Rencontres de Moriond EW, La Thuile, March 19, 2014

TEVATRON Top Quark Mass

L. Brigliadori University of Bologna

On behalf of the CDF and DØ Collaborations

OUTLINE

- The Top Quark
- Measurement Strategies.
- Recent Results.

• M_{top} World Average

• Summary and Conclusions.

Luca Brigliadori University of Bologna Rencontres de Moriond EW March 19, 2014

University of Bologna

March 19, 2014

Top Mass Challenges

- $\sigma_{tar{t}}\,/\,\sigma_{inel}\simeq 10^{-10}\,!!!$
 - ... Event Selection :
 - Triggers
 - b-tagging algorithms.
 - High E_T and central $(|\eta| \leq 2)$ Jets.
 - Lepton Id (Dilepton, Lepton + jets).

• Reconstruction :

Measure "Jets" and not partons

Need corrections to obtain parton energy

- \Rightarrow Jet Energy Scale. $\sigma_{\rm JES}/{\rm JES} \approx 2\%$ to 6%
- \Rightarrow Important contribution to $\sigma_{M_{top}}(syst)$

Jets-to-partons assignments

Which jet comes from which particle? Combinatoric problem!

- Undetected ν 's (Dilepton, Lepton + jets).

Need assumptions. Multiple solutions.

Rencontres de Moriond EW March 19, 2014

• Matrix Element (ME)

- Define the probability, P_{ev} , that the *observed* kinematics, \vec{y} , arise from possible signal or bkg kinematics \vec{x} at parton level :
 - * $d\sigma(\vec{x})$ LO differential x-section of a final state \vec{x} at parton level. Depending on M_{top} for $t\bar{t}$ events, but not for bkg.
 - * $\mathcal{W}(\vec{y}, \vec{x})$ "Transfer function", i.e. probability to measure the observed set of variables \vec{y} , given \vec{x} at parton level. Depends on JES.
 - * $f_{t\bar{t}}$ Fraction of signal events expected in the data.

- Maximize $\mathcal{L}_{sample} \propto \prod_{events} P_{ev}(\vec{y}, f_{t\bar{t}}, M_{top})$ evaluated for observed data

• Template Method

- Consider a set of observables, x, sensitive to M_{top}.
 Evaluate and plot the set for each event
 ⇒ "Templates"
- Maximize a likelihood where *observed* distributions are compared to expectations for different M_{top} and signal fractions, $f_{t\bar{t}}$.

$$\mathcal{L}_{ ext{sample}} \propto \prod_{events} \prod_{ec{x}} \mathcal{L}_{ ext{shape}}(x_i | f_{tar{t}}, \operatorname{M_{top}})$$

Measurement Channels

Lepton + Jets

Reasonable Bkg, Good Statistics.... The Golden Channel!

- Jets-to-Partons assignment ambiguity
- Well reconstructed kinematics (but p_z^{ν} ambiguity)

Huge QCD Bkg... Large Statistics Challenging!

All-Jets

- Need "fine tuned" selections to obtain good S/B
- Large Jets-to-Partons assignment ambiguity
- Fully reconstructed kinematics

Dilepton

The cleanest sample... The smallest statistics

- Small combinatoric problem
- Underconstrained kinematics (2 undetected ν 's)

Missing E_T + Jets

- Selection defined to be complementary to other channels.
- Mostly L + Jets with undetected lepton

University of Bologna

March 19, 2014

• CDF, Templates, $9.1 \, \text{fb}^{-1}$

- New Preliminary result with full CDF dataset (January 2014, CDF conference note 11072)
- "Hybrid" variable method to reduce JES uncertainty :
 - Templates by $M_t^{eff} = w \cdot M_t^{reco} + (1-w) \cdot M_t^{alt}$
 - M_t^{reco} sensitive to true M_{top} . Defined by NWA.
 - M_t^{alt} less sensitive to M_{top} , but not based on jet energies.
 - w = 0.7: defined to minimize expected (stat + JES) uncertainty
- Two independent samples : 0-tag, \geq 1-tag

