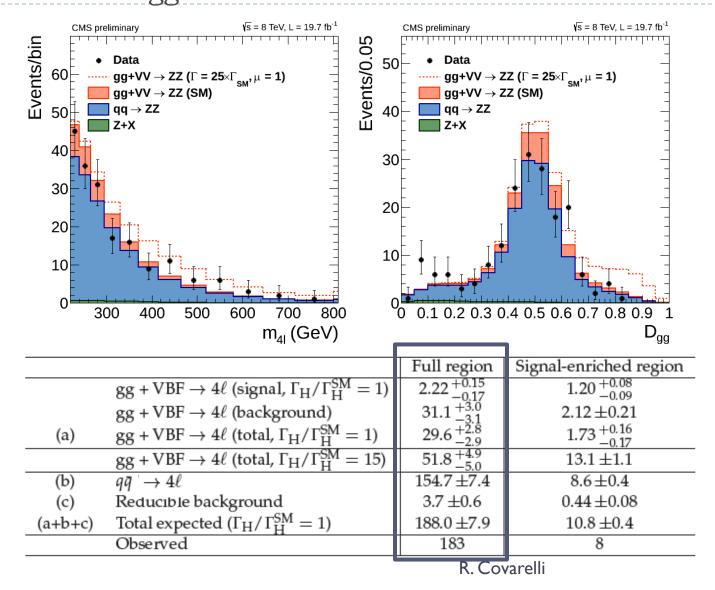
- 4l final state ($I = e, \mu$)
 - At high mass, basically only background is qq̄ → ZZ (known at NLO, QCD uncertainties at the level of %)
 - Fully reconstructed state → can use matrix element probabilities of lepton 4-vectors to distinguish between gg and qq production
- > 2I2v final state (I = e, μ)
 - Much larger BR (x6) but smaller acceptance (tight p_T selection)
 - Rely on transverse mass distributions

41 analysis

- No changes in selection w.r.t. CMS collab., arXiv:1312.5353
 - Lepton p_T cuts, Z invariant masses, impact parameter significance, loose isolation
- In the matrix element likelihood approach (MELA), design a specific discriminant for $gg \rightarrow ZZ$ production:

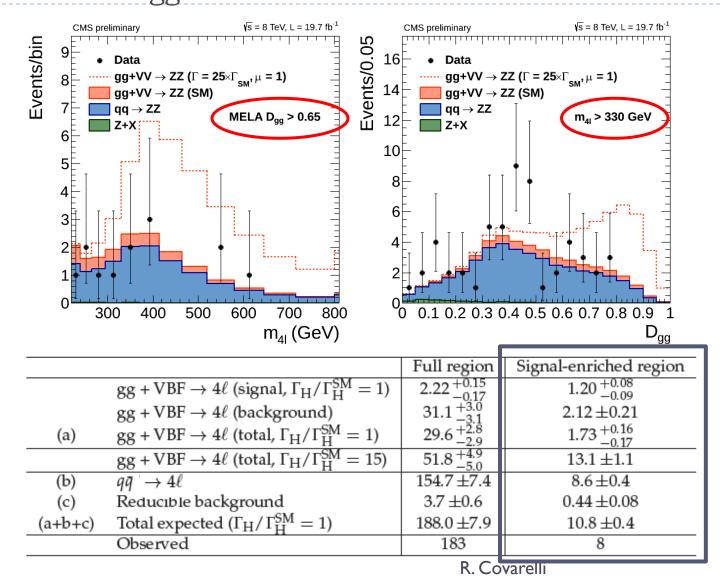
$$\mathcal{D}_{\text{gg},a} = \frac{\mathcal{P}_{\text{gg},a}}{\mathcal{P}_{\text{gg},a} + \mathcal{P}_{q\bar{q}}}$$

- Built with 7 variables completely describing kinematics (m_{Z1}, m_{Z2}, five angles)
- ▶ $P_{gg,(qq)}$ are joint probabilities for $gg \rightarrow ZZ$, signal + background + interference $(q\bar{q} \rightarrow ZZ)$ from MCFM matrix elements



Φ

g(q)



