

Constraints on Higgs total width using $\mathrm{H}^{*}(126) \rightarrow$ ZZ events

Roberto Covarelli (University of Rochester) on behalf of the CMS collaboration

20/3/14, XLIX Rencontres de Moriond on Electroweak Interactions and Unified Theories

Principles of the analysis

Off-shell $\mathrm{H}^{*} \rightarrow \mathrm{VV}(\mathrm{V}=\mathrm{W}, \mathrm{Z})$
gluon-gluon fusion production

N. Kauer and G. Passarino, JHEP 08 (2012) II6

Peculiar cancellation between BW trend and $\Gamma(\mathrm{H} \rightarrow \mathrm{ZZ})$ as a function of $m_{V v}$ creates an enhancement of $\mathrm{H}(\mathrm{I} 26)$ cross-section at high mass

$$
\left.\frac{d \sigma_{\mathrm{gg}} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ}}{d m_{\mathrm{ZZ}}^{2}} \propto g_{\mathrm{gg}} g_{\mathrm{HZZ}} \frac{F\left(m_{\mathrm{ZZ}}\right)}{\left(m_{\mathrm{ZZ}}^{2}-m_{\mathrm{H}}^{2}\right)^{2}+m_{\mathrm{H}}^{2}\left(\Gamma_{\mathrm{H}}^{2}\right.}\right)
$$

- About 7.6\% of total cross-section in the ZZ final state, but can be enhanced by experimental cuts

	$\operatorname{Tot}[\mathrm{pb}]$	$M_{\mathrm{ZZ}}>2 M_{Z}[\mathrm{pb}]$	$\mathrm{R}[\%]$
$g g \rightarrow H \rightarrow$ all	19.146	0.1525	0.8
$g g \rightarrow H \rightarrow Z Z$	0.5462	0.0416	7.6

R. Covarelli

Constraint on width

$$
\frac{d \sigma_{\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ}}}{d m_{\mathrm{ZZ}}^{2}} \propto g_{\mathrm{gg}} g_{\mathrm{HZZ}} \frac{F\left(m_{\mathrm{ZZ}}\right)}{\left(m_{\mathrm{ZZ}}^{2}-m_{\mathrm{H}}^{2}\right)^{2}+m_{\mathrm{H}}^{2} \Gamma_{\mathrm{H}}^{2}}
$$

Can be used to set a constraint on the total Higgs width:

$$
\begin{array}{ll}
\sigma_{\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ}}^{\text {on-peak }}=\frac{\kappa_{\mathrm{g}}^{2} \kappa_{\mathrm{Z}}^{2}}{r}(\sigma \cdot \mathrm{BR})_{\mathrm{SM}} \equiv(\mu \sigma \cdot \mathrm{BR})_{\mathrm{SM}} & \kappa_{g}=g_{\mathrm{ggH}} / g_{\mathrm{ggH}}^{\mathrm{SM}} \\
\frac{\kappa_{\mathrm{g}}=\sigma_{\mathrm{HZZ}} / g_{\mathrm{HZZ}}^{\mathrm{SM}}}{d m_{\mathrm{ZZ}}}=\kappa_{\mathrm{g}}^{2} \kappa_{\mathrm{Z}}^{2}-\frac{d \sigma_{\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ}}^{\text {off-peak }}}{d m_{\mathrm{ZZ}}}=\mu r \sigma_{\mathrm{gZ} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ}}^{\text {off-peak }} \\
d m_{\mathrm{ZZ}} & r=\Gamma_{\mathrm{H}} / \Gamma_{\mathrm{H}}^{\mathrm{SM}}
\end{array}
$$

- Once the "signal strength" μ is fixed from an independent source a determination of r is obtained
- N.B. r-scaling while keeping μ fixed is equivalent to coupling scaling
- Caution: the interference with continuum $\mathrm{gg} \rightarrow \mathrm{ZZ}$ is not negligible at high m_{Zz}

Monte Carlo simulation

 gluon-gluon fusion- Using latest versions of gg2VV and MCFM (LO in QCD)
- Including signal H(I25.6), background and interference
" "Running" QCD scales (= $m_{z z} / 2$) + scale and PDF variations for systematics
- Signal mzz-dependent k-factors (NNLO/LO) applied G. Passarino (arXiv: 3 I 2.2397)
- Using results from M. Bonvini et al.
(Phys. Rev. D88 (2013) 034032), use
$\mathrm{k}_{\text {continuum }}=\mathrm{k}_{\text {signal }}$, assigning an additional 10\% uncertainty on this assumption

- VBF production is 7% of the total at $\mathrm{H}(\mathrm{I} 26)$ peak
- Slightly enhanced at high mass by trend of $\sigma_{\text {VBF }}\left(m_{z z}\right) \sim 10 \%$
- Using PHANTOM to model it, with same settings
- VH and ttH do not contribute to tail effect

Analysis procedure

- Fit r, using one or more variables:

$$
\mathcal{P}_{\text {tot }}=\mu r \mathcal{P}_{\text {sig }}+\sqrt{\mu r} \mathcal{P}_{\mathrm{int}}+\mathcal{P}_{\mathrm{bkg}}
$$