180

 M_t^{eff} (GeV/c²) > 1-tag fitted templates

200

220

240

260

120

100

140

160

University of Bologna

 $M_{top} = 174.94 \pm 0.8$

 ${
m M_{top}} = 176.01 \, \pm 1.01 \, (stat) \, \pm 1.29 \, (syst) \, {
m GeV}$

Combined with $1 \text{ fb}^{-1} \Rightarrow \text{Best D}\emptyset$ measurement

Rencontres de Moriond EW March 19, 2014

- Phys. Rev. Lett. 109 (2012) 152003.
- 3D templates: $m_t^{reco} vs m_t^{reco(2)} vs m_{jj}$
- m_{jj} used for *in situ* JES calibration

Best single measurement from Tevatron

Luca Brigliadori University of Bologna

All-Hadronic

$9.3\,{ m fb}^{-1}$ **Templates**, CDF,

- **New Preliminary result with full CDF dataset** (February 2014, CDF conference note 11084)
- Tuned event selection based on Neural Net, b-tag
- Data driven bkg modeling
- S/B about 1/1 for \geq 2-tag events.
- In each event reconstruct (χ^2 minimization):
 - a "top mass", m_t^{rec}
 - a "W mass", $m_W^{rec} \Rightarrow \text{JES}$ calibration

• CDF, Templates, $8.7 \, \text{fb}^{-1}$

- Phys. Rev D88 (2013) 011101
- Require large $\not\!\!\!E_T$, no tight lepton
 - independent of All-Had, L+jets, Dilepton
- Exploiting NN selection and bkg modeling similar to All-Had analysis
- Same technique used in CDF L+jets :
 - 3D templates using m_t^{reco} , $m_t^{reco(2)}$, m_{jj}
 - m_{jj} used for *in situ* JES calibration

Neural Net Output

M_{top} Systematic Uncertainties

CDF Run II Preliminary (9.1 fb^{-1})								
$M_{\rm top}$ Measurement in the $t\bar{t}$ Dilepton Final State								
Source	Uncertainty (GeV/c^2)							
Jet energy scale	2.42							
NLO effects	0.64							
Monte Carlo generators	0.49							
Lepton energy scale	0.36							
b-jet energy scale	0.34							
Initial and final state radiation	0.33							
Background modeling	0.33							
Luminosity profile (pileup)	0.30							
Color reconnection	0.24							
gg fraction	0.24							
Parton distribution functions	0.21							
MC statistics	0.19							
b-tagging	0.05							
Total systematic	2.69							
Statistical	1.83							
Total	3.25							

- example from CDF Dileptons \Leftarrow
- **Precision on the Top Mass measurements** systematic uncertainties limited by now in all channels.
- **JES** uncertainty greatly reduced especially by in situ calibration techniques
 - \Rightarrow partially statistical
- CDF and DØ Collaborations performed a joint effort in the past years in order :
 - to define a common way to evaluate * systematics
 - to avoid possible "double counting" of some * effect
 - to evaluate correlations among different * measurements
 - to study possible neglected * sources of uncertainties

Tevatron Top Mass

CDF + **DØ**, **March 2013** (arXiv:1305.3939)

 ${
m M_{top}} = 173.20 \pm 0.51 (stat) \pm 0.71 (syst) \, {
m GeV}$

Mass of the Top Quark

Individual channels

Dilepton	$\rm M_{top}=170.0\pm2.1GeV$
Lepton + Jets	$\rm M_{top}=173.2\pm0.9GeV$
All-Hadronic	$\rm M_{top}=172.7\pm1.9GeV$
$E_T + \text{Jets}$	$M_{\rm top}=173.8\pm1.8GeV$

- Best results of each experiment in each channel from Run I and Run II combined.
- Recent updates from CDF not included yet
- All correlations taken into account.
- Good agreement among results from individual channels
- M_{top} known at 0.50% (March '13).
- Precision now limited by systematic uncertainties in all channels.