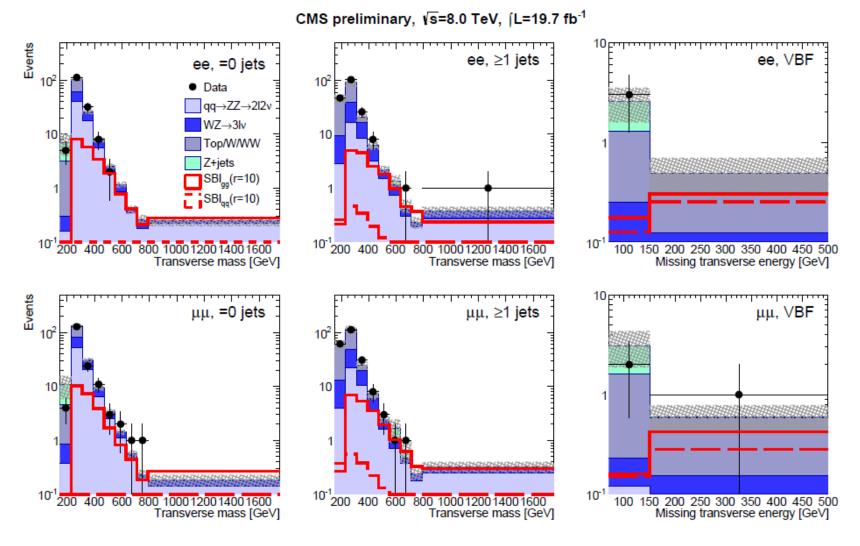
m_{41} and D_{gg} distributions / yields

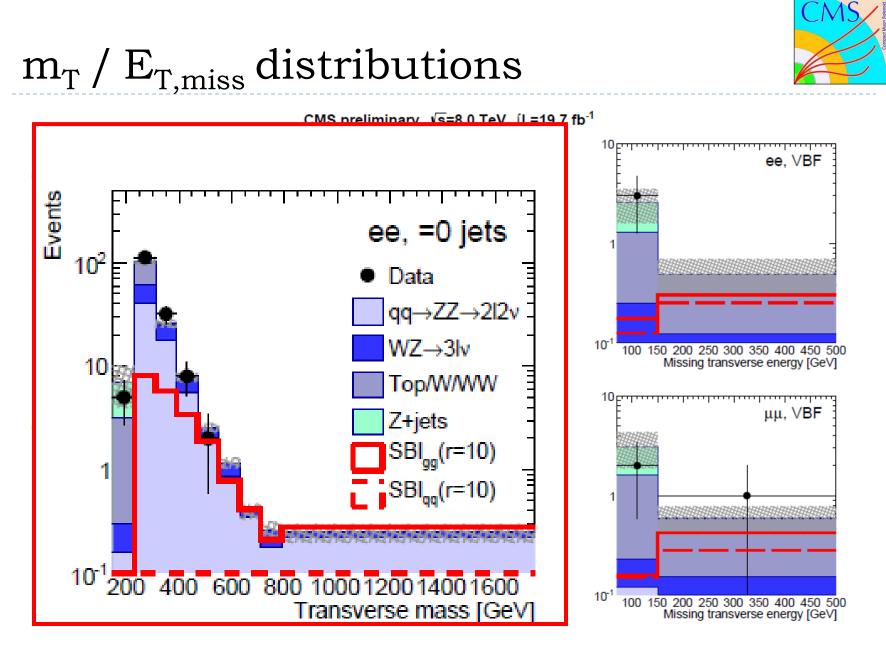
m_{41} and D_{gg} distributions / yields

212v analysis

No changes in selection w.r.t. CMS collab., PAS-HIG-13-014

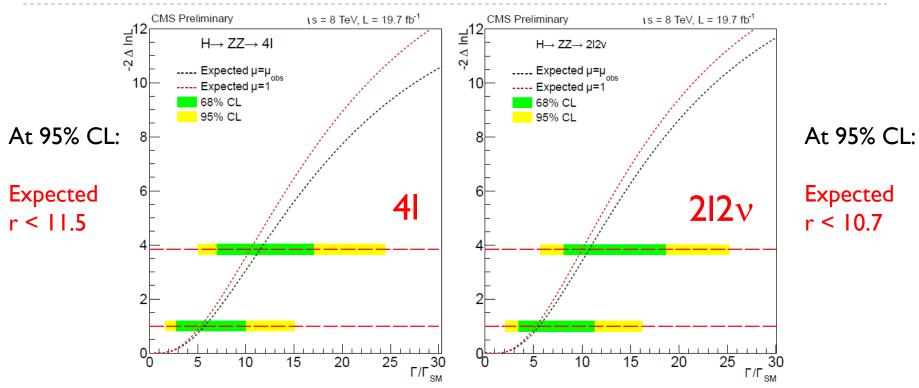
- Large p_T(Z) and E_{T,miss}
- Vetoing 3rd lepton and b-tagged jets (removing Z+heavy-flavor jets)
- Events split in three purity categories according to number of selected jets ($p_T > 30$ GeV and $|\eta| < 4.7$)
 - $\,$ VBF-like: two jets with m_{JJ} > 500 GeV and $|\Delta\eta_{JJ}|$ > 4
 - >= I jets: excluding events in VBF-like category
 - ▶ 0 jets