\mathscr{P} are MC- or data-derived templates for variables in each analysis

- For a self-contained $Z Z$ analysis use μ from CMS on-peak 4-lepton analysis CMS collab., arXiv:|3|2.5353:
b SM width/couplings evaluated at $\mathrm{m}_{\mathrm{H}}=125.6 \mathrm{GeV}$
, Use observed signal strength (" μ observed", $0.93_{-0.24}^{+0.26}$)
- N.B.An additional assumption we must make is that $\mu_{\mathrm{ggF}}=\mu_{\mathrm{VBF}}=\mu$ (necessary because couplings are in principle different in the two processes, but μ_{VBF} not enough constrained by present ZZ data)
- Expected results are provided also for $\mu=1.00_{-0.24}^{+0.27}$ (" μ expected", expected uncertainty from low-mass analysis)

The 41 and $212 v$ final states

Generator-level distributions with approximated CMS
experimental cuts

41 final state ($\quad=e, \mu$)

- At high mass, basically only background is $q \bar{q} \rightarrow$ ZZ (known at NLO, QCD uncertainties at the level of \%)
- Fully reconstructed state \rightarrow can use matrix element probabilities of lepton 4 -vectors to distinguish between gg and q̄ production
- $2 \mid 2 v$ final state $(I=e, \mu)$
- Much larger BR (x6) but smaller acceptance (tight P_{T} selection)
- Rely on transverse mass distributions

41 analysis

- No changes in selection w.r.t. CMS collab., arXiv:1312.5353
- Lepton P_{T} cuts, Z invariant masses, impact parameter significance, loose isolation
- In the matrix element likelihood approach (MELA), design a specific discriminant for $g g \rightarrow$ ZZ production:

$$
\mathcal{D}_{\mathrm{gg}, a,}=\frac{\mathcal{P}_{\mathrm{gg}, a}}{\mathcal{P}_{\mathrm{gg}, a}+\mathcal{P}_{\mathrm{q} \overline{\mathrm{q}}}}
$$

- Built with 7 variables completely describing kinematics $\left(m_{z 1}, m_{z 2}\right.$, five angles)
- $\mathrm{P}_{\mathrm{gg},(q)}$ are joint probabilities for
$\mathrm{gg} \rightarrow$ ZZ, signal + background + interference
($q \bar{q} \rightarrow Z Z$) from MCFM matrix elements

m_{41} and D_{gg} distributions / yields

m_{41} and D_{gg} distributions / yields

$212 v$ analysis

- No changes in selection w.r.t. CMS collab., PAS-HIG-I3-014
, Large $P_{T}(Z)$ and $E_{T, \text { miss }}$
, Vetoing $3^{\text {rd }}$ lepton and b-tagged jets (removing Z+heavy-flavor jets)
- Events split in three purity categories according to number of selected jets ($\mathrm{P}_{\mathrm{T}}>30 \mathrm{GeV}$ and $|\eta|<4.7$)
, VBF-like: two jets with $m_{J J}>500 \mathrm{GeV}$ and $\left|\Delta \eta_{ر J}\right|>4$
\gg=I jets: excluding events in VBF-like category
- 0 jets
- Data-derived estimation of reducible backgrounds (double and single top, WW, W+jets, Z+jets), $q \bar{q} \rightarrow Z Z$ and $W Z$ from MC
- Fit the distribution of the transverse mass for 0 and I-jet category

$$
m_{\mathrm{T}}^{2}=\left[\sqrt{p_{\mathrm{T}, \ell \ell^{2}}+m_{\ell \ell}{ }^{2}}+\sqrt{E_{\mathrm{T}}^{\text {miss }}{ }^{2}+m_{\ell \ell^{2}}}\right]^{2}-\left[\vec{p}_{T, \ell \ell}+\vec{E}_{T}^{\mathrm{miss}}\right]^{2}
$$

and $\mathrm{E}_{\mathrm{T} \text {,miss }}$ for VBF-like

$\mathrm{m}_{\mathrm{T}} / \mathrm{E}_{\mathrm{T}, \text { miss }}$ distributions

CMS preliminary, $\sqrt{s}=8.0 \mathrm{TeV},\left\lceil\mathrm{L}=19.7 \mathrm{fb}^{-1}\right.$

$\mathrm{m}_{\mathrm{T}} / \mathrm{E}_{\mathrm{T}, \text { miss }}$ distributions

R. Covarelli

Expected / observed limits

- Main systematic uncertainties:
- QCD scale and PDFs for $q \bar{q} \rightarrow$ ZZ and $g g \rightarrow$ ZZ
- μ uncertainties from CMS 4I low-mass paper
- Uncertainty on k-factor approximation for $g g \rightarrow Z Z$ continuum
- Experimental uncertainties (lepton trigger/reconstruction efficiencies etc.)