The ATLAS, CDF, CMS and DØ Collaborations just approved the very first Tevatron + LHC M_{top} combination $\mathrm{M_{top}}=173.34\pm0.76\,\text{GeV}$ arXiv 1403.4427 [hep-ex] * **Tevatron**: Run II data Tevatron+LHC m_{top} combination - March 2014, $L_{int} = 3.5 \text{ fb}^{-1} - 8.7 \text{ fb}^{-1}$ $(up to 8.7 fb^1)$ ATLAS + CDF + CMS + D0 Preliminary CDF RunII, I+jets $172.85 \pm 1.12 (0.52 \pm 0.49 \pm 0.86)$ $L_{int} = 8.7 \text{ fb}^{-1}$ **LHC: 2011 data** CDF RunII, di-lepton * 170.28 ± 3.69 (1.95 ± 3.13) $L_{int} = 5.6 \text{ fb}^{-1}$ $(up to 4.9 fb^1)$ CDF RunII, all jets 172.47 ± 2.01 (1.43 ± 0.95 ± 1.04) $CDF RunII, E_{T}^{miss}+jets$ 173.93 ± 1.85 (1.26 ± 1.05 ± 0.86) **Best single measurement** $L_{int} = 8.7 \text{ fb}^{-1}$ * D0 RunII, I+jets $174.94 \pm 1.50 (0.83 \pm 0.47 \pm 1.16)$ in each channel $L_{int} = 3.6 \text{ fb}^{-1}$ D0 RunII, di-lepton -174.00 ± 2.79 (2.36 \pm 0.55 \pm 1.38) from each experiment $L_{int} = 5.3 \text{ fb}^{-1}$ ATLAS 2011, I+jets 172.31 ± 1.55 (0.23 ± 0.72 ± 1.35) $L_{int} = 4.7 \text{ fb}^{-1}$ ATLAS 2011, di-lepton 173.09 ± 1.63 (0.64 ± 1.50) 13% improvement w.r.t. $L_{int} = 4.7 \text{ fb}^{-1}$ CMS 2011, I+jets most precise single $173.49 \pm 1.06 (0.27 \pm 0.33 \pm 0.97)$ * $L_{int} = 4.9 \text{ fb}^{-1}$ **Collider combination** CMS 2011, di-lepton 172.50 ± 1.52 (0.43 ± 1.46) $L_{int} = 4.9 \text{ fb}^{-1}$ CMS 2011, all jets $173.49 \pm 1.41(0.69)$ ± 1.23) $L_{int} = 3.5 \text{ fb}^{-1}$ 173.34 ± 0.76 (0.27 ± 0.24 ± 0.67) World comb. 2014 $\chi^2 / ndf = 4.3/10 \ \chi^2 \text{ prob.} = 93\%$ 28% improvement w.r.t. * Tevatron March 2013 (Run I+II) 173.20 ± 0.87 (0.51 ± 0.36 ± 0.61) most precise single input $173.29 \pm 0.95 \, (0.23 \pm 0.26 \pm 0.88)$ total (stat. iJES syst.) 165 170 175 180 185 m_{top} [GeV]

Luca Brigliadori University of Bologna Rencontres de Moriond EW March 19, 2014

M_{top} WORLD AVERAGE

	1								
		$ ho_1$	EXP			OTEV	$ ho_{ m COL}$		
	$ ho_{ m CDF}$	$ ho_{ m D0}$	$ ho_{ m ATL}$	$ ho_{\mathrm{CMS}}$	PLIC	PILV	$ ho_{ m ATL-TEV}$	$ ho_{\mathrm{CMS-TEV}}$	
Stat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
iJES	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	
stdJES	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
flavourJES	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
bJES	1.0	1.0	1.0	1.0	0.5	1.0	1.0	0.5	
MC	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Rad	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.5	
CR	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
PDF	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.5	
DetMod	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
<i>b</i> -tag	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
LepPt	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
BGMC [†]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
BGData	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Meth	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MHI	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	

First combination between the two Colliders

- Big effort performed in order to :
 - * classify uncertainties
 - * define correlations
- Various correlation scenarios have been checked

Luca Brigliadori University of Bologna

5

• New CDF update :

- * The CDF collaboration just approved a new combination of measurements.
- * All channels now updated with full dataset. CDF public note 11080

• The Fermilab TEVATRON was shut down in September 2011

 $\sim 10\,{
m fb^{-1}}$ of data collected by experiments during Run II.