10


- Data-derived estimation of reducible backgrounds (double and single top, WW, W+jets, Z+jets), $q\overline{q} \rightarrow ZZ$ and WZ from MC
- Fit the distribution of the transverse mass for 0 and 1-jet category $m_{\rm T}^2 = \left[\sqrt{p_{\rm T,\ell\ell}^2 + m_{\ell\ell}^2} + \sqrt{E_{\rm T}^{\rm miss}^2 + m_{\ell\ell}^2}\right]^2 - \left[\vec{p}_{\rm T,\ell\ell} + \vec{E}_{\rm T}^{\rm miss}\right]^2$

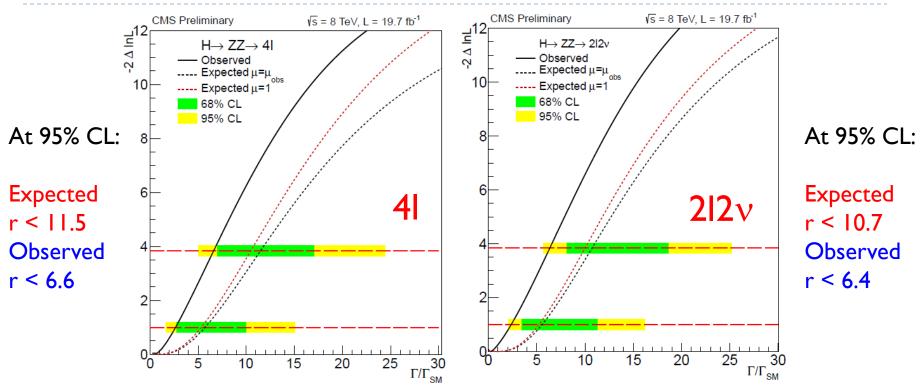
and E_{T,miss} for VBF-like

$m_T / E_{T,miss}$ distributions



R. Covarelli

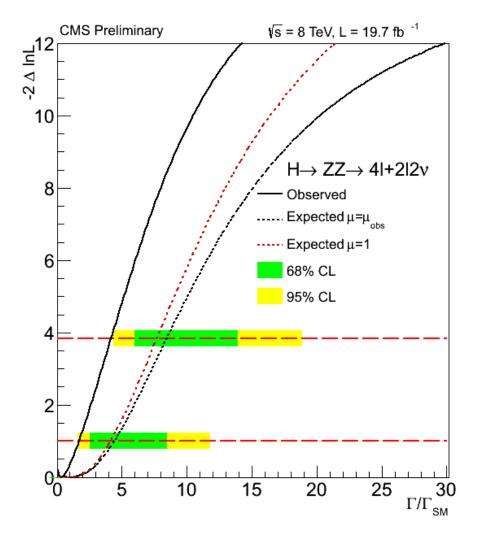
Expected / observed limits



- Main systematic uncertainties:
 - QCD scale and PDFs for $q\overline{q} \rightarrow ZZ$ and $gg \rightarrow ZZ$
 - μ uncertainties from CMS 4I low-mass paper
 - Uncertainty on k-factor approximation for $gg \rightarrow ZZ$ continuum
 - Experimental uncertainties (lepton trigger/reconstruction efficiencies etc.)