Expected / observed limits

- Main systematic uncertainties:
- QCD scale and PDFs for $q \bar{q} \rightarrow Z Z$ and $g g \rightarrow Z Z$
> μ uncertainties from CMS 4l low-mass paper
- Uncertainty on k-factor approximation for gg \rightarrow ZZ continuum
- Experimental uncertainties (lepton trigger/reconstruction efficiencies etc.)

Combined limit

- Combined observed (expected) values
- $r=\Gamma / \Gamma_{S M}<4.2$ (8.5)
@ 95\% CL
(p -value $=0.02$)
b $r=\Gamma / \Gamma_{S M}=0.3^{+1.5}{ }_{-0.3}$
- equivalent to:
$\Gamma<17.4(35.3) \mathrm{MeV}$
$@ 95 \% \mathrm{CL}$
$\Gamma=\left(1.4^{+6.1}-\mathrm{l.4}\right) \mathrm{MeV}$

Conclusions

- First experimental constraint on Higgs total width using $\mathrm{H}^{*}(\mathrm{I} 26) \rightarrow \mathrm{ZZ}$ events has been presented
- Mild model-dependence
- Just based on Higgs propagator structure
- Assumptions on gg \rightarrow ZZ continuum production beyond LO
- Assumption of SM production of $q \bar{q} \rightarrow Z Z$ and, in general, no other BSM sources enhancing high-mass ZZ yields
- Combining 4 l and $2 \mathrm{l} 2 v$ final states
* Using variables related to ZZ inv. mass and kinematic discriminants
- Small deficits in signal regions observed in both channels
- Combination results:
- $\Gamma_{\text {SM }}<4.2$ (8.5 expected) @ 95\% CL

$$
\rightarrow \Gamma<17 \mathrm{MeV}(35 \mathrm{MeV} \text { expected) @ 95\% CL }
$$

- Direct measurements at the peak set a limit of $\Gamma<3.4 \mathrm{GeV}$

Backup

Effect of Γ / coupling scalings

PHANTOM settings

- LO generation
- NNLO/LO k-factor is 6% and independent on $\mathrm{m}_{\text {zz }}$ (from CERN Yellow Report 3)
- Do not apply explicitly, normalize cross-section at the peak relatively to ggF
- Central scale mZZ/ $\sqrt{ } 2$
- Same scale and PDF variations as ggF \rightarrow effect much smaller (I-2\%)
- Signal, background, interference not available separately. Generate total amplitudes with $\mathrm{r}=\mathrm{I}, \mathrm{I} 0,25$ (and equal coupling scalings) and extract the 3 components from:

$$
\left(\begin{array}{l}
p_{1} \\
p_{10} \\
p_{25}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
10 & \sqrt{10} & 1 \\
25 & 5 & 1
\end{array}\right)\left(\begin{array}{c}
S \\
I \\
B
\end{array}\right)
$$

Full formula of MELA D_{gg}

$$
\mathcal{D}_{\mathrm{gg}, a}=\frac{\mathcal{P}_{\mathrm{gg}, a}}{\mathcal{P}_{\mathrm{gg}, a}+\mathcal{P}_{\mathrm{q} \overline{\mathrm{q}}}}=\left[1+\frac{\mathcal{P}_{\mathrm{bkg}}^{\mathrm{q} \bar{q}}}{a \times \mathcal{P}_{\mathrm{sig}}^{\mathrm{gg}}+\sqrt{a} \times \mathcal{P}_{\mathrm{int}}^{\mathrm{gg}}+\mathcal{P}_{\mathrm{bkg}}^{\mathrm{gg}}}\right]^{-1}
$$

- Depends on parameter a (relative weight of signal in the likelihood ratio). Since the expected exclusion is $r \sim 10$, use $a=10$

41: background-enriched region

41: variables entering D
 gg

41: 1 D result with D_{gg} and m 41

41: 2D templates

41: breakdown by channel

$212 v:$ selection

- We pre-select boosted \mathbf{Z} candidates
- dilepton+single lepton triggers
- two isolated leptons $p_{T}>20 \mathrm{GeV}$
(medium-id electrons or tight-id muons)
- |M-91|<15 GeV and $p_{T}(Z)>50 \mathrm{GeV}$
- Veto $3^{\text {rd }}$ lepton with $\mathrm{pT}>10 \mathrm{GeV}$
(veto-id electrons or loose-id muon)
- No b-tagged jet by CSVL +
no soft-muon with $\mathrm{p}_{\top}>3 \mathrm{GeV}$
- Search for real $E_{T}{ }^{\text {miss }}$ in \mathbf{Z} events
- raw particle flow E_{T} miss is used
- $\Delta \varphi\left(\mathrm{jet}, \mathrm{E}_{\mathrm{T}}{ }^{\text {miss }}\right)>0.5$
- $\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }}>80 \mathrm{GeV}$

212v: breakdown by channel

- ee channel: deficit in data drives stronger observed limits
- $=0$ jets drives the sensitivity of the analysis
- Median expected from toys tends to disagree in categories with larger systematic uncertainties