- The Collaborations are finalizing measurements of the Top Quark Mass using full datasets
- A selection of more recent ones has been presented in this talk. Full details in
 - * www-cdf.fnal.gov/physics/new/top/public_mass.html
 - * www-d0.fnal.gov/Run2Physics/top/
- Excellent results from all decay channels. Uncertainty now everywhere dominated by systematics.
- Results from individual experiments have precisions by far beyond Run IIa goal.
- Tevatron competitive with LHC.
- It's time for M_{top} World Average

LHC + TEVATRON, March 2014

 $\mathrm{M_{top}} = 173.34 \pm 0.76\,\text{GeV}$

 $\sigma_{
m M_{top}}/
m M_{top}\simeq 0.44\%$

Luca Brigliadori University of Bologna Rencontres de Moriond EW March 19, 2014

20

The Tevatron Experiments

21

DØ

14000.00 80.00 2000.00 Weekly Integrated Luminosity (pb⁻¹) 60.00 10000.00 8000.00 40.00 6000.00 4000.00 🖆 20.00 2000.00 5 35 65 95 125 155 185 215 245 275 305 335 365 395 425 455 485 515 545 Week # (Week 1 starts 03/05/01) Weekly Integrated Luminosity

Luca Brigliadori

University of Bologna

Collider Run II Integrated Luminosity

- $p\bar{p}$ collisions at 1.96 TeV (Run II, 2001-2011).
- Peak lumi $\approx 4 \cdot 10^{32} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- About $12 \, \text{fb}^{-1}$ delivered to experiments. Acquired $10 \, \text{fb}^{-1}$ / experiment
- **Collaborations :**
 - **Currently 400 + 400 members**
 - 60 (CDF) + 70 (DØ) Institutions

- Matrix Element (ME)
 - Define *per-event* probability by Leading Order ME of signal $(t\bar{t})$ and Bkg events as a function of M_{top} , JES and the expected fraction of signal $f_{t\bar{t}}$:

 $P_{ev}\left(\vec{y},\,f_{t\bar{t}},\,M_{top},\,JES\right) = f_{t\bar{t}} \cdot P_{t\bar{t}}\left(\vec{y},\,M_{top},\,JES\right) + \left(1 - f_{t\bar{t}}\right) \cdot P_{bkg}\left(\vec{y},\,JES\right)$

$$P_{t\bar{t}} \propto \frac{1}{N} \int \underbrace{f(z_1) f(z_2) dz_1 dz_2}_{\text{p.d.f.}} \underbrace{\mathcal{W}(\vec{y}, \vec{x}, JES)}_{\text{Transfer function}} \underbrace{d\sigma_{t\bar{t}}(\vec{x}, M_{top})}_{\text{differential}} \underbrace{d\sigma_{t\bar{t}}(\vec{x}, M_{top})}_{\text{x-section}}$$

- P_{bkg} totally analogous, but $d\sigma_{bkg}(ec{x})$.
- P_{ev} gives the probability for the *observed* event kinematics, \vec{y} , to arise from a signal or a bkg event.
- N: Normalization factor
- f(z): Parton density functions
- $\mathcal{W}(\vec{y}, \vec{x}, JES)$: Connect observed jets to partons. Give the probability for the *measured* jet momenta \vec{y} given corresponding parton momenta \vec{x} . Depend on the Jet Energy Scale.
- $d\sigma(\vec{x})$: Include ME calculation and phase space. Depend on M_{top} for $t\bar{t}$ events.
- Maximize sample likelihood $\mathcal{L}(\vec{y}, f_{t\bar{t}}, M_{top}, JES) = \prod_{events} P_{ev}$

Template Method

CDF, Lepton + Jets : χ^2 expression for m_t^{reco} (free parameters m_t^{reco} , $p_{T,i}^{fit}$ and U_i^{fit}) $\chi^2 = rac{\left(m_{jj} - M_W
ight)^2}{\Gamma_W^2} + rac{\left(m_{l
u} - M_W
ight)^2}{\Gamma_W^2} + rac{\left(m_{jjb} - m_t^{reco}
ight)^2}{\Gamma_t^2} + rac{\left(m_{l
u b} - m_t^{reco}
ight)^2}{\Gamma_t^2}$ $+ \sum_{i=l,jets} \frac{\left(p_{T,i}^{fit} - p_{T,i}^{meas}\right)^2}{\sigma_i^2} + \sum_{j=x,y} \frac{\left(U_j^{fit} - U_j^{meas}\right)^2}{\sigma_j^2}$ CDF, All-Hadronic : χ^2 expression for m_t^{rec} (free parameters m_t^{rec} and $p_{T,i}^{fit}$) $\chi^2 = rac{\left(m_{jj}^{(1)} - M_W
ight)^2}{\Gamma_W^2} + rac{\left(m_{jj}^{(2)} - M_W
ight)^2}{\Gamma_W^2} + rac{\left(m_{jjb}^{(1)} - m_t^{rec}
ight)^2}{\Gamma_\star^2} + rac{\left(m_{jjb}^{(2)} - m_t^{rec}
ight)^2}{\Gamma_\star^2}$ $+\sum rac{\left(p_{T,i}^{fit}-p_{T,i}^{meas}
ight)^2}{\sigma^2}$ i = iets