13

Expected / observed limits


Main systematic uncertainties:

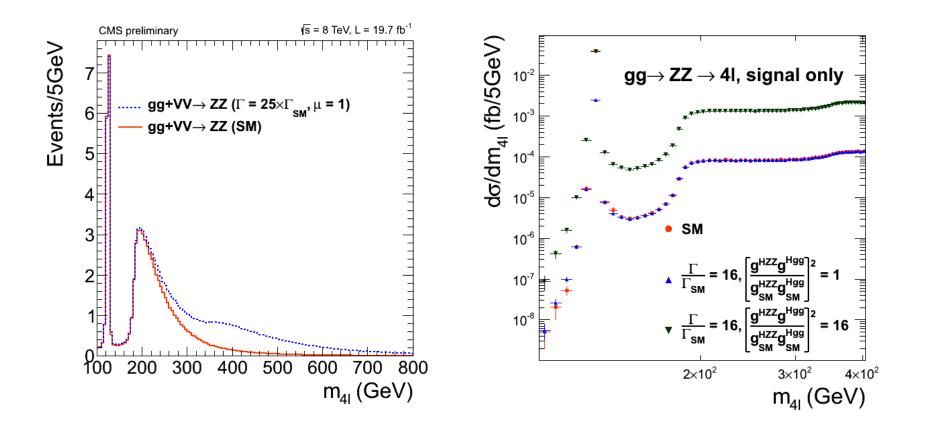
14

- QCD scale and PDFs for $q\overline{q} \rightarrow ZZ$ and $gg \rightarrow ZZ$
- μ uncertainties from CMS 4I low-mass paper
- Uncertainty on k-factor approximation for $gg \rightarrow ZZ$ continuum
- Experimental uncertainties (lepton trigger/reconstruction efficiencies etc.)

Combined limit

- Combined observed (expected) values
 - r = Γ/Γ_{SM} < 4.2 (8.5)
 @ 95% CL
 - (p-value = 0.02)
 - $r = \Gamma / \Gamma_{SM} = 0.3^{+1.5}_{-0.3}$
- equivalent to:
 Γ < 17.4 (35.3) MeV
 - @ 95% CL
 - ▶ Γ = (I.4^{+6.1}-1.4) MeV

Conclusions


- First experimental constraint on Higgs total width using H*(126) → ZZ events has been presented
- Mild model-dependence
 - Just based on Higgs propagator structure
 - Assumptions on $gg \rightarrow ZZ$ continuum production beyond LO
 - Assumption of SM production of $q\bar{q} \rightarrow ZZ$ and, in general, no other BSM sources enhancing high-mass ZZ yields
- Combining 4I and 2I2v final states
 - Using variables related to ZZ inv. mass and kinematic discriminants
 - Small deficits in signal regions observed in both channels
- Combination results:
 - ▶ <u>Γ/Γ_{SM} < 4.2</u> (8.5 expected) @ 95% CL

