Status of CUORE and CUORE-0 experiments at Gran Sasso

Double beta decay with Tellurium

Bolometric technique in CUORE

- 0.75 Kg ^{nat}TeO₂ crystals:
 - C~10⁻⁹ J/K $\rightarrow \Delta T/\Delta E \sim 100 \mu K/MeV$
- NTD-Ge thermistor: $R=R_0exp(T_0/T)^{1/2}$
 - ► R~ 100 MΩ $\rightarrow \Delta R/\Delta E \sim 3M\Omega/MeV$

• Resolution $@0\nu\beta\beta$ energy (2528 keV): $\Delta E_{FWHM} = 5-7 \text{ keV}$

Gran Sasso lab in Italy

3650 m.w.e. deep

μs: 2.58x10⁻⁸/(s cm²)

γs: ~0.73/(s cm²)

neutrons: $4x10^{-6}$ n/(s cm²)

CUORE: main challenges

988 TeO₂ bolometers ¹³⁰Te mass: 206 kg TeO₂ mass: 741 kg

• Cryostat:

- Custom pulse tube dilution refrigerator and cryostat. Technologically challenging: ~1 ton of detectors at 10 mK (~20 tons at various low temperature stages)
- Stringent radioactivity constraints on materials and clean assembly
- Independent suspension of the detector array from the dilution unit
- Cleaning
 - Strict radio-purity control protocol to limit bulk and surface contaminations in crystal production
 - TECM (Tumbling, Electropolishing, Chemical etching, and Magnetron plasma etching) cleaning for copper surfaces

The CUORICINO experience

- 44x790g + 18x330g bolometers: 19.75 kg·y in ¹³⁰Te
- $T^{0v}_{1/2} > 2.8 \times 10^{24}$ years (90% CL) $\langle m_{\beta\beta} \rangle < 300 \sim 710$ meV
- Background level (790g only): 0.15 counts/keV/kg/year

CUORE-0

A single CUORE-like tower to test the cleaning and assembly techniques of CUORE

Size similar to CUORICINO:

- 52x750g bolometers
- 13 floor of 4 crystals each

Active mass:

- TeO₂: 39 kg
- ¹³⁰Te: 11 kg

Data Taking started on March 2013

Cryostat:

- Inner shield: 1cm Roman Pb A (²¹⁰Pb) < 4 mBq/Kg
- External Shield:
 20 cm Pb
 10 cm Borated
 polyethylene
- Nitrogen flushing to avoid Rn contamination.

Same cryostat as CUORICINO:

 γ background (²³²Th) not expected to change \Rightarrow test the α background

CUORE-0 construction

All steps of the assembly performed under nitrogen atmospheres inside glove boxes₈

CUORE-0 Performances

C.P.Aguirre et al., *Initial performance of the CUORE-0 experiment*, <u>http://arxiv.org/abs/1402.0922</u>, submitted to EPJC

CUORE-0 bkgd: a region

Bkgd in a region evaluated in the intervals (2.7-3.1)MeV + (3.4-3.9)MeV (excluding ¹⁹⁰Pt peak)

0.019±0.002 counts/keV/kg/y⇒reduction of a factor 6 wrt CUORICINO

CUORE-0 bkgd: DBD region(blinded)

Our way of blinding is to salt the data:

exchange a small (and blinded) fraction of 208 Tl events (2615 keV) with events in the $_{0\nu\beta\beta}$ region, producing a fake peak.

CUORE-0 vs CUORICINO

- ²³⁸U γ lines reduced by a factor 2 (better radon control)
- ²³²Th γ lines not reduced (originate from the cryostat)
- ²³⁸U/²³²Th α lines reduced (new detector surface treatment)

	Avg. flat bkg. [counts/keV/kg/y]		signal eff. [%]
	0vββ region	2700-3900 keV	(detector+cuts)
CUORICINO	0.153 ± 0.006	0.110 ± 0.001	82.8±1.1
CUORE-0	0.071 ± 0.011	0.019 ± 0.002	80.4±1.9

CUORE Background

- New cryostat with radio-pure materials: γ contribution negligible
- Less copper facing the crystals: α from Cu surface reduced
- Enhanced granularity: negligible α bkgd from crystals surface

CUORE-0 and CUORE sensitivity

CUORE Status

- Detector assembly: completed by June 2014
 - Crystals for 17 towers glued with thermistors
 - 13 towers bonded and put in storage
- Cryostat commissioning: completed by fall 2014
 - 4K test passed
 - Dilution unit reached 5 mK in test setup at LNGS
 - First bolometric test to start in few weeks
- Detectors installation and commissioning:
 - starting in fall 2014
- Detectors cool down: 2015

Conclusions

• CUORE-0

- Bkgd from surface contamination 0.019±0.002 counts/keV/kg/y ~
 6 times smaller than in CUORICINO
- FWHM energy resolution: 5.7 keV
- CUORE assembly and cleaning techniques validated
- CUORE-0 will overcome the CUORICINO sensitivity in about a year of live time.
- CUORE:
 - CUORE towers installation and commissioning by the end of 2014.
 - Data taking will start in 2015.