* $m_{jj}, m_{l
u}$: Invariant masses of dijet and lepton-neutrino systems

- * $m_{jjb}, m_{l\nu b}$: Invariant masses of three-particle systems including b-jets
- * $p_{T,i}^{meas}, \sigma_i$: Measured transverse momenta of lepton, jets and uncertainties
- * U_j^{meas}, σ_j : components of unclustered energy and uncertainties.
- * M_W, Γ_W, Γ_t : Mass of W boson and widths of W and top quark

• Uncertainties

,A S

	Input measurements and uncertainties in GeV											
	CDF			D0		ATLAS		CMS			World	
Uncertainty	<i>l</i> +jets	di-l	all jet	$E_T^{\rm miss}$	<i>l</i> +jets	di-l	<i>l</i> +jets	di-l	<i>l</i> +jets	di-l	all jet	Combination
m _{top}	172.85	170.28	172.47	173.93	174.94	174.00	172.31	173.09	173.49	172.50	173.49	173.34
Stat	0.52	1.95	1.43	1.26	0.83	2.36	0.23	0.64	0.27	0.43	0.69	0.27
iJES	0.49	n.a.	0.95	1.05	0.47	0.55	0.72	n.a.	0.33	n.a.	n.a.	0.24
stdJES	0.53	2.99	0.45	0.44	0.63	0.56	0.70	0.89	0.24	0.78	0.78	0.20
flavourJES	0.09	0.14	0.03	0.10	0.26	0.40	0.36	0.02	0.11	0.58	0.58	0.12
bJES	0.16	0.33	0.15	0.17	0.07	0.20	0.08	0.71	0.61	0.76	0.49	0.25
MC	0.56	0.36	0.49	0.48	0.63	0.50	0.35	0.64	0.15	0.06	0.28	0.38
Rad	0.06	0.22	0.10	0.28	0.26	0.30	0.45	0.37	0.30	0.58	0.33	0.21
CR	0.21	0.51	0.32	0.28	0.28	0.55	0.32	0.29	0.54	0.13	0.15	0.31
PDF	0.08	0.31	0.19	0.16	0.21	0.30	0.17	0.12	0.07	0.09	0.06	0.09
DetMod	< 0.01	< 0.01	< 0.01	< 0.01	0.36	0.50	0.23	0.22	0.24	0.18	0.28	0.10
<i>b</i> -tag	0.03	n.e.	0.10	n.e.	0.10	< 0.01	0.81	0.46	0.12	0.09	0.06	0.11
LepPt	0.03	0.27	n.a.	n.a.	0.18	0.35	0.04	0.12	0.02	0.14	n.a.	0.02
BGMC	0.12	0.24	n.a.	n.a.	0.18	n.a.	n.a.	0.14	0.13	0.05	n.a.	0.10
BGData	0.16	0.14	0.56	0.15	0.21	0.20	0.10	n.a.	n.a.	n.a.	0.13	0.07
Meth	0.05	0.12	0.38	0.21	0.16	0.51	0.13	0.07	0.06	0.40	0.13	0.05
MHI	0.07	0.23	0.08	0.18	0.05	< 0.01	0.03	0.01	0.07	0.11	0.06	0.04
Total Syst	0.99	3.13	1.41	1.36	1.25	1.49	1.53	1.50	1.03	1.46	1.23	0.71
Total	1.12	3.69	2.01	1.85	1.50	2.79	1.55	1.63	1.06	1.52	1.41	0.76