 \rightarrow <u> Γ < 17 MeV</u> (35 MeV expected) @ 95% CL

• Direct measurements at the peak set a limit of Γ < 3.4 GeV

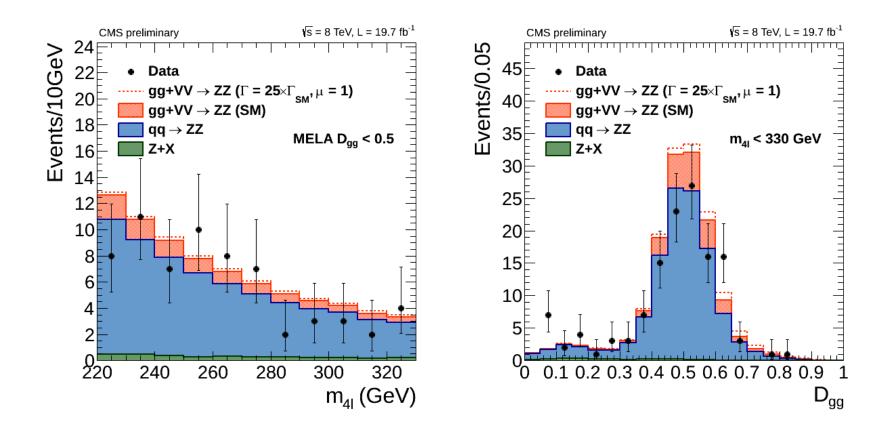
Backup

Effect of Γ / coupling scalings

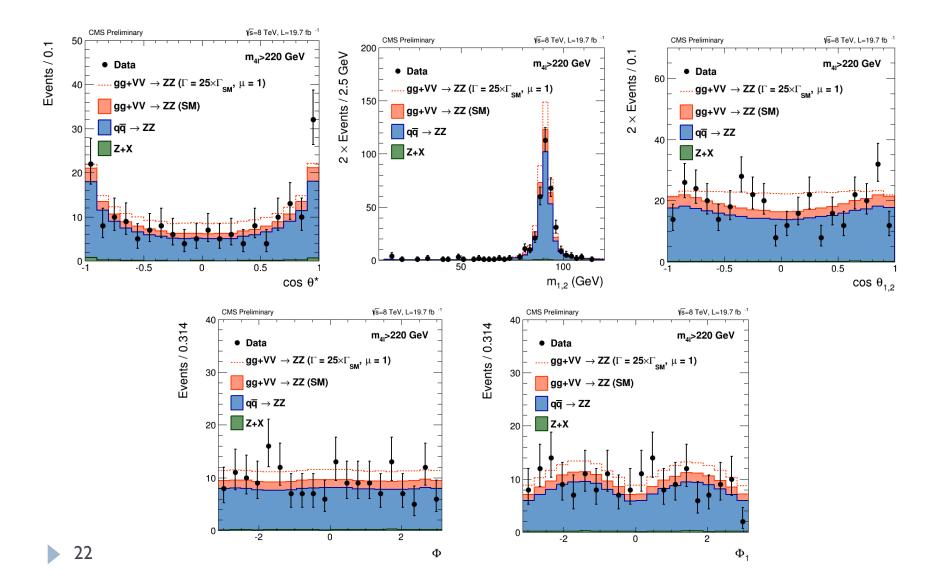
PHANTOM settings

LO generation

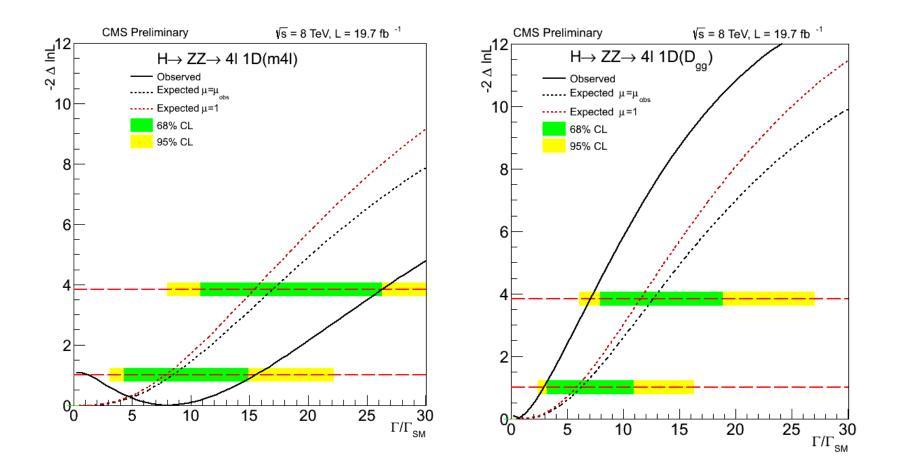
- NNLO/LO k-factor is 6% and independent on m_{ZZ} (from CERN Yellow Report 3)
- Do not apply explicitly, normalize cross-section at the peak relatively to ggF
- Central scale mZZ/ $\sqrt{2}$
 - Same scale and PDF variations as ggF \rightarrow effect much smaller (1-2%)
- Signal, background, interference not available separately. Generate total amplitudes with r = 1, 10, 25 (and equal coupling scalings) and extract the 3 components from:


$$\left(\begin{array}{c}p_1\\p_{10}\\p_{25}\end{array}\right) = \left(\begin{array}{ccc}1&1&1\\10&\sqrt{10}&1\\25&5&1\end{array}\right) \left(\begin{array}{c}S\\I\\B\end{array}\right)$$

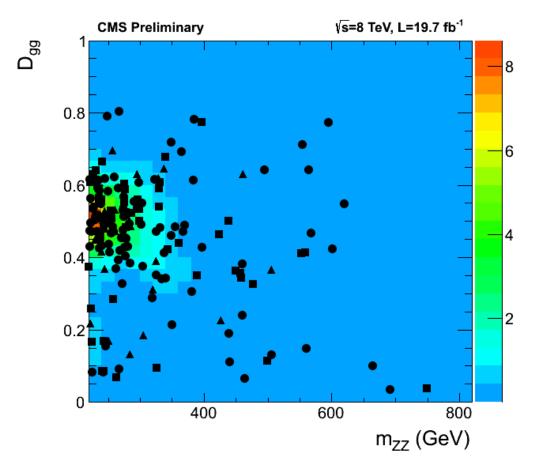
$$\mathcal{D}_{\mathrm{gg},a} = \frac{\mathcal{P}_{\mathrm{gg},a}}{\mathcal{P}_{\mathrm{gg},a} + \mathcal{P}_{\mathrm{q}\bar{\mathrm{q}}}} = \left[1 + \frac{\mathcal{P}_{\mathrm{bkg}}^{\mathrm{q}\bar{\mathrm{q}}}}{a \times \mathcal{P}_{\mathrm{sig}}^{\mathrm{gg}} + \sqrt{a} \times \mathcal{P}_{\mathrm{int}}^{\mathrm{gg}} + \mathcal{P}_{\mathrm{bkg}}^{\mathrm{gg}}}\right]^{-1}$$


Depends on parameter a (relative weight of signal in the likelihood ratio). Since the expected exclusion is r ~ 10, use a = 10

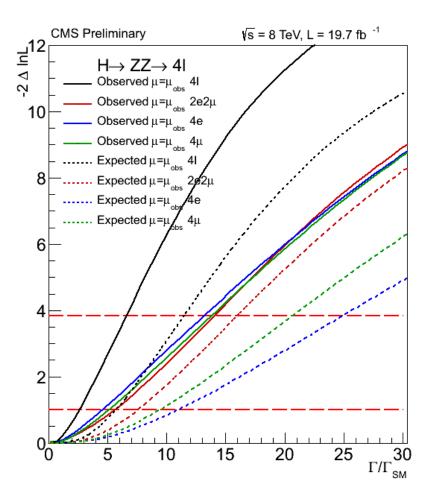
20


41: background-enriched region

41: variables entering D_{gg}



41: 1D result with D_{gg} and m41



R. Covarelli

41: 2D templates

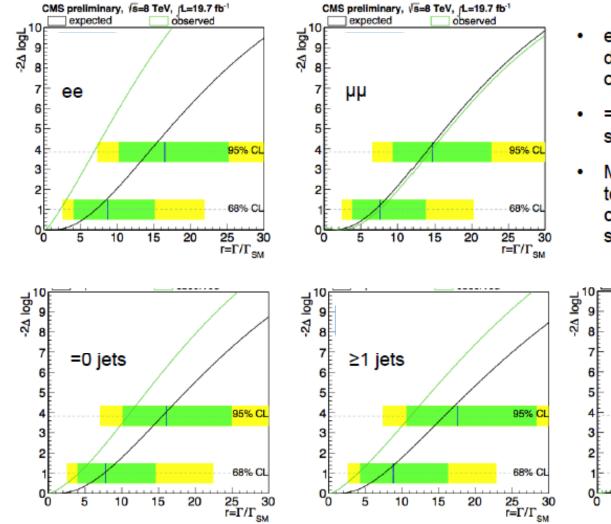
41: breakdown by channel

2l2v: selection

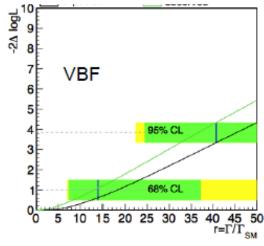
We pre-select boosted Z candidates

- dilepton+single lepton triggers
- two isolated leptons p_T>20 GeV

(medium-id electrons or tight-id muons)


- |M-91|<15 GeV and p_T(Z)>50 GeV
- Veto 3rd lepton with pT>10 GeV (veto-id electrons or loose-id muon)
- No b-tagged jet by CSVL +

no soft-muon with p_T>3 GeV


Search for real E_T^{miss} in Z events

- raw particle flow E_T^{miss} is used
- $\Delta \phi$ (jet, E_T^{miss})>0.5
- E_T^{miss}>80 GeV

2l2v: breakdown by channel

- ee channel: deficit in data drives stronger observed limits
- =0 jets drives the sensitivity of the analysis
- Median expected from toys tends to disagree in categories with larger systematic uncertainties

R. Covarelli

D